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Abstract
The main objective of this paper is to study the stability and the type of transition of
the Taylor problem in the wide-gap case by using the averaging method, and we
conclude that the stability of the Taylor problem in the wide-gap case is essentially
the same with that in the case of the narrow-gap. The main technical tools are the
spectral theory for linear and completely continuous fields, the dynamic bifurcation
theory and the transition theory for incompressible flows, both developed by Ma and
Wang (Bifurcation Theory and Applications, 2005; Stability and Bifurcation of
Nonlinear Evolution Equations, 2007).
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1 Introduction
In , Taylor [] observed and studied the stability of laminar flow, which is known as
the Couette flow. Taylor studied the case, where the gap between two cylinders is smaller
in comparison with the mean radius, and both of them rotate in the same direction. He
found that when the Taylor number T is smaller than a critical value Tc > , called the
critical Taylor number, the Couette flow is stable, and when the Taylor number crosses Tc,
the Couette flow breaks out into a cellular pattern which is radially symmetric.
Since Taylor’s work, there have beenmany studies on this kind of problem. Such as Cou-

ette [] andMallock [] did a lot of experiments. Cloes [] published themost comprehen-
sive experimental results associated with the Taylor vortex and the secondary instability.
Chandrasekhar [],Walowit et al. [], Drazin andReid [] studied the linear theories. Velte
[], Kirchgässner [], Kirchgässner and Sorger [], Yudovich [], Ma and Wang [–]
studied the nonlinear theories. Especially, Ma and Wang established a new notion of bi-
furcation, called an attractor bifurcation, which was applied to the Taylor problem and
obtained a series of fine results. This paper focuses on the Taylor problem in the wide-gap
case. In this case, the radius of inner cylinder is small, while the radius of the outer cylin-
der is big. In addition to the same direction, the two cylinders could rot in the converse
direction.
The main objective is to study the stability and the type of transition of the Taylor prob-

lem in the wide-gap case by using the averaging method and to compare with the Taylor
problem in the narrow-gap case.
The main technical tools are the spectral theory for linear and completely continuous

fields, the dynamic bifurcation theory and the transition theory for incompressible flows.
These theories are directly applied to the Taylor problem in the wide-gap case.
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Themain conclusion is that the stability of the Taylor problem in thewide-gap case is es-
sentially the same with that in the case of a narrow-gap. The main theorems are presented
in Section , through which we can give pictures depicting the Couette flow stability in
the wide-gap case, and compare with the Taylor problem in the narrow-gap case. In the
later research, we intend to simulate the Taylor problem in the wide-gap case by using
computer.
This paper is organized as follows. Section  introduces the governing equations for the

Taylor problem. Section  studies the Taylor problem in the wide-gap case by using the
averaging method, and establishes its mathematical frame. All the main theorems and the
proofs are presented in Section .

2 Governing equations for the Taylor problem
The governing equations for the Taylor problem are the Navier-Stocks equations in the
cylindrical coordinates (z, r, θ ), which have the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂uz
∂t + (u · ∇)uz = – ∂

∂z (
p
ρ
) + ν�uz,

∂ur
∂t + (u · ∇)ur –

uθ
r = – ∂

∂r (
p
ρ
) + ν(�ur – 

r
∂uθ

∂θ
– ur

r ),
∂uθ

∂t + (u · ∇)uθ + uruθ

r = – ∂
∂θ
( p
ρ
) + ν(�uθ + 

r
∂ur
∂θ

– uθ

r ),
∂(rur)

∂r + ∂uθ

∂θ
+ ∂(ruz)

∂z = ,

(.)

where ν is the kinematic viscosity, ρ the density, u = (uz,ur ,uθ ) the velocity field, p the
pressure function, and

u · ∇ = uz
∂

∂z
+ ur

∂

∂r
+
uθ

r
∂

∂θ
,

� =
∂

∂z
+

r

∂

∂r

(
r

∂

∂r

)
+


r

∂

∂θ .

The basic flow for (.) is the Couette flow, namely a steady state solution defined by

uz = ur = , uθ = V (r), p = ρ

∫ 
r
V (r)dr,

V (r) = ar +
b
r
,

(.)

where

a = –�η
  –μ/η

 – η , b =�
r ( –μ)
 – η ,

μ =
�

�
, η =

r
r
.

In order to investigate the stability of the Couette flow defined by (.), we need to con-
sider the perturbed state

uz, ur , uθ +V (r), p + ρ

∫ 
r
V (r)dr.
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Assume that the perturbations are axisymmetric and independent of θ , from (.), we
have:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂uz
∂t + (ũ · ∇)uz = ν�uz – ∂

∂z (
p
ρ
),

∂ur
∂t + (ũ · ∇)ur –

uθ
r = ν(�ur – ur

r ) –
∂
∂r (

p
ρ
) + V

r uθ ,
∂uθ

∂t + (ũ · ∇)uθ + uruθ

r = ν(�uθ – uθ

r ) – (V ′ + V
r )ur ,

∂(rur)
∂r + ∂(ruz)

∂z = ,

(.)

where

ũ · ∇ = uz
∂

∂z
+ ur

∂

∂r
,

� =
∂

∂z
+

∂

∂r
+

r

∂

∂r
.

The spatial domain for (.) isM = (r, r)× (,L)⊂ R, where L is the height of the field
between the two cylinders. There are different physically sound boundary conditions.
In the radial direction, there are two kinds of boundary conditions:
Free boundary condition:

∂uz
∂r

= , ur = uθ = , at r = r, r.

Rigid boundary condition:

uz = ur = uθ = , at r = r, r.

In the z direction, there are four kinds of boundary conditions:
Free slip boundary condition:

uz = ,
∂ur
∂z

=
∂Uθ

∂z
= , at z = ,L.

Dirichlet boundary condition (or rigid condition):

uz = ur = uθ = , at z = ,L.

Free rigid boundary condition:

uz = ,
∂ur
∂z

=
∂uθ

∂z
= , at z = L,

uz = ur = uθ = , at z = .

Periodic condition:

u = (uz,ur ,uθ ) is periodic in the z direction.
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Using the transform:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = lx′, x = (z, r, θ ),
t = lt′/ν,
u = νu′/l, u = (uz,ur ,uθ ),
p = ρνp′/l,

where l is a certain length unit in (.).
We get the dimensionless form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂uz
∂t =�uz – ∂p

∂z – (ũ · ∇)uz,
∂ur
∂t = (�ur – ur

r ) –
∂p
∂r + �

l
ν
( r



r

–μ

–η
– η–μ

–η
uθ ) +

uθ
r – (ũ · ∇)ur ,

∂uθ

∂t = (�uθ – uθ

r ) + �
l
ν

η–μ

–η
ur – uruθ

r – (ũ · ∇)uθ ,
∂(rur)

∂r + ∂(ruz)
∂z = .

(.)

3 Averaging for the Taylor problem in the wide-gap case
In the case of a wide-gap, r is small, while r is big. The averaging method is that we let
l = r = , and r = (r + r)/ replace variable r approximately. Since rx is big, r and ν are
small, we can ignore r–n (n ≥ ), which are associated with the inner friction of fluid. In
this paper, moreover, our analysis will be conducted using free boundary conditions in z
and radial directions. Then from (.), we obtain the averaged governing equation for the
case of the wide-gap:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂uz
∂t =�uz – ∂p

∂z – (ũ · ∇)uz,
∂ur
∂t =�ur – ∂p

∂r + λ( 
r
– κ)uθ +

uθ
r

– (ũ · ∇)ur ,
∂uθ

∂t =�uθ + λκur – uruθ

r
– (ũ · ∇)uθ ,

∂ur
∂r + ∂uz

∂z = ,

(.)

⎧⎨
⎩

∂uz
∂r = , ur = uθ = , at r = , r,

uz = , ∂ur
∂z = ∂uθ

∂z = , at z = ,L,
(.)

where λ =
√
T , T is the Taylor number, T and κ are defined by

T =
�

 ( –μ)
ν( – η)

, κ =
η –μ

 –μ
,

ũ · ∇ = uz
∂

∂z
+ ur

∂

∂r
,

� =
∂

∂z
+

∂

∂r
,

spatial domain for (.) isM = (, r)× (,L)⊂ R.
Let ũ = (uz,ur),

H =
{
u = (ũ,uθ ) ∈ L

(
M,R)|div ũ = , ũ · n|∂M = 

}
,

H =
{
u = (ũ,uθ ) ∈H(M,R) ∩H|u satisfies (.)

}
.
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By the Hodge decomposition theorem, L(M,R) can be decomposed as follows.

L
(
M,R) =H ⊕G,

H =
{
u = (ũ,uθ ) ∈ L

(
M,R)|div ũ = , ũ · n|∂M = 

}
,

G =
{∇ϕ ∈ L

(
M,R)|ϕ ∈H(M)

}
,

G⊥H .

Here, H(M) and H(M,R) are the usual Sobolev spaces.
Then we can define an orthogonal projection, called Leray projection

P : L
(
M,R) →H .

Let

Lλ = –A + λB :H → H ,

G :H →H

be a mapping defined by

A(u) = –P(�uz,�ur ,�uθ ),

B(u) = P
(
,

(

r

– κ

)
uθ ,κur

)
, (.)

G(u) = –P
(
(ũ · ∇)uz, (ũ · ∇)ur –

uθ
r

, (ũ · ∇)uθ +
uθur
r

)
,

where u = (uz,ur ,uθ ) ∈ H, and the mapping P is the Leray projection.
Thus, (.) can be written in the abstract form:

du
dt

= Lλu +Gu, u ∈H. (.)

So far, the stability of the Couette flows of equation (.) equals to the stability of
(uz,ur ,uθ ) =  of equation (.).

4 Main results and proofs
Let X, X be two Banach spaces, X ⊂ X be a dense and compact inclusion. Consider the
following nonlinear evolution equations

⎧⎨
⎩

du
dt = Lu +Gu,

u() = ϕ,
(.)

where L : X → X is bounded linear operator, G : X → X is Cr (r ≥ ) mapping.

Definition . [] Let � ⊂ X be a bounded open set, we say that (.) is Lyapunov stable
in �, if the solution of (.) u(t,ϕ) ∈ �, ∀t ≥ , for any initial point ϕ ∈ �.

http://www.boundaryvalueproblems.com/content/2013/1/227
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Definition . [] We say (.) is asymptotically Lyapunov stable in�, or u is an asymp-
totically stable equilibrium point of (.) in �, if there exists a steady solution u ∈ �,
satisfying

lim
t→∞

∥∥u(t,ϕ) – u
∥∥
X =  for any ϕ ∈ �.

Lemma. [] Let L : X → x be a sectorial operator,G : Xα → X be a Cr (r ≥ )mapping
for certain  ≤ α < , v be a steady solution of (.). If the spectral β(λ) of L +DG(v) satisfy
Reβ(λ) < –ε, for certain ε > , then v is a locally asymptotically stable equilibrium point of
(.), and it decays exponentially. Namely, there exist M > , σ > , δ > , for the solution
of (.) u(t,ϕ), ‖u(t,ϕ) – v‖X ≤Me–σ t (∀t ≥ ) hold true, as ‖ϕ – v‖ < δ.

Let

δ =
r – r – 

r(r – )(r + )
> , as r > r = ,

and as above

μ =
�

�
, η =

r
r
.

Theorem . If μ ≤ –δ, or η ≤ μ, then (uz,ur ,uθ ) =  is a locally asymptotically stable
equilibrium point of (.), and it decays exponentially.

Theorem . If –δ < μ < η (μ �= ), we have the following conclusions for (.):
() Equation (.) happens with a continuous transition at (u,λ) = (,

√
Tc), namely

there is an attractor bifurcation, and it bifurcates exactly into two singular points vi
(i = , ), which attract two open subsets of U separately. U is the neighborhood of
u = .

() The two singular points vi (i = , ) can be written by:

v,(λ) = ±|βn/σ |  ψn + o
(|βn/σ |  ),

where σ = –
βn

ab , βn is the first eigenvalue.

Remark . From the point of view of mathematics, Theorem . explains that there ex-
ists an open set � ⊂H, which guarantees that if the initial point u ∈ �, then the solution
of (.) satisfies ‖u(t,u)‖H →  (t → ∞).

Remark . From the point of view of physics, Theorem . explains that in the wide-gap
case, the Couette flow of the Taylor problem is metastable. Namely, if the initial perturba-
tion is in a certain range, the disturbed fluid will become the Couette flow in a short time.
But if the initial perturbation is beyond that range above, the disturbed fluid will become
another steady flow. The explanation is the same as that for Theorem ..

Remark . Theorems .-. give the entire results of stability of the Taylor problem in
the wide-gap case; see Figure . � represents the unstable area, � represents the stable

http://www.boundaryvalueproblems.com/content/2013/1/227
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Figure 1 Wide-gap Case.

Figure 2 Narrow-gap Case.

area, T �=  and

T =min
(n,l)

αν( – η)

aη( 
r
– η)

.

Remark . [] In the narrow-gap case, let r = . cm and r = . cm, the results
can be seen in Figure . � represents the unstable area, � represents the stable area.

Remark . By Figure  and Figure , we can conclude that the results of the stability
of the Taylor problem in the wide-gap case, obtained by using the averaging method, are
essentially the same as those of the Taylor problem in the narrow-gap case.

Proof of Theorem . Obviously, A and B are linear operators. According to [], A is a
homeomorphism, then it is a sectorial operator. According to the Sobolev compact em-
bedding theorem [] and the Leray projection, P is bounded, B is compact. So,

Lλ = –A + λB :H → H

is a sectorial operator, and also a linear completely continuous field.
Now,

∫
�

(u · ∇)u · v + u · vdx ≤ ‖u‖C‖∇u‖L‖v‖L + ‖u‖C‖u‖L‖v‖L
= ‖u‖C‖u‖W ,‖v‖L ,

http://www.boundaryvalueproblems.com/content/2013/1/227
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we have

‖Gu‖H ≤ ‖u‖C‖u‖W , .

According to [], Theorem .., the fraction spaces of Lλ,Hα =D(Lα
λ), satisfy

‖u‖C + ‖u‖W , ≤ C‖u‖Hα ,

where α > 
 . Then

G :Hα →H
(


< α < 

)
is a bounded analytic mapping.

Consider the eigenvalue problem:

Lλψ = β(λ)ψ , ψ = (uz,ur ,uθ ) ∈H.

By (.), the abstract form can be referred to the following eigenvalue equations in H:

�uz –
∂p
∂z

= β(λ)uz, (.)

�ur –
∂p
∂r

+ λ

(

r

– κ

)
uθ = β(λ)ur , (.)

�uθ + λκur = β(λ)uθ , (.)

∂ur
∂r

+
∂uz
∂z

= , (.)

∂uz
∂r

= , ur = uθ = , at r = , r, (.)

uz = ,
∂ur
∂z

=
∂uθ

∂z
= , at z = ,L. (.)

According to [], we take the separation of variables as follows:

uz =
dh(z)
dt

dR(r)
dr

,

ur = ah(z)R(r), (.)

uθ = h(z)ϕ(r).

We utilize (.) in (.) and (.) to obtain:

⎧⎨
⎩
h′′R′ + ahR′ = ,

h′() = h′(L) = 
⇒

⎧⎨
⎩
h = cosaz,

a = nπ
L , n = , , . . . .

(.)

We utilize (.), (.) in (.) to obtain:

h′′ϕ + hϕ′′ + λκahR = β(λ)hϕ

http://www.boundaryvalueproblems.com/content/2013/1/227
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that equals to

(
d

dr
– a

)
ϕ = –λκaR + β(λ)ϕ. (.)

We utilize (.), (.) in (.), then differentiate with respect to r,

h′′′R′′ + h′R′′′′ –
∂p
∂r∂z

= β(λ)h′R′′,

and utilize (.), (.) in (.), then differentiate with respect to z,

ah′′′R + ah′R′′ + λ

(

r

– κ

)
h′ϕ –

∂p
∂z∂r

= β(λ)ah′R,

the two equations above subtract to obtain:

(
d

dr
– a

)

R = λ

(

r

– κ

)
ϕ + β(λ)

(
d

dr
– a

)
R. (.)

Utilizing (.) in (.), we have

ϕ() = ϕ(r) = R() = R(r) = R′′() = R′′(r) = ,

then let

R = sin lπ
(
r – 
r – 

)
, ϕ = Cnl sin lπ

(
r – 
r – 

)
, l = , , . . . .

Combine (.), (.) to obtain:

⎧⎨
⎩

αCnl = aλκ –Cnlβ(λ),

α = Cnl( 
r
– κ)λ – αβ(λ),

α = a +
(

lπ
r – 

)

, (.)

therefore, we get

⎧⎨
⎩
Cnl = αλκa

±√
�
,

βnl = –α ±
√

�
α ,

(.)

where

� = αaλκ

(

r

– κ

)
.

The corresponding eigenvectors of (.)-(.) are as follows:

ψnl =

⎧⎪⎪⎨
⎪⎪⎩

nlπ

L(r–)
sin nπz

L cos lπ (r–)
(r–)

,

( nπ
L ) cos nπz

L sin lπ (r–)
(r–)

,

Cnl cos nπz
L sin lπ (r–)

(r–)
.

(.)

http://www.boundaryvalueproblems.com/content/2013/1/227
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Now, as (n, l) �= (, ),

Lλψnl = βnl(λ)ψnl,

E =
{
ψnl|ψnl satisfies (.), (n, l) ∈N ×N

}
,

B =
{
βnl(λ)|βnl(λ) satisfies (.), (n, l) ∈N ×N

}
,

as n = , from (.)-(.),

Lλψl = βl(λ)ψl,

where

ψl ∈ E =
{
ψl

∣∣∣ψl =
(
,, sin

lπ (r – )
(r – )

)T

, l = , , . . .
}
,

βl ∈ B =
{
βl

∣∣∣βl = –
(

lπ
r – 

)

, l = , , . . .
}
,

as l = , ψn = .
Now, according to the Fourier expansion, B ∪ B are all the eigenvalues of (.)-(.),

the corresponding eigenvectors E ∪ E form a complete basis in H.
In view of the condition μ < –δ, by simple calculation, we know that κ > , κr –  > ,

then

� ≤ ,

thus,

Reβnl < –ε ( < ε < α),

and

βl = –
(

lπ
r – 

)

< .

Now, by Lemma ., the proof of Theorem . is completed. �

Proof of Theorem . Utilizing the method in Theorem ., we have the following results
for the eigenvalue problem of L∗

λ, here L∗
λ is adjoint operator of Lλ.

As (n, l) �= (, ),

⎧⎪⎨
⎪⎩
C∗
nl =

α( 
r

–κ)αλ

±√
�

,

βnl(λ) = –α ±
√

�
α ,

(.)

where

� = αaλκ

(

r

– κ

)
,

http://www.boundaryvalueproblems.com/content/2013/1/227
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the corresponding eigenvectors are as follows:

ψ∗
nl =

⎧⎪⎪⎨
⎪⎪⎩

nlπ

L(r–)
sin nπz

L cos lπ (r–)
(r–)

,

( nπ
L ) cos nπz

L sin lπ (r–)
(r–)

,

C∗
nl cos

nπz
L sin lπ (r–)

(r–)
,

(.)

satisfying

E∗
 =

{
ψ∗

nl|ψ∗
nl satisfies (.), (n, l) ∈N ×N

}
,

B =
{
βnl(λ)|βnl(λ) satisfies (.), (n, l) ∈N ×N

}
.

As n = ,

L∗
λψ

∗
l = βl(λ)ψ∗

l,

where

ψ∗
l ∈ E∗

 =
{
ψ∗

l

∣∣∣ψ∗
l =

(
,, sin

lπ (r – )
(r – )

)T

, l = , , . . .
}
,

βl ∈ B =
{
βl

∣∣∣βl = –
(

lπ
r – 

)

, l = , , . . .
}
.

As l = , ψ∗
n = .

Consider equation βnl(λ) = , by (.), we have

α

(
α +


r

)

– λaκ
(


r – κ

)
= ,

λ =
α

aκ( 
r
– κ)

.

Now, we have the critical Taylor number

Tc = min
(n,l)∈N

α

aκ( 
r
– κ)

, (.)

through sample calculation, as (n, l) = ( L√
(r–)

, ), α

aκ( 
r

–κ)
reaches its minimal value. We

assume that n + 
 �= L√

(r–)
for ∀n > , then there exists only one couple (n, l), making

α

aκ( 
r

–κ)
reach the minimal value.

Therefore, we have

βnl(λ) =

⎧⎪⎪⎨
⎪⎪⎩
< , if λ < Tc,

= , if λ = Tc,

> , if λ > Tc,

(.)

βnl(Tc) < , ∀(n, l) �= (n, ).

http://www.boundaryvalueproblems.com/content/2013/1/227
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The reduced form of (.) into its center manifold in H is:

dx
dt

= βnx +


〈ψn,ψ∗
n〉H

〈
G(ψ ,ψ),ψ∗

n
〉
H , (.)

where ψ ∈H can be written by

ψ = xψn +�, (.)

� is a center manifold function. G(u, v) is a bilinear operator, satisfying

G(u, v) = –P
(
(ũ · ∇)vz, (ũ · ∇)vr –

uθvθ

r
, (ũ · ∇)vθ +

uθvr
r

)
. (.)

Through direct calculation, we have

〈
G(ψn,ψn),ψ

∗
J
〉
H =

⎧⎨
⎩
, ψ∗

J �=ψ∗
n,

–abcc∗L(r – ), ψ∗
J =ψ∗

n,
(.)

where,

a =
nπ
L

, b =
π

r – 
, c = Cn, c∗ = C∗

n.

Here, we use the mark as follows:

o() = o
(
x

)
+O

(∣∣βnl(λ)x
∣∣), o() = o

(
x

)
+O

(∣∣βnl(λ)x
∣∣).

Then the center manifold function can be written by

� = –
x〈G(ψn,ψn),ψ∗

n〉H
βn〈ψn,ψ∗

n〉H
ψn + o(). (.)

Direct computation yields that

〈
G(ψn,ψn),ψ

∗
n

〉
H = abcc

∗
L(r – ),

〈
G(ψn,ψn),ψ

∗
n

〉
H = –abcc

∗
L(r – ), (.)

〈
ψn,ψ

∗
n

〉
H =



cc∗L(r – ),

〈
ψn,ψ

∗
n

〉
H = cc∗L(r – ).

Finally, we utilize (.), (.)-(.) in (.) to obtain

dx
dt

= βnx – σx + o(), (.)

where

σ =
–

βnab
> .

Now, according to Theorem . in [], the proof of Theorem . is completed. �
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