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1 Introduction andmain results
In this paper, we investigate the existence of subharmonic weak solutions for the following
second-order impulsive Lagrangian system with damped term:

⎧⎪⎪⎨
⎪⎪⎩

d(P(t)u̇(t))
dt + (q(t)P(t) + B)u̇(t) + ( q(t)B –A(t))u(t) +∇F(t,u(t))

= , a.e. t ∈R,

�(P(tj)u̇(tj)) = P(tj)u̇(t+j ) – P(tj)u̇(t–j ) = ∇Ij(u(tj)), j = , . . . ,p,

(.)

where T > , p ∈N, t =  < t < t < · · · < tp < tp+ = T , u(t) = (u(t), . . . ,uN (t)), Ij :RN →R,
q ∈ C(R,R) satisfying q(t + T) = q(t) and

∫ T
 q(t)dt = , B is a skew-symmetric N × N

constant matrix, P(t) and A(t) are symmetric and continuous N × N matrix-value func-
tions on R satisfying P(t + T) = P(t) and A(t + T) = A(t), and F : R × R

N → R satisfies
F(t,x) = –K (t,x) +W (t,x), where K , W are T-periodic in their first variable, and the fol-
lowing assumption:
(A) F(t,x) is measurable in t for every x ∈R

N and continuously differentiable in x for
a.e. t ∈ [,T], and there exist a ∈ C(R+,R+) and b ∈ L(,T ;R+) with b(t +T) = b(t)
such that

∣∣F(t,x)∣∣≤ a
(|x|)b(t), ∣∣∇F(t,x)

∣∣≤ a
(|x|)b(t),∣∣Ij(x)∣∣≤ a

(|x|), ∣∣∇Ij(x)
∣∣≤ a

(|x|)

for all x ∈R
N and a.e. t ∈ [,T].
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Lagrangian systems are applied extensively to study the fluidmechanics, nuclear physics
and relativistic mechanics. Especially, as a special case of Lagrangian systems, the follow-
ing second-order Hamiltonian systems are considered by many authors:

ü(t) = ∇F
(
t,u(t)

)
, a.e. t ∈ R, (.)

where F : R × R
N → R satisfies F(t + T ,x) = F(t,x), and the existence and multiplicity of

periodic solutions, subharmonic solutions and homoclinic solutions are obtained via vari-
ational methods. We refer readers to [–]. Especially, in , under the asymptotically
quadratic conditions, Tang and Jiang [] obtained the following interesting result.

Theorem A (see [], Theorem .) Assume that F satisfies
(F) F(t,x) = –K (t,x) +W (t,x) and K ,W ∈ C(R×R

N ,R) are T-periodic in their first
variable with T > , and that K andW satisfy the following assumptions:
(H) There exist constants b >  and γ ∈ (, ] such that

K (t, ) = , K (t,x) ≥ b|x|γ for (t,x) ∈ [,T]×R
N ;

(H) (∇K (t,x),x)≤ K (t,x) for (t,x) ∈ [,T]×R
N ;

(H) lim sup|x|→
W (t,x)
|x| < b uniformly for t ∈ [,T];

(H) There exists a function g ∈ L([,T],R) such that

(∇W (t,x),x
)
– W (t,x)≥ g(t) for (t,x) ∈ [,T]×R

N

and

lim|x|→∞
[(∇W (t,x),x

)
– W (t,x)

]
= +∞ for a.e. t ∈ [,T];

(H) There exist constants a >  and d >  such that

W (t,x)≤ a|x| + d for (t,x) ∈ [,T]×R
N ;

(H) There exists x ∈R
N such that

∫ T



[
K (t,x) –W (t,x) –

g(t)


]
dt < .

Then system (.) has a nontrivial T-periodic solution.

In recent years, variational methods have been applied to study the existence andmulti-
plicity of solutions for impulsive differential equations and lots of interesting results have
been obtained, see [–].
In [], Nieto and O’Regan considered a one-dimensional Dirichlet boundary value

problem with impulses. They obtained that the solutions of the impulsive problem mini-
mize some (energy) functional and the critical points of the functional are indeed solutions
of the impulsive problem.
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In [], Nieto introduced a variational formulation for the following one-dimensional
damped nonlinear Dirichlet problem with impulses:

⎧⎪⎪⎨
⎪⎪⎩
u′′(t) + g(t)u′(t) + λu(t) = f (t,u(t)), t ∈ [,T],

�u′(tj) = Ij(u(t–j )), j = , , . . . ,p,

u() = u(T) = ,

(.)

and gave the concept of a weak solution for such a problem. They obtained that the weak
solutions of problem (.) are indeed the critical points of the functional:

ϕ(v) =



∫ T


eG(t)

(
v′(t)

) dt + λ



∫ T


eG(t)v(t)dt

+
p∑
j=

eG(tj)
∫ v(tj)


Ij(t)dt –

∫ T


eG(t)F

(
t, v(t)

)
dt, (.)

whereG(t) =
∫ t
 g(t)dt and F(t, v) =

∫ v
 f (t, s)ds. In [] and [], the authors also dealt with

some one-dimensional impulsive problems with damped term by variational methods.
For higher dimensional dynamical systems, some interesting results have also been ob-

tained (see [–]). In [], Zhou and Li investigated the second-order Hamiltonian sys-
tem with impulsive effects:

⎧⎪⎪⎨
⎪⎪⎩
ü(t) =∇F(t,u(t)), a.e. t ∈ [,T],

u() – u(T) = u̇() – u̇(T) = ,

�u̇i(tj) = u̇i(t+j ) – u̇i(t–j ) = Iij(ui(tj)), i = , , . . . ,N , j = , , . . . ,p.

(.)

By using the least action principle and the saddle point theorem, they obtained some ex-
istence results of solutions under sublinear condition and some reasonable conditions.
In [], system (.) with F(t,u) = 

A(t)u · u – λW (t,u) – μG(t,u), where λ,μ ∈ R, was
also investigated. By using variational methods, the authors obtained that system (.)
has at least three weak solutions. In [], the authors investigated system (.) with
F(t,u) = 

A(t)u ·u–W (t,u). They obtained that system (.) has infinitely many solutions
under the assumptions that nonlinear term is superquadratic, asymptotically quadratic
and subquadratic, respectively.
In recent years, via variational methods, some authors have been interested in study-

ing the existence and multiplicity of periodic solutions and homoclinic solutions for the
following Lagrangian systems with damped term:

d(P(t)u̇(t))
dt

+ Bu̇(t) +∇F
(
t,u(t)

)
= , (.)

where P(t) is a symmetric and continuous N × N matrix-valued function, B is a skew-
symmetric N ×N constant matrix and F :R×R

N → R. They obtained some interesting
results. We refer readers to [–].

http://www.boundaryvalueproblems.com/content/2013/1/218
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In , Li et al. [] investigated the following system, more general than system (.),
with P(t) ≡ IN :

⎧⎪⎪⎨
⎪⎪⎩
ü(t) + (q(t)IN×N + B)u̇(t) + ( q(t)B –A(t))u(t) +∇F(t,u(t))

= , a.e. t ∈ [,T],

u() – u(T) = u̇() – u̇(T) = .

(.)

Motivated by [], in [], we investigated the following system, more general than sys-
tem (.):

⎧⎪⎪⎨
⎪⎪⎩

d(P(t)u̇(t))
dt + (q(t)P(t) + B)u̇(t) + ( q(t)B –A(t))u(t) +∇F(t,u(t))

= , a.e. t ∈ [,T],

u() – u(T) = P()u̇() – P(T)u̇(T) = .

(.)

By variational methods, under superquadratic or subquadratic conditions, we obtained
that system (.) has infinitely many solutions. One can see more details of our results and
more research background of system (.) in [].
In [], Luo et al. investigated the existence of subharmonic solutions with prescribed

minimal period for the following one-dimensional second-order impulsive differential
equation:

⎧⎨
⎩u

′′(t) + f (t,u(t)) = , a.e. t ∈ J ′,

�u′(tm) = Im(u(tm)), m ∈ Z,
(.)

where f ∈ C(R × R,R), Z = Z+ ∪ Z–, J ′ = R\{tm | m ∈ Z}, Im ∈ C(R,R+ ∪ {}),  < t <
t < · · · < tp < T , Im+p = Im and tm = tm+p – T ifm ∈ Z+, while tm = tm+p+ – T ifm ∈ Z–.
In this paper, motivated by [, , , , , ] and [], we focus on the existence

of subharmonic weak solutions for system (.), which is of impulsive conditions, and we
study the problem under asymptotically quadratic conditions. To the best of our knowl-
edge, there are few papers that consider such a problem for system (.).We call a solution
u subharmonic if u is kT-periodic for some k ∈N.
Let

‖A‖ = sup
t∈[,T]

max
|x|=,x∈RN

∣∣A(t)x∣∣
= sup

t∈[,T]
max

{√
λ(t) : λ(t) is the eigenvalue of Aτ (t)A(t)

}

and

‖B‖ = max
|x|=,x∈RN

|Bx|

= max
{√

λ : λ is the eigenvalue of BτB
}
.

In this paper, we make the following assumptions:

http://www.boundaryvalueproblems.com/content/2013/1/218
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(P) There exists a constantm > 
 such that the matrix P(t) satisfies

P() = P(T),
(
P(t)x,x

)
>m(x,x) for all (t,x) ∈R× {RN /{}};

(K) There exist constants a >  and γ ∈ (, ] such that

K (t, ) = , K (t,x) ≥
(‖B‖ + ‖A‖


+a
)

|x|γ for all x ∈R
N and a.e. t ∈ [,T];

(K) (∇K (t,x),x)≤ K (t,x) for all x ∈R
N and a.e. t ∈ [,T];

(K) There exists D >  such that

K (t,x)≤D|x| for all x ∈R
N and a.e. t ∈ [,T];

(W) lim|x|→
W (t,x)
|x| < a uniformly for a.e. t ∈ [,T];

(W) There exist constants b >  and d >  such that

W (t,x)≤ b|x| + d for all x ∈R
N and a.e. t ∈ [,T];

(W) There exists a function h ∈ L(,T ;R) such that

eQ(t)
[(∇W (t,x),x

)
– W (t,x)

]≥ h(t) for all x ∈ R
N and a.e. t ∈ [,T]

and

lim|x|→∞ eQ(t)
[(∇W (t,x),x

)
– W (t,x)

]
= +∞ for a.e. t ∈ [,T],

where Q(t) =
∫ t
 q(s)ds;

(W) There exists x ∈R
N such that

∫ T


eQ(t)

[


(
A(t)x,x

)
+K (t,x) –W (t,x) –

h(t)


]
dt < ;

(W) There exists a constant D > ‖A‖
 +D such that

W (t,x)≥D|x| for all x ∈R
N and a.e. t ∈ [,T];

(I) There exist constants lj >  (j = , . . . ,p) such that

Ij(x) ≤ lj (j = , . . . ,p) for all x ∈R
N ;

(I)
∑p

j= e
Q(tj)Ij() =  and

∑p
j= e

Q(tj)Ij(x)≥  for all x ∈R
N ;

(I) There exists a constant C such that

p∑
j=

eQ(tj)
[
Ij(x) –

(∇Ij(x),x
)]≥ C for all x ∈R

N .
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This paper is organized as follows. In Section , we present the definition of a subhar-
monic classical solution, a subharmonic weak solution and the variational structure for
system (.) and make some preliminaries. In Section , we present our main theorems
and their proofs. In Section , an example is given to verify our main theorems.

2 Preliminaries
In this section, we present the variational structure of system (.), which is motivated by
[–, ] and [].
Let

H
kT =

{
u :R →R

N | u is absolutely continuous, u(t + kT) = u(t) and u̇ ∈ L(,kT)
}
.

Define

〈u, v〉 =
∫ kT


eQ(t)

(
u(t), v(t)

)
dt +

∫ kT


eQ(t)

(
P(t)u̇(t), v̇(t)

)
dt

and

‖u‖ =
[∫ kT


eQ(t)

∣∣u(t)∣∣ dt + ∫ kT


eQ(t)

(
P(t)u̇(t), u̇(t)

)
dt
]/

for each u, v ∈H
kT . Then (H

kT , 〈·, ·〉) is a Hilbert space. It is well known that

‖u‖H
kT

=
[∫ kT



∣∣u(t)∣∣ dt + ∫ kT



∣∣u̇(t)∣∣ dt]/

is also a norm onH
kT . Obviously, if the condition (P) holds, ‖u‖H

kT
and ‖u‖ are equivalent.

Moreover, there exists Ck >  such that

‖u‖∞ = max
t∈[,kT]

∣∣u(t)∣∣≤ Ck‖u‖H
kT

(see Proposition . in []). Hence, there exist positive constants Ck , Ck such that

‖u‖∞ ≤ Ck‖u‖, ‖u‖H
kT

≥ Ck‖u‖. (.)

For any a,b ∈R, define

H(a,b) =
{
u :R→R

N | both u and u̇ are absolutely continuous on (a,b),

and ü ∈ L(a,b)
}
,

H[a,b) =
{
u :R→R

N | both u and u̇ are absolutely continuous on
[
a,b),

and ü ∈ L(a,b)
}
,

H(a,b] =
{
u :R→R

N | both u and u̇ are absolutely continuous on (a,b
]
,

and ü ∈ L(a,b)
}
.

If u ∈H
kT , then u̇(t+) – u̇(t–) =  may not hold, which leads to impulsive effects.

http://www.boundaryvalueproblems.com/content/2013/1/218


Zhang Boundary Value Problems 2013, 2013:218 Page 7 of 17
http://www.boundaryvalueproblems.com/content/2013/1/218

Definition . Assume that u ∈H
kT ∩H[, t)∩ (

⋂p–
j= H(tj, tj+))∩H(tp,T]∩H[T ,kT]

and the limits u̇(t+j ) and u̇(t–j ) (j = , , . . . ,p) exist. If u satisfies system (.), thenwe say that
u is a subharmonic classical solution of system (.).

Remark . In [], impulsive effects may occur periodically in tj, j ∈ {, . . . ,p}. In order
to obtain a sequence of distinct subharmonic weak solutions (see Theorem . below),
different from [], in Definition ., we assume that the impulsive effects only occur in tj,
j = , . . . ,p, which belong to (,T). In other words, u is absolutely continuous on R and u̇
is absolutely continuous on [, t) ∪ (

⋃p–
j= (tj, tj+)) ∪ (tp,T] ∪ [T ,kT]. Moreover, note that

u(t) = u(t + kT). Then it is easy to see that u̇() = u̇(kT).

Note thatQ(t) =
∫ t
 q(s)ds. Then, by T-periodicity of q, we haveQ(kT) = k

∫ T
 q(t)dt = .

Moreover, obviously,Q(t) is continuous onR.We transform system (.) into the following
system:

⎧⎪⎪⎨
⎪⎪⎩

d(eQ(t)P(t)u̇(t))
dt + eQ(t)Bu̇(t) + eQ(t)( q(t)B –A(t))u(t) + eQ(t)∇F(t,u(t))

= , a.e. t ∈R,

�(P(tj)u̇(tj)) = P(tj)u̇(t+j ) – P(tj)u̇(t–j ) = ∇Ij(u(tj)), j = , . . . ,p.

(.)

Then system (.) is equivalent to system (.) and its solutions are the solutions of sys-
tem (.).
By the idea in [], we take v ∈ H

kT and multiply the two sides of the equality

d(eQ(t)P(t)u̇(t))
dt

+ eQ(t)Bu̇(t) + eQ(t)
(


q(t)B –A(t)

)
u(t) + eQ(t)∇F

(
t,u(t)

)
= 

by v and integrate it from  to kT . Then we obtain

∫ kT



(
d(eQ(t)P(t)u̇(t))

dt
+ eQ(t)Bu̇(t) + eQ(t)

(


q(t)B –A(t)

)
u(t)

+ eQ(t)∇F
(
t,u(t)

)
, v(t)

)
dt = . (.)

Note that P(t+T) = P(t), P(t) is continuous onR and u̇() = u̇(kT). By integration by parts
and the continuity of v, we obtain

∫ kT



(
d(eQ(t)P(t)u̇(t))

dt
, v(t)

)
dt

=
p∑
j=

∫ tj+

tj

(
d(eQ(t)P(t)u̇(t))

dt
, v(t)

)
dt +

∫ kT

T

(
d(eQ(t)P(t)u̇(t))

dt
, v(t)

)
dt

=
p∑
j=

[(
eQ(tj+)P(tj+)u̇

(
t–j+
)
, v(tj+)

)
–
(
eQ(tj)P(tj)u̇

(
t+j
)
, v(tj)

)

–
∫ tj+

tj

(
eQ(t)P(t)u̇(t), v̇(t)

)
dt
]

+
(
eQ(kT)P(kT)u̇(kT), v(kT)

)
–
(
eQ(T)P(T)u̇(T), v(T)

)

http://www.boundaryvalueproblems.com/content/2013/1/218
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–
∫ kT

T

(
eQ(t)P(t)u̇(t), v̇(t)

)
dt

=
(
eQ(T)P(T)u̇(T), v(T)

)
–
(
eQ()P()u̇(), v()

)
–

p∑
j=

[(
eQ(tj)P(tj)u̇

(
t+j
)
, v(tj)

)
–
(
eQ(tj)P(tj)u̇

(
t–j
)
, v(tj)

)]

–
∫ T



(
eQ(t)P(t)u̇(t), v̇(t)

)
dt

+
(
eQ(kT)P(kT)u̇(kT), v(kT)

)
–
(
eQ(T)P(T)u̇(T), v(T)

)
–
∫ kT

T

(
eQ(t)P(t)u̇(t), v̇(t)

)
dt

=
(
eQ(kT)P(kT)u̇(kT), v(kT)

)
–
(
eQ()P()u̇(), v()

)
–

p∑
j=

[(
eQ(tj)P(tj)u̇

(
t+j
)
, v(tj)

)
–
(
eQ(tj)P(tj)u̇

(
t–j
)
, v(tj)

)]

–
∫ kT



(
eQ(t)P(t)u̇(t), v̇(t)

)
dt

= –
p∑
j=

eQ(tj)
(
�
(
P(tj)u̇(tj)

)
, v(tj)

)
–
∫ kT



(
eQ(t)P(t)u̇(t), v̇(t)

)
dt. (.)

Definition . u ∈H
kT is called a subharmonic weak solution of system (.) if

∫ kT



(
eQ(t)P(t)u̇(t), v̇(t)

)
dt +

p∑
j=

eQ(tj)
(∇Ij

(
u(tj)

)
, v(tj)

)

=
∫ kT


eQ(t)

[


q(t)
(
Bu(t), v(t)

)
+
(
Bu̇(t), v(t)

)

–
(
A(t)u(t), v(t)

)
+
(∇F

(
t,u(t)

)
, v(t)

)]
dt

holds for any v ∈H
kT .

Lemma . If u ∈ H
kT is a subharmonic weak solution of system (.), then u is a subhar-

monic classical solution of system (.).

Proof Motivated by [], for j ∈ {, , , . . . ,p}, choose v ∈ H
kT with v(t) =  for every t ∈

[, tj]∪ [tj+,kT]. Then, by Definition ., we obtain

∫ tj+

tj

(
eQ(t)P(t)u̇(t), v̇(t)

)
dt

=
∫ tj+

tj
eQ(t)

[


q(t)
(
Bu(t), v(t)

)
+
(
Bu̇(t), v(t)

)

–
(
A(t)u(t), v(t)

)
+
(∇F

(
t,u(t)

)
, v(t)

)]
dt. (.)

http://www.boundaryvalueproblems.com/content/2013/1/218
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Choose v ∈H
kT with v(t) =  for every t ∈ [,T]. Then we obtain

∫ kT

T

(
eQ(t)P(t)u̇(t), v̇(t)

)
dt

=
∫ kT

T
eQ(t)

[


q(t)
(
Bu(t), v(t)

)
+
(
Bu̇(t), v(t)

)

–
(
A(t)u(t), v(t)

)
+
(∇F

(
t,u(t)

)
, v(t)

)]
dt. (.)

Equations (.) and (.) imply that u ∈ H
kT ∩ H[, t) ∩ (

⋂p–
j= H(tj, tj+)) ∩ H(tp,T] ∩

H[T ,kT] and u satisfies

d(eQ(t)P(t)u̇(t))
dt

+ eQ(t)Bu̇(t) + eQ(t)
(


q(t)B –A(t)

)
u(t) + eQ(t)∇F

(
t,u(t)

)
= , a.e. t ∈ [,kT].

Multiplying the above equality by v and integrating between  and kT , combining the
argument of (.) and Definition ., we obtain that

p∑
j=

eQ(tj)
(
�
(
P(tj)u̇(tj)

)
, v(tj)

)
=

p∑
j=

eQ(tj)
(∇Ij

(
u(tj)

)
, v(tj)

)
.

Hence, �(P(tj)u̇(tj)) = ∇Ij(u(tj)) for every j = , , . . . ,p. This completes the proof. �

For every k ∈N, define ϕk :H
kT →R by

ϕk(u) =
∫ kT


eQ(t)

[


(
P(t)u̇(t), u̇(t)

)
+


(
Bu(t), u̇(t)

)

+


(
A(t)u(t),u(t)

)
– F
(
t,u(t)

)]
dt +

p∑
j=

eQ(tj)Ij
(
u(tj)

)
.

It follows from assumption (A) and Theorem . in [] that the functional ϕk is continu-
ously differentiable and

〈
ϕ′
k(u), v

〉
=
∫ kT


eQ(t)

[(
P(t)u̇(t), v̇(t)

)
–


q(t)
(
Bu(t), v(t)

)
–
(
Bu̇(t), v(t)

)

+
(
A(t)u(t), v(t)

)
–
(∇F

(
t,u(t)

)
, v(t)

)]
dt +

p∑
j=

eQ(tj)
(∇Ij

(
u(tj)

)
, v(tj)

)
(.)

for u, v ∈ H
kT . Obviously, if u ∈ H

kT is a critical point of ϕk , i.e., ϕ′
k(u) = , then u is a

subharmonic weak solution of system (.).
We will use the following mountain pass theorem to prove our results.

Lemma . (see []) Let E be a real Banach space, and let φ ∈ C(E,R) satisfy the (PS)
condition. If φ satisfies the following conditions:

(i) φ() = ;
(ii) There exist constants ρ,α >  such that φ|∂Bρ () ≥ α;

http://www.boundaryvalueproblems.com/content/2013/1/218
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(iii) There exists e ∈ E/B̄ρ() such that φ(e) ≤ , then φ possesses a critical value c ≥ α

given by

c = inf
g∈�

max
s∈[,]

φ
(
g(s)
)
,

where Bρ() is an open ball in E of radius ρ centered at , and

� =
{
g ∈ C

(
[, ],E

)
: g() = , g() = e

}
.

Remark . As shown in [], a deformation lemma can be proved by replacing the usual
(PS)-condition with the condition (C), and it turns out that Lemma . holds true under
the condition (C). We say that φ satisfies the condition (C), i.e., for every sequence {un} ⊂
E, {un} has a convergent subsequence if φ(un) is bounded and ( + ‖un‖)‖φ′(un)‖ →  as
n→ ∞.

3 Main results
Theorem . Assume that (P), (K), (K), (W)-(W) and (I)-(I) hold. Then, for every
k ∈N, system (.) has at least one kT-periodic weak solution in H

kT .

Proof We use Lemma . to prove the theorem. Let E =H
kT .

Step .We prove that ϕk satisfies assumption (ii) of Lemma .. It follows from (W) and
(W) that there exist  < ε < m

 – 
 , θ >  and C >  such that

W (t,x)≤ (a – ε)|x| +C|x|θ . (.)

Choose  < δ <  such that ε( δ
Ck

) –CCθ
k(

δ
Ck

)θ
∫ kT
 eQ(t) dt > . Then it follows from (K),

(I), (.) and (.) that for all u ∈H
kT with ‖u‖ = δ/Ck := ρk ,

ϕk(u) =
∫ kT


eQ(t)

[


(
P(t)u̇(t), u̇(t)

)
+


(
Bu(t), u̇(t)

)
+


(
A(t)u(t),u(t)

)]
dt

+
∫ kT


eQ(t)

[
K
(
t,u(t)

)
–W

(
t,u(t)

)]
dt +

p∑
j=

eQ(tj)Ij
(
u(tj)

)

≥
∫ kT


eQ(t)

[
m

∣∣u̇(t)∣∣ – 


(‖B‖∣∣u(t)∣∣ + ∣∣u̇(t)∣∣) – ‖A‖|u(t)|



]
dt

+
(‖B‖ + ‖A‖


+ a
)∫ kT


eQ(t)

∣∣u(t)∣∣γ dt – (a – ε)
∫ kT


eQ(t)

∣∣u(t)∣∣ dt
–C

∫ kT


eQ(t)

∣∣u(t)∣∣θ dt
≥
(
m

–



)∫ kT


eQ(t)

∣∣u̇(t)∣∣ dt + a
∫ kT


eQ(t)

∣∣u(t)∣∣γ dt
– (a – ε)

∫ kT


eQ(t)

∣∣u(t)∣∣ dt –C

∫ kT


eQ(t)

∣∣u(t)∣∣θ dt
≥
(
m

–



)∫ kT


eQ(t)

∣∣u̇(t)∣∣ dt + ε

∫ kT


eQ(t)

∣∣u(t)∣∣ dt
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–C‖u‖θ
∞

∫ kT


eQ(t) dt

≥ ε‖u‖ –CCθ
k‖u‖θ

∫ kT


eQ(t) dt

= ε

(
δ

Ck

)

–CCθ
k

(
δ

Ck

)θ ∫ kT


eQ(t) dt

=: αk > .

Step . We prove that ϕk satisfies assumption (iii) of Lemma .. Set ϕ(s) = s–W (t, sx)
for s > . By the argument in [], we know that (W) implies that

W (t, sx)≥ sW (t,x) +
h(t)

(
s – 

)
for a.e. t ∈ [,T], s > , (.)

and (K) implies that

K (t, sx) ≤ sK (t,x) for a.e. t ∈ [,T], s > . (.)

It follows from (.), (.), (W) and (I) that for sufficiently large s,

ϕk(sx) =
s



∫ kT


eQ(t)

(
A(t)x,x

)
dt +

∫ kT


eQ(t)

[
K (t, sx) –W (t, sx)

]
dt

+
p∑
j=

eQ(tj)Ij(sx)

=
s


k
∫ T


eQ(t)

(
A(t)x,x

)
dt + k

∫ T


eQ(t)

[
K (t, sx) –W (t, sx)

]
dt

+
p∑
j=

eQ(tj)Ij(sx)

≤ sk
∫ T


eQ(t)

[


(
A(t)x,x

)
+K (t,x) –W (t,x) –

h(t)


]
dt

+



∫ kT


eQ(t)h(t)dt +

p∑
j=

eQ(tj)lj.

By (W), we can choose sufficiently large sk such that ‖skx‖ > ρk and ϕk(skx) ≤ . Let
ek = skx. Then ϕk satisfies assumption (iii) of Lemma ..
Step .Weprove thatϕ satisfies the (C)-condition onH

kT . The proof ismotivated by [].
For every {un} ⊂H

kT , assume that there exists a constant Ck >  such that

∣∣ϕk(un)
∣∣≤ Ck ,

(
 + ‖un‖

)∥∥ϕ′
k(un)

∥∥≤ Ck for all n ∈N. (.)

Then it follows from antisymmetry of B, (K) and (I) that

Ck ≥ ϕk(un) –
(
ϕ′
k(un),un

)
=




∫ kT


eQ(t)q(t)

(
Bun(t),un(t)

)
dt

http://www.boundaryvalueproblems.com/content/2013/1/218
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+
∫ kT


eQ(t)

[(∇F
(
t,un(t)

)
,un(t)

)
– F

(
t,un(t)

)]
dt

+
p∑
j=

eQ(tj)
[
Ij
(
un(tj)

)
–
(∇Ij

(
un(tj)

)
,un(tj)

)]

=
∫ kT


eQ(t)

[
K
(
t,un(t)

)
–
(∇K

(
t,un(t)

)
,un(t)

)]
dt

+
∫ kT


eQ(t)

[(∇W
(
t,un(t)

)
,un(t)

)
– W

(
t,un(t)

)]
dt

+
p∑
j=

eQ(tj)
[
Ij
(
un(tj)

)
–
(∇Ij

(
un(tj)

)
,un(tj)

)]

≥
∫ kT


eQ(t)

[(∇W
(
t,un(t)

)
,un(t)

)
– W

(
t,un(t)

)]
dt +C. (.)

Next we prove that {un} is bounded. Assume that ‖un‖ → ∞ as n → ∞. Let zn = un
‖un‖ .

Then ‖zn‖ = , and so there exists a subsequence, still denoted by {zn}, such that zn ⇀ z
onH

kT . Then, by Proposition . in [], we get ‖zn – z‖∞ → . Hence, we have
∫ kT
 |zn(t) –

z(t)| dt →  and zn(t) → z(t) for a.e. t ∈ [,kT]. Thus, by conditions (P), (W) and (I),
we have

ϕk(un) =
∫ kT


eQ(t)

[


(
P(t)u̇n(t), u̇n(t)

)
+


(
Bun(t), u̇n(t)

)

+


(
A(t)un(t),un(t)

)
+K
(
t,un(t)

)
–W

(
t,un(t)

)]
dt

+
p∑
j=

eQ(tj)Ij
(
un(tj)

)

≥
∫ kT


eQ(t)

[


(
P(t)u̇n(t), u̇n(t)

)
–

‖B‖|un(t)| + |u̇n(t)|


–
‖A‖|un(t)|



]
dt

– b
∫ kT


eQ(t)

∣∣un(t)∣∣ dt – d
∫ kT


eQ(t) dt

≥
(


–


m

)∫ kT


eQ(t)

[(
P(t)u̇n(t), u̇n(t)

)]
dt

–
‖B‖ + ‖A‖ + b



∫ kT


eQ(t)

∣∣un(t)∣∣ dt – d
∫ kT


eQ(t) dt

=
(


–


m

)
‖un‖ –

(


–


m

)∫ kT


eQ(t)

∣∣un(t)∣∣ dt
–

‖B‖ + ‖A‖ + b


∫ kT


eQ(t)

∣∣un(t)∣∣ dt – d
∫ kT


eQ(t) dt

=
(


–


m

)
‖un‖ –

[‖B‖ + ‖A‖ + b


+
(


–


m

)]∫ kT


eQ(t)

∣∣un(t)∣∣ dt
– d
∫ kT


eQ(t) dt.
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Hence, we have

ϕk(un)
‖un‖ ≥

(


–


m

)
–
[‖B‖ + ‖A‖ + b


+
(


–


m

)]∫ kT


eQ(t)

|un(t)|
‖un‖ dt

–
d
∫ kT
 eQ(t) dt
‖un‖ .

Let n→ ∞. Then, by (.), we get



–


m

≤
[‖B‖ + ‖A‖ + b


+
(


–


m

)]∫ kT


eQ(t)

∣∣zn(t)∣∣ dt. (.)

Then it follows from m > 
 and (.) that

∫ kT
 eQ(t)|z(t)| dt >  and so z �= . Let S = {t ∈

[,kT] : lim|x|→∞ eQ(t)[W (t,x) – (∇W (t,x),x)] = +∞} and S = {t ∈ S : z(t) �= }. Then
measS >  and

lim
n→∞

∣∣un(t)∣∣ = +∞ for every t ∈ S. (.)

Let fn(t) = eQ(t)[(∇W (t,un(t)),un(t)) – W (t,un(t))]. Then (.) and T-periodicity of
W (t,x) in t imply that

lim
n→∞ fn(t) = +∞ for every t ∈ S. (.)

It follows from (.) and Lemma  in [] that there exists a subset S of S withmeasS > 
such that

lim
n→∞ fn(t) = +∞ uniformly for t ∈ S. (.)

By (W), we have

∫ kT


eQ(t)

[(∇W
(
t,un(t)

)
,un(t)

)
– W

(
t,un(t)

)]
dt

=
∫
S
eQ(t)

[(∇W
(
t,un(t)

)
,un(t)

)
– W

(
t,un(t)

)]
dt

+
∫
[,kT]/S

eQ(t)
[(∇W

(
t,un(t)

)
,un(t)

)
– W

(
t,un(t)

)]
dt

≥
∫
S
eQ(t)

[(∇W
(
t,un(t)

)
,un(t)

)
– W

(
t,un(t)

)]
dt +

∫
[,kT]/S

h(t)dt.

Let n→ ∞. Then by Fatou’s lemma and (.), we have

∫ kT


eQ(t)

[(∇W
(
t,un(t)

)
,un(t)

)
– W

(
t,un(t)

)]
dt → +∞,

which contradicts (.). Hence {un} is bounded. Going if necessary to a subsequence, as-
sume that un ⇀ u in H

kT . Then, by Proposition . in [], we have ‖un – u‖∞ →  and so∫ kT
 eQ(t)|un – u| dt →  as n → ∞. Similar to the argument of Theorem . in [], it is
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easy to obtain that
∫ kT
 eQ(t)(P(t)(u̇n – u̇), u̇n – u̇)dt → . Hence, ‖un – u‖ →  as n → ∞.

Hence, ϕk satisfies the (C)-condition.
Finally, (K), (W) and (I) imply that ϕk() = . Hence, combining Step -Step  with

Lemma . and Remark ., we obtain that ϕk has at least a critical point uk in H
kT and

ϕk(uk) = ck ≥ αk > . Then system (.) has at least one kT-periodic solution uk in H
kT .

This completes the proof. �

Remark . It is easy to see that Theorem . generalizes TheoremA. To be precise, when
k = , P(t) ≡ IN , q(t) ≡ , B = ,A(t) ≡  and Ij(x)≡ , Theorem . reduces to TheoremA.

Theorem . Assume (P), (K)-(K), (W)-(W) and (I)-(I) hold. Then system (.) has
a sequence of distinct subharmonic weak solutions with period kjT satisfying kj ∈ N and
kj → ∞ as j → ∞.

Proof By Theorem ., we know that for every k ∈ N, system (.) has at least one kT-
periodic solution uk in H

kT and ϕk(uk) = ck ≥ αk > . By Lemma ., we have

ϕk(uk) = ck = inf
g∈�

max
s∈[,]

ϕk
(
g(s)
)
,

where

� =
{
g ∈ C

(
[, ],E

)
: g() = , g() = ek

}
.

Let g(s) = sek = sskx, s ∈ [, ]. Obviously, g ∈ �. Hence, by (K), (W) and (I), we have

ϕk(uk) ≤ max
s∈[,]

ϕk(ssx)

= max
s∈[,]

{∫ kT


eQ(t)

[


(
A(t)ssx, ssx

)
+K (t, ssx) –W (t, ssx)

]
dt

+
p∑
j=

eQ(tj)Ij(ssx)

}

= max
s∈[,]

{
k
∫ T


eQ(t)

[


(
A(t)ssx, ssx

)
+K (t, ssx) –W (t, ssx)

]
dt

+
p∑
j=

eQ(tj)Ij(ssx)

}

≤ max
s∈[,]

{
k
∫ T


eQ(t)

[‖A‖


|ssx| +D|ssx| –D|ssx|
]
dt +

p∑
j=

eQ(tj)lj

}

= max
s∈[,]

{[‖A‖


+D –D

]
ss|x|k

∫ T


eQ(t) dt +

p∑
j=

eQ(tj)lj

}

≤
p∑
j=

eQ(tj)lj :=M. (.)

Hence, ϕk(uk) is uniformly bounded for all k ∈N.
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Obviously, we can find k ∈ N/{} such that k > M
α
, then we claim that uk is distinct to

u for all k ≥ k. In fact, if uk = u for some k ≥ k, it is easy to check that

ϕk(uk) = kϕ(u) ≥ kα.

Then, by (.), we have k ≤ k ≤ M
α
, a contradiction. We can also find k >max{k, kMαk

}
such that ukk �= uk for all k ≥ k

k
. Otherwise, if ukk = uk for some k ≥ k, we have

ϕkk(ukk) = kϕk (uk ) ≥ kαk . Then by (.), we have k
k

≤ k ≤ M
αk

, a contradiction. In
the same way, we can obtain that system (.) has a sequence of distinct periodic solutions
with period kjT satisfying kj ∈ N and kj → ∞ as j → ∞. This completes the proof. �

4 Example
The following example is inspired partially by Example . in []. Let T = π , N = .
Consider the following impulsive Lagrangian system with damped term:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d(P(t)u̇(t))
dt + (q(t)P(t) + B)u̇(t) + ( q(t)B –A(t))u(t) +∇F(t,u(t))

= , a.e. t ∈R,

�(P(π
 )u̇(

π
 )) = P(π

 )u̇(
π

+) – P(π

 )u̇(
π

–) = ∇I(u(π

 )),

�(P(π )u̇(π )) = P(π )u̇(π+) – P(π )u̇(π–) = ∇I(u(π )),

(.)

where

P(t) =

⎛
⎜⎝
sin t +   

 sin t +  
  cos t + 

⎞
⎟⎠ , A(t) =

⎛
⎜⎝
cos t  
 cos t 
  cos t

⎞
⎟⎠ ,

B =

⎛
⎜⎝

  
–  
 – 

⎞
⎟⎠ , q(t) = sin t, K (t,x) = 

(∣∣∣∣sin t


∣∣∣∣ + .
)

|x|,

W (t,x) = 
(∣∣∣∣cos t

∣∣∣∣ + 
)

|x|
(
 –


ln(e + |x|)

)
,

I(x) =
|x|

 + |x| , I(x) =
ln( + |x|)

|x| .

Obviously, the condition (P) holds and ‖A‖ = , ‖B‖ =
√
 and (K), (K), (W) and (W)

hold with a =  and γ = .

eQ(t)
[(∇W (t,x),x

)
– W (t,x)

]
=
(| cos t

 | + )e–cos t|x|
(e + |x|)[ln(e + |x|)] .

Then (W) holds with h(t)≡ . Moreover,

∫ π


eQ(t)

[


(
A(t)x,x

)
+K (t,x) –W (t,x) –

h(t)


]
dt

=
∫ π


e–cos t

[


cos t|x| + 

(∣∣∣∣sin t


∣∣∣∣ + .
)

|x|
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– 
(∣∣∣∣cos t

∣∣∣∣ + 
)

|x|
(
 –


ln(e + |x|)

)]
dt

≤ e
∫ π



[


cos t|x| + 

(∣∣∣∣sin t


∣∣∣∣ + .
)

|x|

– 
(∣∣∣∣cos t

∣∣∣∣ + 
)

|x|
(
 –


ln(e + |x|)

)]
dt

= e
[
( + π )|x| – ( + π )|x|

(
 –


ln(e + |x|)

)]
.

Hence, it is easy to see that there exists x ∈ R
N such that (W) holds by the above in-

equality. Obviously, (I) and (I) hold. Note that

∑
j=

eQ(tj)
[
Ij(x) –

(∇Ij(x),x
)]

= eQ(
π
 )
[

|x|
 + |x| –

|x|
( + |x|)

]
+ eQ(π )

[
 ln( + |x|)

|x| –
|x|
+|x| –  ln( + |x|)

|x|
]

=
|x|
 + |x| e

Q( π
 )
[
 –


 + |x|

]
+ eQ(π )

[
 ln( + |x|)

|x| –


 + |x|
]

≥ –eQ(π )


 + |x|
≥ –eQ(π ).

So (I) holds. Hence, by Theorem ., we obtain that system (.) has at least one kT-
periodic solution for every k ∈N.
Moreover, it is easy to see that (K) holds with D = . Since

W (t,x) = 
(∣∣∣∣cos t

∣∣∣∣ + 
)

|x|
(
 –


ln(e + |x|)

)

≥ |x|
(
 –


ln(e + |x|)

)

≥ |x|.

Choose D = . Then (W) holds. Hence, by Theorem ., we obtain that system (.) has
a sequence of distinct subharmonic weak solutions with period kjT satisfying kj ∈ N and
kj → ∞ as j → ∞.
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