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Abstract
In this paper, we investigate an initial boundary value problem for the
one-dimensional linear model of thermodiffusion with second sound in a bounded
region. Using the semigroup approach, boundary control and the multiplier method,
we obtain the existence of global solutions and the uniform decay estimates for the
energy.
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1 Introduction
In this paper, we investigate the global existence and uniform decay rate of the energy for
solutions for the one-dimensional model of thermodiffusion with second sound:

ρutt – (λ + μ)uxx + γθx + γθx =  in (, )× (, +∞), (.)

cθt +
√
kqx + γutx + dθt =  in (, )× (, +∞), (.)

nθt +
√
Dqx + γutx + dθt =  in (, )× (, +∞), (.)

τqt + q +
√
kθx =  in (, )× (, +∞), (.)

τqt + q +
√
Dθx =  in (, )× (, +∞), (.)

together with the initial conditions

⎧⎪⎪⎨
⎪⎪⎩
u(x, ) = u(x), ut(x, ) = u(x),

θ(x, ) = θ
 (x), θ(x, ) = θ

 (x),

q(x, ) = q (x), q(x, ) = q(x),

(.)

and the boundary conditions

u(x, t)|x=, = θ(x, t)|x=, = θ(x, t)|x=, = , (.)

where u, θ, and q are the displacement, temperature, and heat flux, θ, and q are the
chemical potentials and the associated flux. The boundary conditions (.) model a rigidly
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clamped medium with temperature and chemical potentials held constant on the bound-
ary.
Here, we denote by λ, μ the material constants, ρ the density, γ, γ the coefficients of

thermal and diffusion dilatation, k, D the coefficients of thermal conductivity, n, c, d the
coefficients of thermodiffusion, and τ, τ the (in general very small) relaxation time. All
the coefficients above are positive constants and satisfy the condition

nc – d > . (.)

The classical thermodiffusion equations were first given by Nowacki [, ] in . The
equations describe the process of thermodiffusion in a solid body (see, e.g., [–]):

⎧⎪⎪⎨
⎪⎪⎩

ρutt – (λ + μ)uxx + γθx + γθx = ,

cθt – kθxx + γutx + dθt = ,

nθt –Dθxx + γutx + dθt = .

(.)

There are many results about the classical thermodiffusion equations. By the method of
integral transformations and integral equations, Nowacki [], Podstrigach [] and Fichera
[] investigated the initial boundary value problem for the linear homogeneous system.
Gawinecki [] proved the existence, uniqueness and regularity of solutions to an initial
boundary value problem for the linear system of thermodiffusion in a solid body. Szy-
maniec [] proved the Lp-Lq time decay estimates along the conjugate line for the solutions
of the linear thermodiffusion system. Using the results from [], Szymaniec [] obtained
the global existence and uniqueness of small data solutions to the Cauchy problem of non-
linear thermodiffusion equations in a solid body. Using the semigroup approach and the
multiplier method, Qin et al. [] obtained the global existence and exponential stability of
solutions for homogeneous, nonhomogeneous and semilinear thermodiffusion equations
subject to various boundary conditions. Liu and Reissig [] studied the Cauchy problem
for one-dimensionalmodels of thermodiffusion and explained qualitative properties of so-
lutions and showed which part of the model has a dominant influence on wellposedness,
propagation of singularities, Lp-Lq decay estimates on the conjugate line and the diffusion
phenomenon.
If we neglect the diffusion in (.), then we obtain the classical thermo-elasticity equa-

tions. Today models of type I (classical model of thermo-elasticity), of type II (thermal
wave), of type III (visco-elastic damping) or second sound present some classification of
models of thermo-elasticity (see, e.g., [, , ]). By considerations of the total energy
equation and comparisons with the models of classical thermo-elasticity and thermodif-
fusion, we shall propose the linear one-dimensionalmodel of thermodiffusionwith second
sound as mentioned above. Due to our knowledge, there exist no results for thermodiffu-
sion models with second sound.
Our paper is organized as follows. In Section , we present some notations and themain

result. Section  is devoted to the proof of the main result.
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2 Notations andmain result
Let � = (, ) and

L∗(�) =
{
y ∈ L(�)

∣∣∣ ∫ 


y(x)dx = 

}
,

H
∗(�) =

{
y ∈ H(�)

∣∣∣ ∫ 


y(x)dx = 

}
.

(.)

The associated first-order and second-order energy is defined by

E(t)≡ E(t;ux,ut , θ, θ,q,q)

:=



∫ 



(
(λ + μ)ux + ρut + cθ

 + nθ
 + τq + τq + dθθ

)
dx, (.)

E(t) := E(t;uxt ,utt , θt , θt ,qt ,qt). (.)

The energy E(t) is defined by

E(t) := E(t) + E(t). (.)

Our main result reads as follows.

Theorem . Assume that u ∈ H(�) ∩ H
(�), u ∈ H

(�), θ
 , θ

 ∈ H(�) ∩ H
(�),

q ,q ∈H(�)∩H∗(�). Then problem (.)-(.) has a unique global solution such that

u(t) ∈ C([, +∞),L(�)
) ∩C([, +∞),H

(�)
) ∩C

(
[, +∞),H(�)∩H

(�)
)
,

θ(t), θ(t) ∈ C([, +∞),L(�)
) ∩C

(
[, +∞),H(�)∩H

(�)
)
,

q(t),q(t) ∈ C([, +∞),H
∗(�)

) ∩C
(
[, +∞),H(�)∩H

∗(�)
)
.

Moreover, the associated energy E(t) defined by (.) decays exponentially, i.e., there exist
positive constants c and C such that

E(t)≤ Ce–ctE(), ∀t > . (.)

Remark . If the initial value (u,u, θ
 , θ

 ,q ,q) ∈ D(An), n ∈ N, (D(An) will be de-
fined later), then the solution (u,ut , θ, θ,q,q) ∈ C([, +∞),D(An)), and problem (.)-
(.) yields higher regularity in t.

3 Proof of themain result
We shall divide the proof into two steps: in Step , we shall use the semigroup approach
to prove the existence of global solutions and the Remark .; Step  is devoted to proving
the uniform decay of the energy by the boundary control and the multiplier method.
Step . Existence of global solutions.
The proof is based on the semigroup approach (see [, ]) that can be used to reduce

problem (.)-(.) to an abstract initial value problem for a first-order evolution equation.
In order to choose proper space for (.)-(.), we shall consider the static system associ-
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ated with them (see []). Considering the energy and the property of operator A, we can
choose the following state space and the domain of operator A for problem (.)-(.):

H =H
(�)× (

L(�)
) × (

H
∗(�)

), (.)

D(A) =
(
H(�)∩H

(�)
) ×H

(�)× (
H(�)∩H

(�)
) × (

H(�)∩H
∗(�)

). (.)

Using the same method as in [, ], we can prove that the operator A generates a C-
semigroup of contractions on the Hilbert space H . Define

D
(
Ak) = {

y|y ∈D
(
Ak–),Au ∈D

(
Ak–),k ∈N

}
.

Then by Theorem .. of [] about the existence and regularities of solutions, we can
complete the proof.
Step . Uniform decay of the energy.
In this section, we shall assume the existence of solutions in the Sobolev spaces that

we need for our computations. The proof of uniform decay is difficult. It is necessary to
construct a suitable Lyapunov function and to combine various techniques from energy
method, multiplier approaches and boundary control (see [, ]). We mainly refer to
Racke [] for the approaches of thermo-elastic models with second sound.
Multiplying (.) by ut , (.) by θ, (.) by θ, (.) by q, and (.) by q in L, respectively,

and summing up the results, yields

d
dt

E(t) = –
∫ 



(
q + q

)
dx. (.)

Similarly, we can get

d
dt

E(t) = –
∫ 



(
qt + qt

)
dx. (.)

Multiplying (.) by 
λ+μuxx in L, we get




∫ 


uxx dx +

ρ

λ + μ
d
dt

(∫ 


utxux dx

)

≤ ρ
∫ 
 u


tx dx

λ + μ
+

∫ 
 (γ


 θ

x + γ 
 θ

x)dx
(λ + μ)

. (.)

Multiplying (.) by ρ
(λ+μ)γ

utx, (.) by ρ
(λ+μ)γ

utx in L and summing them up, yields

ρ
λ + μ

∫ 


utx dx

≤ d
dt

G(t) +



∫ 


uxx dx + h

∫ 


θ
x dx + h

∫ 


θ
x dx + h

∫ 


θxθx dx

+
ρk

(λ + μ)γ 


∫ 


qt dx +

ρD
(λ + μ)γ 



∫ 


qt dx

–
ρ

√
k

(λ + μ)γ
[qutx]x=x= –

ρ
√
D

(λ + μ)γ
[qutx]x=x=, (.)
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where

G(t) :=
ρ

√
k

(λ + μ)γ

∫ 



(
ρ
√
k

γ
qutt +

ρ
√
D

γ
qutt – τqqt – q – q –

ρk + ρD√
kD

qq

– τqqt –
√
kτ√
D

qqt –
√
Dτ√
k

qqt
)
dx –

ρ
(λ + μ)γγ

×
∫ 



[
cγ + dγ√

k
(qut + τqtut) +

dγ + nγ√
D

(qut + τqtut)
]
dx,

h :=


λ + μ

(
cγ
γ

+
nγ

γ
+ d

)
, h :=




(
c

λ + μ
+
dγ

γ

)
+



(
c

γ 

+
d

γ 


)
,

h :=



(
n

λ + μ
+
dγ

γ

)
+



(
d

γ 

+
n

γ 


)
.

Combining (.) with (.), we get

ρ
λ + μ

∫ 


utx dx +




∫ 


uxx dx +

d
dt

(
–G(t) +

ρ

λ + μ

∫ 


utxux dx

)

≤ ρk
(λ + μ)γ 



∫ 


qt dx +

(
h +

h


+
γ 


(λ + μ)

)∫ 


θ
x dx

+
ρD

(λ + μ)γ 


∫ 


qt dx +

(
h +

h


+
γ 


(λ + μ)

)∫ 


θ
x dx

–
ρ

√
k

(λ + μ)γ
[qutx]x=x= –

ρ
√
D

(λ + μ)γ
[qutx]x=x=. (.)

Now, we conclude from (.), (.), (.) and Poincaré inequality

∫ 



(
ut + utt + θ

 + θ

)
dx

≤ (λ + μ)

ρ

∫ 


uxx dx +


D

(
γ 


ρ +


π

)∫ 



(
q + τ 

 q

t
)
dx

+


π

∫ 


utx dx +


k

(
γ 


ρ +


π

)∫ 



(
q + τ 

 q

t
)
dx. (.)

Multiplying (.) by u in L, we obtain

λ + μ


∫ 


ux dx ≤ 

π(λ + μ)

∫ 



(
ρutt + γ 

 θ
x + γ 

 θ
x

)
dx. (.)

From (.) and (.), we get

θt = –


nc – d

(
n
√
kqx – d

√
Dqx + (nγ – dγ)utx

)
, (.)

θt = –


nc – d

(
c
√
Dqx – d

√
kqx + (cγ – dγ)utx

)
. (.)
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Multiplying (.) by θt , (.) by θt in L, and summing up the results, we get

∫ 



(
θ
t + θ

t
)
dx –

d
dt

G(t)

≤ k(n + d)
(nc – d)

∫ 


qt dx +

(nγ – dγ) + (cγ – dγ)

(nc – d)

∫ 


utx dx

+
∫ 



(
θ
x + θ

x
)
dx +

D(c + d)
(nc – d)

∫ 


qt dx, (.)

where G(t) := 
nc–d

∫ 
 (n

√
kqθx – d

√
Dqθx + c

√
Dqθx – d

√
kqθx)dx.

The boundary terms are estimated as follows.

∣∣∣∣
[

ρ
√
k

(λ + μ)γ
qutx

]x=

x=

∣∣∣∣ ≤ ρk(|q()| + |q()|)
(λ + μ)γ 

 ε̂
+

ε̂(|utx()| + |utx()|)


, (.)

∣∣∣∣
[

ρ
√
D

(λ + μ)γ
qutx

]x=

x=

∣∣∣∣ ≤ ρD(|q()| + |q()|)
(λ + μ)γ 

 ε̂
+

ε̂(|utx()| + |utx()|)


, (.)

for some ε̂ > ,

∣∣q()∣∣ + ∣∣q()∣∣ ≤ 
(
 +


ε̂

)∫ 


q dx +

ε̂

k

∫ 


cθ

t + dθ
t + γ 

 u

tx dx, (.)

∣∣q()∣∣ + ∣∣q()∣∣ ≤ 
(
 +


ε̂

)∫ 


q dx +

ε̂

D

∫ 


dθ

t + nθ
t + γ 

 u

tx dx. (.)

Combining (.)-(.), we get

∣∣∣∣
[

ρ
√
k

(λ + μ)γ
qutx

]x=

x=

∣∣∣∣ +
∣∣∣∣
[

ρ
√
D

(λ + μ)γ
qutx

]x=

x=

∣∣∣∣
≤ ρ( + ε̂)

(λ + μ)ε̂

∫ 



(
k
γ 

q +

D
γ 

q

)
dx + ε̂

(∣∣utx()∣∣ + ∣∣utx()∣∣)

+
ρε̂

(λ + μ)

∫ 



[(
c

γ 

+
d

γ 


)
θ
t +

(
d

γ 

+
n

γ 


)
θ
t + utx

]
dx. (.)

Differentiating (.) with respect to t and multiplying by ϕ(x)utx, where

ϕ(x) :=  – x, (.)

we obtain

d
dt

(∫ 


ρuttϕutx dx

)
– ρ

∫ 


utt dx +

(λ + μ)


(
utx() + utx()

)
– (λ + μ)

∫ 


utx dx

+ γ

∫ 


θtxϕutx dx + γ

∫ 


θtxϕutx dx = . (.)

http://www.boundaryvalueproblems.com/content/2013/1/222
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Multiplications of (.) by ϕθtx and (.) by ϕθtx yield

–c
∫ 


θ
t dx –

√
k
d
dt

(∫ 


qxϕθx dx

)
+

√
k
∫ 


qtxϕθx dx

= γ

∫ 


utxϕθtx dx + d

∫ 


θtϕθtx dx,

–n
∫ 


θ
t dx –

√
D

d
dt

(∫ 


qxϕθx dx

)
+

√
D

∫ 


qtxϕθx dx

= γ

∫ 


utxϕθtx dx + d

∫ 


θtϕθtx dx,

which implies, using (.) and (.),

–c
∫ 


θ
t dx –

√
k
d
dt

(∫ 


qxϕθx dx

)

–
√
k

τ

∫ 


qxϕθx dx +

k
τ

(
θ
x() + θ

x()
)

=
k
τ

∫ 


θ
x dx + γ

∫ 


utxϕθtx dx + d

∫ 


θtϕθtx dx, (.)

–n
∫ 


θ
t dx –

√
D

d
dt

(∫ 


qxϕθx dx

)

–
√
D

τ

∫ 


qxϕθx dx +

D
τ

(
θ
x() + θ

x()
)

=
D
τ

∫ 


θ
x dx + γ

∫ 


utxϕθtx dx + d

∫ 


θtϕθtx dx = . (.)

Combining (.)-(.), we conclude

d
dt

(∫ 


ρuttϕutx –

√
kqxϕθx –

√
Dqxϕθx dx

)
+

λ + μ


(
utx() + utx()

)

≤ ρ

∫ 


utt dx + (λ + μ)

∫ 


utx dx + c

∫ 


θ
t dx + n

∫ 


θ
t dx +

∫ 


qx dx

+
k
τ

∫ 


θ
x dx +

D
τ

∫ 


θ
x dx +

k
τ 



∫ 


θ
x dx

+
D
τ 



∫ 


θ
x dx +

∫ 


qx dx. (.)

Using (.) and (.), we get

d
dt

(
ε̂

λ + μ

∫ 


ρuttϕutx –

√
kqxϕθx –

√
Dqxϕθx dx

)
+ ε̂

(
utx() + utx()

)

≤
(
ε̂ +

ε̂γ 


(λ + μ)k
+

ε̂γ 


(λ + μ)D

)∫ 


utx dx

+
(

ε̂c
λ + μ

+
ε̂c

(λ + μ)k
+

ε̂d

(λ + μ)D

)∫ 


θ
t dx

http://www.boundaryvalueproblems.com/content/2013/1/222
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+
ε̂ρ

λ + μ

∫ 


utt dx +

(
ε̂n

λ + μ
+

ε̂d

(λ + μ)k
+

ε̂n

(λ + μ)D

)∫ 


θ
t dx

+
(

ε̂k
(λ + μ)τ

+
ε̂k

(λ + μ)τ 


)∫ 


θ
x dx

+
(

ε̂D
(λ + μ)τ

+
ε̂D

(λ + μ)τ 


)∫ 


θ
x dx. (.)

With (.) and (.), we can estimate

∣∣∣∣
[

ρ
√
k

(λ + μ)γ
qutx

]x=

x=

∣∣∣∣ +
∣∣∣∣
[

ρ
√
D

(λ + μ)γ
qutx

]x=

x=

∣∣∣∣
≤ ρ( + ε̂)

(λ + μ)ε̂

∫ 



(
k
γ 

q +

D
γ 

q

)
dx +

ε̂ρ
λ + μ

∫ 


utt dx –

d
dt

G(t)

+ ε̂

(
ρ

(λ + μ)

(
c

γ 

+
d

γ 


)
+

c
λ + μ

+
c

(λ + μ)k
+

d

(λ + μ)D

)∫ 


θ
t dx

+ ε̂

(
ρ

(λ + μ)

(
d

γ 

+
n

γ 


)
+

n
λ + μ

+
d

(λ + μ)k
+

n

(λ + μ)D

)∫ 


θ
t dx

+ ε̂

(
k

(λ + μ)τ
+

k
(λ + μ)τ 



)∫ 


θ
x dx

+ ε̂

(
D

(λ + μ)τ
+

D
(λ + μ)τ 



)∫ 


θ
x dx

+ ε̂

(
ρ

(λ + μ)
+  +

γ 


(λ + μ)k
+

γ 


(λ + μ)D

)∫ 


utx dx, (.)

where G := ε̂
λ+μ

∫ 
 ρuttϕutx –

√
kqxϕθx –

√
Dqxϕθx dx.

Define ξ := ρ(nc–d)
(λ+μ)[(nγ–dγ)+(cγ–dγ)]

. Multiplying both sides of (.) by ξ and combin-
ing the result with (.) and (.), we obtain for sufficiently small ε̂ the estimate

ρ
∫ 
 u


tx dx

λ + μ
+



∫ 


uxx dx +

ξ



∫ 



(
θ
t + θ

t
)
dx +

dG(t)
dt

≤ C

∫ 



(
q + q + qt + qt

)
dx, (.)

where G(t) = –G(t) + ρ

λ+μ
∫ 
 utxux dx– ξG(t) +G(t), and C = C(ε̂,λ,μ,γ,γ,k,D,n, c,

d, τ, τ). Now, we can define the desired Lyapunov functional F(t). For ε > , to be deter-
mined later on, let

F(t) :=

ε
E(t) +G(t). (.)

Then we conclude from (.), (.), and (.)

d
dt

F(t)≤ –

ε

∫ 



(
q + q + qt + qt

)
dx –

ρ

λ + μ

∫ 


utx dx –




∫ 


uxx dx

–
ξ



∫ 



(
θ
t + θ

t
)
dx +C

∫ 



(
q + q + qt + qt

)
dx. (.)

http://www.boundaryvalueproblems.com/content/2013/1/222
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By using (.), we arrive at

–Cε

∫ 



(
q + q + qt + qt

)
dx –

ε

π

∫ 


utx dx –

ε(λ + μ)

ρ

∫ 


uxx dx

≤ –ε

∫ 



(
ut + utt + θ

 + θ

)
dx, (.)

while (.) yields

–Cε

∫ 


uxx dx –Cε


∫ 



(
q + q + qt + qt

)
dx ≤ –ε

λ + μ


∫ 


ux dx. (.)

Combining (.)-(.), we conclude

d
dt

F(t)≤ –
(

ε
–C –Cε –Cε


)∫ 



(
q + q + qt + qt

)
dx – ε

λ + μ


∫ 


ux dx

–
(

ρ
λ + μ

–
ε

π

)∫ 


utx dx –

[


–
ε(λ + μ)

ρ –Cε

]∫ 


uxx dx

–
ξ



∫ 



(
θ
t + θ

t
)
dx – ε

∫ 



(
ut + utt + θ

 + θ

)
dx. (.)

We choose  < ε ≤  such that all terms on the right-hand side of (.) become negative,

i.e., ε ≤ ε :=min

{
ρπ

λ + μ
,

ρ

(λ + μ)
,



√

C

,


(C +C +C)

}
. (.)

Choosing ε as in (.), we obtain from (.)

d
dt

F(t)≤ –d
∫ 



(
ux + ut + utx + utt + θ

 + θ
 + θ

t + θ
t + q + q + qt + qt

)
dx

with

d :=min

{
ε


,


,

ρ

λ + μ
,
(λ + μ)ε


,
ξ


,

ε

}
, (.)

which implies

d
dt

F(t)≤ –dE(t), d :=
d

min

{

ρ
,


λ + μ

,

c
,

n
,

τ
,

τ

}
. (.)

There exist positive constants C, C and ε such that for any ε ≤ ε and t ≥ , it holds

CE(t)≤ F(t)≤ CE(t), (.)

where C, C are determined later on. In fact,

∣∣G(t)∣∣ ≤ CE(t) (.)

http://www.boundaryvalueproblems.com/content/2013/1/222
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with C :=max{ i
τ
, i

τ
, i

τ
, i

τ
, i

ρ
, i

λ+μ ,
i
ρ
, ic , in , ρ

(λ+μ) },

i :=
ρ

(λ + μ)

[
ρ
√
k

γ
+ (τ + ) +

k +D√
kD

+
√
kτ√
D

]
+

ρ(cγ + dγ)
(λ + μ)γγ

√
k

+
(n + d)

√
k

nc – d +
[
n
√
k + d

√
D

nc – d +
ε̂
√
k

λ + μ

]

k
,

i :=
ρ

(λ + μ)

[
ρ
√
D

γ
+ (τ + ) +

k +D√
kD

+
√
Dτ√
k

]
+

ρ(nγ + dγ)
(λ + μ)γγ

√
D

+
(c + d)

√
D

nc – d +
[
c
√
D + d

√
k

nc – d +
ε̂
√
D

λ + μ

]

D
,

i :=
ρτ

(λ + μ)

(
 +

√
D√
k

)
+

ρτ(cγ + dγ)
(λ + μ)γγ

√
k
+

[
n
√
k + d

√
D

nc – d +
ε̂
√
k

λ + μ

]
τ 


k

,

i :=
ρτ

(λ + μ)

(
 +

√
k√
D

)
+

ρτ(dγ + nγ)
(λ + μ)γγ

√
D

+
[
c
√
D + d

√
k

nc – d +
ε̂
√
D

λ + μ

]
τ 


D

,

i :=
ρ( + τ)(dγ + cγ)
(λ + μ)γγ

√
k

+
ρ( + τ)(dγ + nγ)
(λ + μ)γγ

√
D

,

i :=


λ + μ

[
ρ( + ε̂)


+
ε̂γ 

√
k

+
ε̂γ 

√
D

]
,

i =
ρ

λ + μ

[

√
k

(λ + μ)γ
+


√
D

(λ + μ)γ
+ ε̂

]
,

i :=
ε̂c

(λ + μ)
√
k
+

ε̂d

(λ + μ)
√
D
,

i =
ε̂d

(λ + μ)
√
k
+

ε̂n

(λ + μ)
√
D
.

At this point, we choose ε ≤ ε := 
C

, C := 
ε
+ C. Finally, we choose ε := min{ε, ε}.

Thus, we have the validity of (.). Combining (.) with (.), we get

d
dt

F(t)≤ –dF(t), d :=
d
C

. (.)

Hence, it follows from (.), F(t) ≤ e–dtF(). Applying (.) again, we can conclude
(.) with C := C

C
. The proof is complete.
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