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Abstract
The paper deals with the second-order Dirichlet boundary value problem with one
state-dependent impulse

z′′(t) = f (t, z(t)) for a.e. t ∈ [0, T ],

z′(τ+) – z′(τ–) = I(z(τ )), τ = γ (z(τ )),

z(0) = 0, z(T ) = 0.

Proofs of the main results contain a new approach to boundary value problems with
state-dependent impulses which is based on a transformation to a fixed point
problem of an appropriate operator in the space C1([0, T ])× C1([0, T ]). Sufficient
conditions for the existence of solutions to the problem are given here. The presented
approach can be extended to more impulses and to other boundary conditions.
MSC: 34B37; 34B15

Keywords: impulsive differential equation; state-dependent impulses; Dirichlet
problem; second-order ODE

1 Introduction
Differential equations involving impulse effects appear as a natural description of observed
evolution phenomena of several real world problems. We refer to the monographs [–].
Most papers in the literature on impulsive boundary value problems concern the case

with fixed moments of impulsive effects. Papers dealing with state-dependent impulses,
called also impulses at variable times, focus their attention on initial value problems or
periodic problems. Such papers investigate the existence, stability or asymptotic prop-
erties of solutions of initial value problems [–] or solvability of autonomous periodic
problems [, ] and nonautonomous ones [–]. We can also find papers investigating
other boundary value problems with state-dependent impulses through some initial value
problems for multi-valued maps [, ].
In this paper we provide a new approach to boundary value problems with state-

dependent impulses based on a construction of proper sets and operators and the topo-
logical degree arguments. Unlike previous existing results, our approach enables us to find
simple existence conditions for data functions and it can be used for other regular (and
also singular) problems.We demonstrate it on the second-order Dirichlet boundary value
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problem with one state-dependent impulse

z′′(t) = f
(
t, z(t)

)
for a.e. t ∈ [,T], ()

z′(τ+) – z′(τ–) = I
(
z(τ )

)
, τ = γ

(
z(τ )

)
, ()

z() = , z(T) = , ()

where we assume

f ∈ Car
(
[,T]×R

)
, I ∈ C(R), ()⎧⎪⎨

⎪⎩
there exists h ∈ Car([,T]× [,∞)) such that
h(t, ·) is nondecreasing for a.e. t ∈ [,T] and
|f (t,x)| ≤ h(t, |x|) for a.e. t ∈ [,T] and all x ∈ R,

()

{
there exists J ∈ C([,T]) nondecreasing
and such that |I(x)| ≤ J(|x|) for x ∈R,

()

∃K >  :

K

[∫ T


h
(
s,K + TJ(K)

)
ds + J(K)

]
<min

{
,


T

}
()

and

⎧⎪⎨
⎪⎩

γ ∈ C([–K,K]),
 < γ (x) < T , |γ ′(x)| < T

K
for |x| ≤ K,

where K = K + TJ(K), K is from ().
()

Under assumptions ()-(), we prove the solvability of problem ()-(). In particular,
we transform problem ()-() to a fixed point problem for a proper operator in the space
C([,T]) × C([,T]). This approach can be also used for other types of boundary con-
ditions and it can be easily extended to more impulses.
Here, we denote by C(J) the set of all continuous functions on the interval J , by C(J)

the set of all functions having continuous derivatives on the interval J and by L(J) the set
of all Lebesgue integrable functions on J . For a compact interval J , we consider the linear
space of functions from C(J) or C(J) equipped, respectively, with the norms

‖x‖∞ =max
t∈J

∣∣x(t)∣∣, ‖x‖ = ‖x‖∞ +
∥∥x′∥∥∞.

In this paper we work with the linear space C([,T])×C([,T]), where T > , equipped
with the norm

∥∥(u, v)∥∥ = ‖u‖ + ‖v‖ for (u, v) ∈ C([,T]) ×C([,T]).
It is well-known that the mentioned normed spaces are Banach spaces. Recall that for
A ⊂ R, a function f : [a,b] × A → R satisfies the Carathéodory conditions on [a,b] × A
(we write f ∈ Car([a,b]×A)) if
• f (·,x) : [a,b]→R is measurable for all x ∈A,
• f (t, ·) :A→R is continuous for a.e. t ∈ [a,b],
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• for each compact set K ⊂A, there exists a function mK ∈ L([a,b]) such that
|f (t,x)| ≤ mK (t) for a.e. t ∈ [a,b] and each x ∈ K .

We say that z : [,T] → R is a solution of problem ()-(), if z is continuous on [,T],
there exists unique τ ∈ (,T) such that γ (z(τ )) = τ , z|[,τ ] and z|[τ ,T] have absolutely con-
tinuous first derivatives, z satisfies equation () for a.e. t ∈ [,T] and fulfills conditions
(), ().

2 Operators
In this section we assume that ()-() are fulfilled. We introduce sets and operators corre-
sponding to problem ()-() and prove their propertieswhich are needed for an application
of the Leray-Schauder degree theory. Let us consider K of () and define the set

B =
{
u ∈ C([,T]) : ‖u‖∞ < K ,

∥∥u′∥∥∞ < K/T
}
.

Lemma  For each u ∈ B, there exists a unique τu ∈ (,T) such that

γ
(
u(τu)

)
= τu. ()

Proof Let us take an arbitrary u ∈ B. Obviously, the constant τu is a solution of the equa-
tion

γ
(
u(t)

)
= t,

i.e., τu is a root of the function

σ (t) = γ
(
u(t)

)
– t, t ∈ [,T].

From () it follows σ () = γ (u()) > , σ (T) = γ (u(T)) – T < . According to () and the
definition of B, we get

σ ′(t) = γ ′(u(t))u′(t) –  ≤ ∣∣γ ′(u(t))∣∣∣∣u′(t)
∣∣ –  <

T
K

K
T

–  = , t ∈ (,T). ()

Therefore, σ is strictly decreasing on [,T] and hence it has exactly one root in (,T). �

Now, define a functional P : B → (,T) by

Pu = τu,

where τu fulfills (). The next lemma provides an important result about the continuity of
P which is fundamental for our approach.

Lemma  The functional P is continuous on B.

Proof Let us consider un, u ∈ B for n ∈N such that un → u in C([,T]). Let us denote

σn(t) = γ
(
un(t)

)
– t, σ (t) = γ

(
u(t)

)
– t for t ∈ [,T].
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By Lemma , σn(τn) =  and σ (τ ) = , where τn =Pun and τ =Pu, respectively. According
to (), we get σn, σ ∈ C([,T]) for n ∈N and

σn → σ in C
(
[,T]

)
. ()

We will prove that limn→∞ τn = τ . Let us take an arbitrary ε > . Since σ (τ ) =  and σ ′(τ ) <
 (cf. ()), we can find ξ ∈ (τ – ε, τ ) and η ∈ (τ , τ + ε) such that

σ (ξ ) >  and σ (η) < .

From () it follows the existence of n ∈N such that

σn(ξ ) >  and σn(η) < 

for each n≥ n. By Lemma  and the continuity of σn, it follows that τn ∈ (ξ ,η)⊂ (τ –ε, τ +
ε) for n≥ n. �

Further, consider K of () and define sets B and � by

B =
{
v ∈ C([,T]) : ‖v‖∞ < K,

∥∥v′∥∥∞ <
K

T

}

and

� = B × B ⊂ C([,T]) ×C([,T]). ()

Finally, define an operator F :� → C([,T])×C([,T]) by F (u, v) = (x, y), where

{
x(t) =

∫ T
 G(t, s)f̃ (s,u(s), v(s)) ds + g(t, τu)I(u(τu)),

y(t) =
∫ T
 G(t, s)f̃ (s,u(s), v(s)) ds + g(t, τu)I(u(τu)),

()

for t ∈ [,T], τu =Pu,

f̃
(
t,u(t), v(t)

)
=

⎧⎨
⎩f (t,u(t)) for a.e. t ∈ [, τu],

f (t, v(t)) for a.e. t ∈ (τu,T],
()

g(t, s) =
t(s – T)

T
, g(t, s) =

s(t – T)
T

, s, t ∈ [,T], ()

and G is the Green function of the problem u′′ = , u() = u(T) = , that is,

G(t, s) =

⎧⎨
⎩g(t, s) for  ≤ t ≤ s ≤ T ,

g(t, s) for  ≤ s ≤ t ≤ T .

Lemma  The operator F is compact on �.
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Rachůnková and Tomeček Boundary Value Problems 2013, 2013:22 Page 5 of 13
http://www.boundaryvalueproblems.com/content/2013/1/22

Proof First, wewill prove the continuity of the operatorF . Let us choose (un, vn), (u, v) ∈ �

for n ∈N such that

(un, vn)→ (u, v) in C([,T]) ×C([,T]). ()

Let us denote τn =Pun, τ =Pu, (xn, yn) =F (un, vn), (x, y) =F (u, v) for each n ∈ N. We will
prove that xn → x in C([,T]). For each t ∈ [,T], we get by ()-()

xn(t) – x(t) =
∫ τ


G(t, s)

[
f
(
s,un(s)

)
– f

(
s,u(s)

)]
ds

+
∫ T

τ

G(t, s)
[
f
(
s, vn(s)

)
– f

(
s, v(s)

)]
ds

+
∫ τn

τ

G(t, s)
[
f
(
s,un(s)

)
– f

(
s, vn(s)

)]
ds

+ g(t, τn)I
(
un(τn)

)
– g(t, τ )I

(
u(τ )

)
and

x′
n(t) – x′(t) =

∫ τ



∂G
∂t

(t, s)
[
f
(
s,un(s)

)
– f

(
s,u(s)

)]
ds

+
∫ T

τ

∂G
∂t

(t, s)
[
f
(
s, vn(s)

)
– f

(
s, v(s)

)]
ds

+
∫ τn

τ

∂G
∂t

(t, s)
[
f
(
s,un(s)

)
– f

(
s, vn(s)

)]
ds

+
∂g
∂t

(t, τn)I
(
un(τn)

)
–

∂g
∂t

(t, τ )I
(
u(τ )

)
.

Since

∣∣G(t, s)∣∣ ≤ T ,
∣∣∣∣∂G∂t (t, s)

∣∣∣∣ ≤  for t, s ∈ [,T], t �= s,

we get

‖xn – x‖ ≤ (T + )
∫ T



∣∣f (s,un(s)) – f
(
s,u(s)

)∣∣ds
+ (T + )

∫ T



∣∣f (s, vn(s)) – f
(
s, v(s)

)∣∣ds
+ (T + )

∫ τn

τ

∣∣f (s,un(s)) – f
(
s, vn(s)

)∣∣ds
+ max

t∈[,T]
∣∣g(t, τn)I(un(τn)) – g(t, τ )I

(
u(τ )

)∣∣
+ max

t∈[,T]

∣∣∣∣∂g∂t
(t, τn)I

(
un(τn)

)
–

∂g
∂t

(t, τ )I
(
u(τ )

)∣∣∣∣.
By (), there exists a compact set K ⊂ R such that un(t), vn(t) ∈ K for each t ∈ [,T] and
n ∈N. Consequently, by (), there exists mK ∈ L([,T]) such that

∣∣f (t,un(t))∣∣ ≤ mK (t),
∣∣f (t, vn(t))∣∣ ≤ mK (t)
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for a.e. t ∈ [,T] and all n ∈N. Since

lim
n→∞ f

(
t,un(t)

)
= f

(
t,u(t)

)
, lim

n→∞ f
(
t, vn(t)

)
= f

(
t, v(t)

)
for a.e. t ∈ [,T], then due to the Lebesgue dominated convergence theorem, it follows
that

∫ T



∣∣f (s,un(s)) – f
(
s,u(s)

)∣∣ds →  and
∫ T



∣∣f (s, vn(s)) – f
(
s, v(s)

)∣∣ds → 

as n→ ∞. Since limn→∞ τn = τ , the absolute continuity of the Lebesgue integral yields

lim
n→∞

∣∣∣∣
∫ τn

τ

∣∣f (s,un(s)) – f
(
s, vn(s)

)∣∣ds∣∣∣∣ ≤  lim
n→∞

∣∣∣∣
∫ τn

τ

mK (s) ds
∣∣∣∣ = .

Further, we have for g the inequality

∣∣g(t, τn)I(un(τn)) – g(t, τ )I
(
u(τ )

)∣∣
≤ T

∣∣I(un(τn)) – I
(
u(τn)

)∣∣ + ∣∣g(t, τn)I(u(τn)) – g(t, τ )I
(
u(τ )

)∣∣
for each t ∈ [,T] and the same is true for ∂g

∂t . The continuity of g,
∂g
∂t and I imply that

g(t, τn)I
(
un(τn)

) → g(t, τ )I
(
u(τ )

)
,

∂g
∂t

(t, τn)I
(
un(τn)

) → ∂g
∂t

(t, τ )I
(
u(τ )

)

as n → ∞ uniformly w.r.t. t ∈ [,T]. Therefore, xn converges to x in C([,T]). Similar
arguments can be applied to the sequence {yn}∞n=.
Now we will prove that F (�) is relatively compact. The boundedness of � implies the

existence ofM >  andm ∈ L([,T]) such that for all (u, v) ∈ �,

∣∣I(u(t))∣∣ ≤ M for all t ∈ [,T]

and

∣∣f̃ (t,u(t), v(t))∣∣ ≤ m(t) for a.e. t ∈ [,T].

Therefore, by (), we get

∣∣x(t)∣∣ + ∣∣x′(t)
∣∣ ≤ (T + )

(∫ T


m(s) ds +M

)
=:M, t ∈ [,T],

∣∣y(t)∣∣ + ∣∣y′(t)
∣∣ ≤ M, t ∈ [,T].

We have proved that the set F (�) is bounded in C([,T])× C([,T]). We now show
that the set {(x′, y′) : (x, y) ∈ F (�)} is equicontinuous on [,T]. For a.e. t ∈ [,T] and all
(x, y) ∈F (�), we have

∣∣x′′(t)
∣∣ ≤ m(t),

∣∣y′′(t)
∣∣ ≤ m(t) for a.e. t ∈ [,T].

http://www.boundaryvalueproblems.com/content/2013/1/22
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As a result, for each ε > , there exists δ >  such that for each t, t ∈ [,T] satisfying
|t – t| < δ, the inequality

∣∣x′(t) – x′(t)
∣∣ + ∣∣y′(t) – y′(t)

∣∣ ≤ 
∣∣∣∣
∫ t

t
m(t) dt

∣∣∣∣ < ε

holds for all (x, y) ∈ F (�). Consequently, F (�) is relatively compact in C([,T]) ×
C([,T]) by the Arzelà-Ascoli theorem. �

Lemma  Let (u, v) ∈ � be a fixed point of F . Then the function

z(t) =

⎧⎨
⎩u(t), t ∈ [, τu],

v(t), t ∈ (τu,T]
()

is a solution of problem ()-().

Proof Let (u, v) ∈ � be such that (u, v) =F (u, v), that is,

{
u(t) =

∫ T
 G(t, s)f̃ (s,u(s), v(s)) ds + g(t, τu)I(u(τu)),

v(t) =
∫ T
 G(t, s)f̃ (s,u(s), v(s)) ds + g(t, τu)I(u(τu)),

()

t ∈ [,T], τu =Pu.
Let us consider the function z defined in (). Hence, z() = u() = , z(T) = v(T) = ,

z(τu) = u(τu) = v(τu) = z(τu+), ()

and by Lemma ,

γ
(
z(τu)

)
= τu. ()

In addition, by (), τu is a unique point in (, τu] satisfying (). Put σ (t) = γ (v(t)) – t,
t ∈ [τu,T]. Due to () and (), we get σ (τu) = . Further,

σ ′(t) = γ ′(v(t))v′(t) –  ≤ ∣∣γ ′(v(t))∣∣∣∣v′(t)
∣∣ – 

<
T
K

K

T
–  =  for t ∈ (τu,T).

Therefore, σ is strictly decreasing on [τu,T], which yields σ (t) <  for t ∈ (τu,T]. Conse-
quently, τu is a unique point in (,T) satisfying ().
Further, we get

u′(t) =
∫ T



∂G
∂t

(t, s)f̃
(
s,u(s), v(s)

)
ds +

∂g
∂t

(t, τu)I
(
u(τu)

)
,

v′(t) =
∫ T



∂G
∂t

(t, s)f̃
(
s,u(s), v(s)

)
ds +

∂g
∂t

(t, τu)I
(
u(τu)

)
,

http://www.boundaryvalueproblems.com/content/2013/1/22
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t ∈ [,T], and by virtue of (),

u′′(t) = f̃
(
t,u(t), v(t)

)
= f

(
t,u(t)

)
for a.e. t ∈ [, τu),

v′′(t) = f̃
(
t,u(t), v(t)

)
= f

(
t, v(t)

)
for a.e. t ∈ (τu,T].

Therefore,

z′′(t) = f
(
t, z(t)

)
for a.e. t ∈ [,T].

Finally,

z′(τu+) = v′(τu) =
∫ T



∂G
∂t

(τu+, s)f̃
(
s,u(s), v(s)

)
ds +

∂g
∂t

(τu, τu)I
(
u(τu)

)
,

z′(τu–) = u′(τu) =
∫ T



∂G
∂t

(τu–, s)f̃
(
s,u(s), v(s)

)
ds +

∂g
∂t

(τu, τu)I
(
u(τu)

)
.

Since

∂G
∂t

(τu+, s) =
∂G
∂t

(τu–, s) for s ∈ [,T], s �= τu,

we have

z′(τu+) – z′(τu–) =
∂g
∂t

(τu, τu)I
(
u(τu)

)
–

∂g
∂t

(τu, τu)I
(
u(τu)

)
=

τu

T
I
(
u(τu)

)
–

τu – T
T

I
(
u(τu)

)
= I

(
u(τu)

)
= I

(
z(τu)

)
. �

3 Main result
Here, using the Leray-Schauder degree theory, we prove ourmain result about the solvabil-
ity of problem ()-(). To this end, we will need the following lemma on a priori estimates.

Lemma  Assume ()-(). Then for any λ ∈ [, ] and any solution (u, v) of the equation

(u, v) = λF (u, v), ()

the implication

(u, v) ∈ � =⇒ (u, v) ∈ � ()

holds.

Proof Let us choose λ ∈ (, ] and let (u, v) ∈ � satisfy (), i.e.,

{
u(t) = λ(

∫ T
 G(t, s)f̃ (s,u(s), v(s)) ds + g(t, τu)I(u(τu))),

v(t) = λ(
∫ T
 G(t, s)f̃ (s,u(s), v(s)) ds + g(t, τu)I(u(τu)))

()

for t ∈ [,T]. Then
{
u′(t) = λ(

∫ T


∂G
∂t (t, s)f̃ (s,u(s), v(s)) ds +

∂g
∂t (t, τu)I(u(τu))),

v′(t) = λ(
∫ T


∂G
∂t (t, s)f̃ (s,u(s), v(s)) ds +

∂g
∂t (t, τu)I(u(τu))),

()

http://www.boundaryvalueproblems.com/content/2013/1/22
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t ∈ [,T]. Since (u, v) ∈ �, it follows that (u, v) ∈ B × B and therefore ‖u′‖∞ ≤ K/T ,
‖u‖∞ ≤ K , ‖v′‖∞ ≤ K/T and ‖v‖∞ ≤ K. There are two possibilities as follows.
Case A. Let ‖u′‖∞ < K/T . Then ‖u‖∞ < K and from () and (), it follows

v′(t) = u′(t) + λ

(
τu

T
–

τu – T
T

)
I
(
u(τu)

)
= u′(t) + λI

(
u(τu)

)
, t ∈ (,T),

which implies, due to () and (),

∥∥v′∥∥∞ ≤ ∥∥u′∥∥∞ + J
(‖u‖∞

)
<
K

T
.

Then ‖v‖∞ < K, which yields (u, v) ∈ �.
Case B. Let ‖u′‖∞ = K/T . From (), (), (), () and (), it follows

∥∥u′∥∥ ≤
∫ τu



∣∣f (s,u(s))∣∣ds + ∫ T

τu

∣∣f (s, v(s))∣∣ds + J(K)

≤
∫ τu


h(s,K) ds +

∫ T

τu

h(s,K) ds + J(K)

≤
∫ T


h(s,K) ds + J(K).

This inequality together with () implies

 ≤ T
K

[∫ T


h(s,K) ds + J(K)

]
< Tmin

{
,


T

}
=min{T , },

which is a contradiction.
For λ = , the solution of () is (u, v) = (, ), and it clearly belongs to �. �

Theorem  Assume ()-(). Then the operator F has a fixed point in �.

Proof According to Lemma , the operator I – λF : [, ]× � → (C([,T])) is a homo-
topy. Therefore,

deg(I –F ,�) = deg(I,�) = ,

and consequently the equation

(I –F )(u, v) = 

has a solution in �. This solution is a fixed point of the operator F . �

Theorem  Assume ()-(). Then problem ()-() has a solution z such that

‖z‖∞ < K,
∥∥z′∥∥∞ <

K

T
. ()
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Proof From Theorem  it follows that there exists a fixed point (u, v) ∈ � of the opera-
tor F . Lemma  yields that the function z defined in () (with τu = Pu) is a solution of
problem ()-(). Estimates () follow from () and from the definitions of � and K (cf.
() and ()). �

Remark  Let us note that assumption () follows from the condition

lim inf
x→∞


x

[∫ T


h
(
s,x + TJ(x)

)
ds + J(x)

]
<min

{
,


T

}
.

4 Examples
In this section we demonstrate that Theorem  can be applied to sublinear, linear and
superlinear problems.

Example  (Sublinear problem) Let us consider problem ()-() with

T = , f (t,x) = t – |x|α sgnx, I(x) = |x|β sgnx, α,β ∈ (, ),

that is, f and I are sublinear in x. Then assumptions () and () are valid for

h(t,x) = t + xα , t ∈ [, ],x > ,

J(x) = xβ , x > .

Since

lim
x→∞


x

[∫ 


h
(
s,x + J(x)

)
ds + J(x)

]
= lim

x→∞

x

[


+

(
x + xβ

)α + xβ

]
= ,

Remark  yields that condition () is satisfied for any sufficiently large K . In particular, let
us put

α = β =


.

If we choose K = , we see that () holds. Then by (), we have

K =  +
√
.

For instance, if we choose c ∈ (, /(K
 )) and put

γ (x) = cx +


, x ∈R, ()

or if we choose c ∈ (, /), n > cK and put

γ (x) = c sin
x
n
+


, x ∈R, ()

we can check that conditions () are satisfied in both cases. Therefore, by Theorem , the
corresponding problem ()-() has at least one solution.

http://www.boundaryvalueproblems.com/content/2013/1/22
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Note that () shows that γ need not be monotonous.

Example  (Linear problem) Let us consider problem ()-() with f and I having the
linear behavior in x and put

T = , f (t,x) = a
(
tα – x

)
, I(x) = bx, a,b ∈R,α > .

Then assumptions () and () are valid for

h(t,x) = |a|(tα + x
)
, t ∈ [, ],x > ,

J(x) = |b|x, x > .

Since

lim
x→∞


x

[∫ 


h
(
s,x + J(x)

)
ds + J(x)

]

= lim
x→∞


x

[
|a|

(


α + 
+ x

(
 + |b|)) + x|b|

]
= |a|( + |b|) + |b|,

Theorem  can be applied, due to Remark , under the additional assumption

|a| <  – |b|
 + |b| . ()

If () holds, then for any sufficiently large K , condition () is satisfied. By (), we have
K = K( + |b|), and problem ()-() has a solution for any γ satisfying (). Consequently,
if γ is given by () or (), problem ()-() is solvable.

Example  (Superlinear problem) Let us consider problem ()-() with f and I superlin-
ear in x. Put, for example,

T = , f (t,x) = ct + cx, I(x) =


x, c, c ∈R. ()

Then assumptions () and () are valid for

h(t,x) = |c|t + |c|x, t ∈ [, ],x > ,

J(x) =


x, x > .

It holds


x

[∫ 


h
(
s,x + J(x)

)
ds + J(x)

]
=

x

[ |c|


+ |c|
(
x +



x

)

+


x

]
.

By virtue of (), Theorem  can be applied provided there exists K >  such that

|c|


+ |c|
(
K +



K

)

+


K < K . ()
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Let us search K in the interval (, ). Then K < K < K and it holds

|c|
(
K +



K

)

+


K < |c|

(


K

)

+


K <

(



|c| + 


)
K.

Consequently, each K ∈ (, ) fulfilling the equation

(



|c| + 


)
K –K +

|c|


= 

satisfies () as well. Put, for example, c = , c = –/. Then we get that for K = /
inequality () holds. Consequently, () gives K = / and the corresponding problem
()-() is solvable for any γ satisfying (). In particular, γ given by () or () can be
considered in this case as well.
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