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1 Introduction
In this paper, we are concerned with the existence of nontrivial solutions to the following
perturbed p-Laplacian equation with critical nonlinearity and magnetic fields of the form

–εp�p,Au +V (x)|u|p–u = K (x)|u|p∗–u + f
(
x, |u|p)|u|p–u, x ∈R

N , (.)

where �p,Au = div(|∇u+ iA(x)u|p–(∇u+ iA(x)u)), i is the imaginary unit, A(x) :RN →R
N

is a real vector potential,  < p <N , p∗ =Np/(N – p) denotes the Sobolev critical exponent
and N ≥ .
This paper is motivated by some works concerning the nonlinear Schrödinger equation

with magnetic fields of the form

i�
∂ψ

∂t
= –

�


m
(∇ + iA(x)

)
ψ +W (x)ψ

–K (x)|ψ |∗–ψ – h
(
x, |ψ |)ψ for x ∈R

N , (.)

where � is Planck’s constant, i is the imaginary unit, ∗ = N
N– (N ≥ ) is the critical ex-

ponent, A(x) : RN → R
N is a real vector potential, B = curlA and W (x) is a scalar electric

potential.
In physics, we are interested in the standing wave solutions, that is, solutions to (.) of

the type

ψ(x, t) = exp

(
–
iEt
�

)
u(x),
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where � is a sufficiently small constant, E is a real number, and u(x) is a complex-valued
function satisfying

–
(∇ + iA(x)

)u(x) + λ
(
W (x) – E

)
u(x) = λK (x)|u|∗–u + λh

(
x, |u|)u, x ∈R

N . (.)

We can conduct the transition from quantummechanics to classical mechanics by letting
� → . Thus, the existence of semiclassical solutions has a great charm in physical interest.
Problem (.) with A(x) ≡  has an extensive literature. Different approaches have been

taken to investigate this problem under various hypotheses on the potential and nonlin-
earity. See for example [–] and the references therein. The above-mentioned papers
mostly concentrated on the nonlinearities with subcritical conditions. Floer and Wein-
stein in [] first studied the existence of single and multiple spike solutions based on the
Lyapunov-Schmidt reductions. Subsequently, Oh [, ] extended the results in a higher
dimension. Kang andWei [] established the existence of positive solutions with any pre-
scribed number of spikes, clustering around a given local maximum point of the potential
function. In accordance with the Sobolev critical nonlinearities, there have beenmany pa-
pers devoted to studying the existence of solutions to elliptic boundary-valued problems
on bounded domains after the pioneering work by Brézis and Nirenberg []. Ding and Lin
[] first studied the existence of semi-classical solutions to the problem on the whole space
with critical nonlinearities and established the existence of positive solutions, as well as
of those that change sign exactly once. They also obtained multiplicity of solutions when
the nonlinearity is odd.
As far as problem (.) in the case of A(x) �=  is concerned, we recall Bartsch [],

Cingolani [] and Esteban and Lions []. This kind of paper first appeared in []. The
authors obtained the existence results of standing wave solutions for fixed � >  and spe-
cial classes of magnetic fields. Cingolani [] proved that the magnetic potential A(x) only
contributes to the phase factor of the solitary solutions for � >  sufficiently small. For
more results, we refer the reader to [–] and the references therein.
For general p ≥ , most of the works studied the existence results to equation (.) with

A(x) ≡ . See, for example, [–] and the references therein. These papers are mostly
devoted to the study of the existence of solutions to the problem on bounded domains
with the Sobolev subcritical nonlinearities.
However, to our best knowledge, it seems that there is no work on the existence of semi-

classical solutions to perturbed p-Laplacian equation on R
N involving critical nonlinear-

ity and magnetic fields. In this paper, we consider problem (.) with magnetic fields. The
main difficulty in the case is the lack of compactness of the energy functional associated
to equation (.) because of unbounded domain R

N and critical nonlinearity. At the same
time, we must consider complex-valued functions for the appearance of electromagnetic
potential A(x). To overcome this difficulty, we chiefly follow the ideas of []. Notice that
although the ideas were used in other problems, the adaption of the procedure to our
problem is not trivial at all. We need to make careful and complex estimates and prove
that the energy functional possesses a Palais-Smale sequence, which has a strongly con-
vergent sequence.
We make the following assumptions on V (x), A(x), f (x, s) and K (x) throughout the pa-

per:
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(V) V ∈ C(RN ), V () = infx∈RN V (x) = , and there exists b >  such that the set νb := {x ∈
R

N : V (x) < b} has a finite Lebesgue measure;
(A) A ∈ C(RN ,RN ) and A() = ;
(K) K (x) ∈ C(RN ,R+),  < infK ≤ supK < ∞;
(H) f ∈ C(RN ×R

+,R) and f (x, s) = o(|s|) uniformly in x as s→ ;
(H) there are c >  and p < α < p∗ such that |f (x, s)| ≤ c( + |s| α–p

p ) for all (x, s);
(H) there exist a > , q > p and θ ∈ (p,p∗) such that F(x, s) ≥ pa|s|

q
p and θ

pF(x, s) ≤
f (x, s)s for all (x, s), where F(x, s) =

∫ s
 f (x, t)dt.

Our main result is the following.

Theorem  Assume that (V), (A), (K) and (H)-(H) hold. Then for any σ > , there
exists εσ >  such that if ε ≤ εσ , equation (.) has at least one positive least energy solution
uε , which satisfies

θ – p
pθ

∫
RN

(
εp|∇uε|p +V (x)|uε|p

) ≤ σεN .

The paper is organized as follows. In Section , we give some necessary preliminaries.
Section  is devoted to the technical lemmas. The proof of Theorem  is given in the last
section.

2 Preliminaries
Let λ = ε–p. Equation (.) reads then as

–�p,Au + λV (x)|u|p–u = λK (x)|u|p∗–u + λf
(
x, |u|p)|u|p–u, x ∈R

N . (.)

We are going to prove the following result.

Theorem  Assume that (V), (A), (K) and (H)-(H) are satisfied. Then for any σ > ,
there exists λσ >  such that if λ > λσ , then equation (.) has at least one solution of least
energy uλ satisfying

θ – p
pθ

∫
RN

(|∇uλ|p + λV (x)|uλ|p
) ≤ σλ

–N
p . (.)

In order to prove these theorems, we introduce the space

Eλ,A =
{
u ∈W ,p(

R
N ,C

)
:
∫
RN

λV (x)|u|p < ∞,λ > 
}
,

equipped with the norm

‖u‖λ,A =
(∫

RN

(∣∣∇u + iλ

p A(x)u

∣∣p + λV (x)|u|p)) 
p
.

It is known that Eλ,A is the closure of C∞
 (RN ,C). Similar to the diamagnetic inequality

[], we have the following inequality

∣∣∇∣∣u(x)∣∣∣∣ ≤ ∣∣∇u + iλ

p Au

∣∣.
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In fact, since A(x) is real-valued, one has

∣∣∇∣∣u(x)∣∣∣∣ ≤
∣∣∣∣∇u

ū
|u|

∣∣∣∣ =
∣∣∣∣Re(∇u + iλ


p Au

) ū
|u|

∣∣∣∣ ≤ ∣∣∇u + iλ

p Au

∣∣ (.)

(the bar denotes a complex conjugation). This inequality implies that if u ∈ Eλ,A, then |u| ∈
W ,p(RN ), and, therefore, u ∈ Lq(RN ) for any q ∈ [p,p∗). That is, if un ⇀ u in Eλ,A, then
un → u in Lqloc(R

N ) for any q ∈ [p,p∗) and un → u a.e. in R
N .

Solutions of (.) will be sought in the Sobolev space Eλ,A as critical points of the func-
tional

Iλ(u) =

p

∫
RN

(∣∣∇u + iλ

p Au

∣∣p + λV (x)|u|p) – λ

p∗

∫
RN

K (x)|u|p∗
–

λ

p

∫
RN

F
(
x, |u|p)

=

p
‖u‖pλ,A – λ

∫
RN

G(x,u),

where G(x,u) = 
p∗K (x)|u|p∗ + 

pF(x, |u|p).
It is easy to see that Iλ is a C-functional on Eλ,A [].

3 Behavior of (PS)c sequence and amountain pass structure
In this section, we commence by establishing the necessary results which complete the
proof of Theorem .

Lemma . Let (V), (A), (K) and (H)-(H) be satisfied. For the (PS)c sequence {un} ⊂
Eλ,A for Iλ, we get that c≥  and {un} is bounded in the space Eλ,A.

Proof Under assumptions (K) and (H), we have

Iλ(un) –

θ
I ′λ(un)un

=
(

p
–

θ

)
‖un‖pλ,A +

(

θ
–


p∗

)
λ

∫
RN

K (x)|un|p∗

+ λ

∫
RN

(

θ
f
(
x, |un|p

)|un|p – 
p
F
(
x, |un|p

))
.

In connection with the facts that Iλ(un) → c and I ′λ(un) →  as n→ ∞, we obtain that the
(PS)c sequence {un} is bounded in Eλ,A, and the energy level c≥ . �

Next, let {un} denote a (PS)c sequence. By Lemma ., it is bounded, thus, without loss
of generality, we may assume that un ⇀ u in Eλ,A. Furthermore, passing to a subsequence,
we have un → u in Lqloc(R

N ) for any q ∈ [p,p∗) and un → u a.e. in R
N .

Lemma . For any s ∈ [p,p∗), there is a subsequence {unj} such that for any ε > , there
exists rε >  with

lim
j→∞ sup

∫
Bj\Br

|unj |s ≤ ε for any r ≥ rε ,

where Br := {x ∈R
N : |x| ≤ r}.
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Proof It is easily obtained by the similar proof of Lemma . []. �

Let η ∈ C∞(R+) be a smooth function satisfying ≤ η(t) ≤ , η(t) =  if t ≤  and η(t) = 
if t ≥ . Define ũj(x) = η(|x|/j)u(x). It is not difficult to see that

‖u – ũj‖λ,A →  as j → ∞.

Lemma . One has

lim
j→∞ supRe

∫
RN

(
f
(
x, |unj |p

)|unj |p–unj
– f (x,unj – ũj)|unj – ũj|p–(unj – ũj) – f

(
x, |̃uj|p

)|̃uj|p–ũj)ϕ = 

uniformly in ϕ ∈ Eλ,A with ‖ϕ‖λ,A ≤ .

Proof By direct computation, we easily obtain ũj → u in Eλ,A. The local compactness of
the Sobolev embedding implies that, for any r ≥ , we have

lim
j→∞ supRe

∫
Br

(
f
(
x, |unj |p

)|unj |p–unj
– f (x,unj – ũj)|unj – ũj|p–(unj – ũj) – f

(
x, |̃uj|p

)|̃uj|p–ũj)ϕ̄ = 

uniformly in ‖ϕ‖λ,A ≤ . For any ε > , there is rε ≥  such that

lim
j→∞ sup

∫
Bj\Br

|̃uj|s ≤
∫
RN \Br

|u|s ≤ ε

for all r ≥ rε . By the assumptions and the Hölder inequality, we have

lim
j→∞ supRe

∫
RN

(
f
(
x, |unj |p

)|unj |p–unj
– f (x,unj – ũj)|unj – ũj|p–(unj – ũj) – f

(
x, |̃uj|p

)|̃uj|p–ũj)ϕ
= lim

j→∞ supRe
∫
Bj\Br

(
f
(
x, |unj |p

)|unj |p–unj
– f (x,unj – ũj)|unj – ũj|p–(unj – ũj) – f

(
x, |̃uj|p

)|̃uj|p–ũj)ϕ
≤ c lim

j→∞ sup
∫
Bj\Br

(|unj |p– + |̃uj|p–
)|ϕ|

+ c lim
j→∞ sup

∫
Bj\Br

(|unj |α– + |̃uj|α–
)|ϕ|

≤ c lim
j→∞ sup

(‖unj‖L p
p– (Bj\Br )

+ ‖̃uj‖
L

p
p– (Bj\Br)

)‖ϕ‖Lp(Bj\Br )

+ c lim
j→∞ sup

(‖unj‖α–
Lα (Bj\Br ) + ‖̃uj‖α–

Lα (Bj\Br )
)‖ϕ‖Lα (Bj\Br )

≤ cε
p–
p + cε

α–
α .

This proof is completed. �
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Lemma . One has along a subsequence

Iλ(un – ũn) → c – Iλ(u)

and

I ′λ(un – ũn) →  in E–
λ (the dual space of Eλ).

Proof Combining Lemma . of [] and the arguments of [], one has

Iλ(un – ũn)

= Iλ(un) – Iλ (̃un)

+
λ

p∗

∫
RN

K (x)
(|un|p∗

– |un – ũn|p∗
– |̃un|p∗)

+
λ

p

∫
RN

(
F
(
x, |un|p

)
– F

(
x, |un – ũn|p

)
– F

(
x, |̃un|p

))
+ o().

By the Brézis-Lieb lemma [], we get

lim
n→∞

∫
RN

K (x)
(|un|p∗ – |un – ũn|p∗ – |̃un|p∗) = 

and

lim
n→∞

∫
RN

(
F
(
x, |un|p

)
– F

(
x, |un – ũn|p

)
– F

(
x, |̃un|p

))
= .

We now observe that Iλ(un) → c and Iλ (̃un) → Iλ(u), which gives

Iλ(un – ũn) → c – Iλ(u).

Moreover, by direct computation, we get

I ′λ(un – ũn)ϕ = I ′λ(un)ϕ – I ′λ (̃un)ϕ

+ λRe
∫
RN

K (x)
(|un|p∗–un – |un – ũn|p∗–(un – ũn) – |̃un|p∗–ũn

)
ϕ

+ λRe
∫
RN

(
f
(
x, |un|p

)|un|p–un
– f

(
x, |un – ũn|p

)|un – ũn|p–(un – ũn) – f
(
x, |̃un|p

)|̃un|p–ũn)ϕ + o().

It then follows from the standard arguments that

lim
n→∞Re

∫
RN

K (x)
(|un|p∗–un – |un – ũn|p∗–(un – ũn) – |̃un|p∗–ũn

)
ϕ = 

uniformly in ‖ϕ‖λ,A ≤ . Combining Lemma ., we get I ′λ(un – ũn) → . The proof is
completed. �

http://www.boundaryvalueproblems.com/content/2013/1/216
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Let un = un – ũn, then un – u = un + (̃un – u). Therefore, un → u in Eλ,A if and only if
un →  in Eλ,A.
Note that

Iλ
(
un

)
–

p
I ′λ

(
un

)
un

=
(

p
–


p∗

)
λ

∫
RN

K (x)
∣∣un∣∣p∗

+ λ

∫
RN


p
(∣∣un∣∣pf (x, ∣∣un∣∣p) – F

(
x,

∣∣un∣∣p))
≥ λ

N

∫
RN

K (x)
∣∣un∣∣p∗

≥ λ

N
Kmin

∥∥un∥∥p∗
p∗ ,

where Kmin = infx∈RN K (x) > . Together with Lemma ., one has

∥∥un∥∥p∗
p∗ ≤ N(c – Iλ(u))

λKmin
+ o(). (.)

In the following, we consider the energy level of the functional Iλ below which the (PS)c
condition holds.
DenoteVb(x) :=max{V (x),b}, where b is the positive constant in assumption (V). Since

the set νb has a finite measure, combining the fact that un →  in Lploc(R
N ), we get

∫
RN

V (x)
∣∣un∣∣p =

∫
RN

Vb(x)
∣∣un∣∣p + o(). (.)

Furthermore, by (K) and (H)-(H), there exists Cb >  such that

∫
RN

(
K (x)

∣∣un∣∣p∗
+

∣∣un∣∣pf (x, ∣∣un∣∣p)) ≤ b
∥∥un∥∥p

p +Cb
∥∥un∥∥p∗

p∗ . (.)

Let S be the best Sobolev constant of the immersion

S‖u‖pp∗ ≤
∫
RN

|∇u|p for all u ∈W ,p(
R

N)
.

Lemma . There exists α >  (independent of λ) such that, for any (PS)c sequence {un} ⊂
Eλ,A for Iλ with un ⇀ u, either un → u in Eλ,A or c – Iλ(u) ≥ αλ

–N
p .

Proof Arguing by contradiction, assume that un � u, then

lim inf
n→∞

∥∥un∥∥λ,A > .

Combining the Sobolev inequality, (.) and (.), we get

S
∥∥un∥∥p

p∗ ≤
∫
RN

∣∣∇un
∣∣p

≤
∫
RN

(∣∣∇un + iλ

p A(x)un

∣∣p + λV (x)
∣∣un∣∣p) – λ

∫
RN

V (x)
∣∣un∣∣p

= λ

∫
RN

(
K (x)

∣∣un∣∣p∗
+

∣∣un∣∣pf (x, ∣∣un∣∣p)) – λ

∫
RN

Vb(x)
∣∣un∣∣p + o()

http://www.boundaryvalueproblems.com/content/2013/1/216
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≤ λb
∥∥un∥∥p

p + λCb
∥∥un∥∥p∗

p∗ – λb
∥∥un∥∥p

p + o()

= λCb
∥∥un∥∥p∗

p∗ + o(),

which further gives

S ≤ λCb
∥∥un∥∥p∗–p

p∗ + o()

≤ λCb

(
N(c – Iλ(u))

λKmin

) p
N
+ o()

= λ– p
N Cb

(
N
Kmin

) p
N (

c – Iλ(u)
) p
N + o().

Denote α = S
N
p C

–N
p

b N–Kmin, then

αλ
–N

p ≤ c – Iλ(u) + o().

We obtain the desired conclusion. �

Lemma . There exists a constant α >  (independent of λ) such that if a (PS)c sequence
{un} ⊂ Eλ,A for Iλ satisfies c ≤ αλ

–N
p , the sequence {un} has a strongly convergent subse-

quence in Eλ,A.

Proof By the fact that Iλ(u) ≥  and Lemma ., we easily get the required conclusion. �

Now, we consider λ ≥  and prove that the energy functional Iλ possesses the mountain
pass structure.

Lemma . Under the assumptions of Theorem , there exist αλ,ρλ >  such that

Iλ(u) >  if  < ‖u‖λ,A < ρλ and Iλ(u) ≥ αλ if ‖u‖λ,A = ρλ.

Proof The proof of Lemma . is similar to the one of Lemma . in []. �

Lemma . For any finite dimensional subspace F ⊂ Eλ,A, we have

Iλ(u) → –∞, u ∈ F as ‖u‖λ,A → ∞.

Proof By assumptions (K) and (H), one has

Iλ(u) ≤ 
p
‖u‖pλ,A – λa‖u‖qq for all u ∈ Eλ,A.

Since all norms in a finite-dimensional space are equivalent, in connection with q > p, we
obtain the desired conclusion. �

For λ large enough and cλ small sufficiently, Iλ satisfies (PS)cλ condition by Lemma ..
Furthermore, we will find special finite-dimensional subspace, by which we establish suf-
ficiently small minimax levels.

http://www.boundaryvalueproblems.com/content/2013/1/216
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Define the functional

�λ(u) =

p

∫
RN

(∣∣∇u + iλ

p A(x)u

∣∣p + λV (x)|u|p) – λa
∫
RN

|u|q.

It is easy to see that �λ ∈ C(Eλ,A) and Iλ(u) ≤ �λ(u) for all u ∈ Eλ,A. Note that

inf

{∫
RN

|∇φ|p : φ ∈ C∞


(
R

N ,R
)
,‖φ‖Lq(RN ) = 

}
= .

For any δ > , there is φδ ∈ C∞
 (RN ,R) with ‖φδ‖Lq(RN ) =  and suppφδ ⊂ Brδ () such that

‖∇φδ‖pp < δ. Let eλ(x) = φδ( p√
λx), then supp eλ ⊂ B

λ
– 
p rδ

(). For any t ≥ , we have

�λ(teλ) =
tp

p
‖eλ‖pλ,A – aλtq

∫
RN

∣∣φδ

( p√
λx

)∣∣q
= λ

–N
p Jλ(tφδ),

where

Jλ(u) =

p

∫
RN

(∣∣∇u + iλ

p A(x)u

∣∣p +V
(
λ
– 
p x

)|u|p) – a
∫
RN

|u|q.

We derive that

max
t≥

Jλ(tφδ) ≤ q – p

pq(qa)
p

q–p

(∫
RN

(|∇φδ|p +
(
A

(
λ
– 
p x

)
+V

(
λ
– 
p x

))|φδ|p
)) q

q–p
.

Observe that A() = , V () =  and ‖∇φδ‖pp < δ. Therefore, there exists �δ >  such that
for all λ ≥ �δ , we have

max
t≥

Iλ(tφδ)≤
(

q – p

pq(qa)
p

q–p
(δ)

q
q–p

)
λ
–N

p . (.)

Lemma . Under the assumptions of Theorem , for any σ > , there is �σ >  such that
for each λ ≥ �σ , there exists ēλ ∈ Eλ,A with ‖ēλ‖λ,A > ρλ, Iλ(ēλ) ≤  and

max
t≥

Iλ(tēλ) ≤ σλ
–N

p ,

where ρλ is defined in Lemma ..

Proof For any σ > , we can choose δ <  so small that

q – p

pq(qa)
p

q–p
(δ)

q
q–p ≤ σ .

Denote eλ(x) = φδ( p√
λx) and�σ =�δ . Let t̄λ >  be such that t̄λ‖eλ‖λ,A > ρλ and Iλ(teλ) ≤ 

for all t ≥ t̄λ. Then, combining (.), ēλ = t̄λeλ meets the requirements. �

http://www.boundaryvalueproblems.com/content/2013/1/216
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4 Proof of Theorem 2
In this section, we give the proof of Theorem .

Proof By Lemma ., for any σ >  with  < σ < α, we choose �σ >  and define the
minimax value

cλ = inf
γ∈�λ

max
t∈[,]

Iλ
(
γ (t)

)
with cλ ≤ σλ

–N
p for each λ ≥ �σ ,

where �λ = {γ ∈ C([, ],Eλ,A) : γ () = ,γ () = ēλ}.
Lemma . shows that Iλ satisfies (PS)cλ condition. Therefore, by the mountain pass

theorem, there exists uλ ∈ Eλ,A, which satisfies Iλ(uλ) = cλ and I ′λ(uλ) = . That is, uλ is a
weak solution of (.). Furthermore, it is well known that uλ is the least energy solution of
equation (.).
Moreover, together with Iλ(uλ) ≤ σλ

–N
p and I ′λ(uλ) = , we have

Iλ(uλ) = Iλ(uλ) –

θ
I ′λ(uλ)(uλ)

=
(

p
–

θ

)
‖uλ‖pλ,A +

(

θ
–


p∗

)
λ

∫
RN

K (x)|uλ|p∗

+ λ

∫
RN

(

θ
|uλ|pf

(
x, |uλ|p

)
–

p
F
(
x, |uλ|p

))

≥
(

p
–

θ

)
‖uλ‖pλ,A.

By inequality (.), we obtain

θ – p
pθ

∫
RN

(|∇uλ|p + λV (x)|uλ|p
) ≤ σλ

–N
p .

The proof is complete. �
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