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Abstract
In this paper, we study (p(x),q(x))-biharmonic systems with Navier boundary
condition on a bounded domain and obtain three solutions under appropriate
hypotheses. The technical approach is mainly based on the general three critical
points theorem obtained by Ricceri.
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1 Introduction andmain results
In this paper, we consider the Navier boundary value problem involving the (p(x),q(x))-
biharmonic systems

⎧⎪⎨
⎪⎩

�(|�u|p(x)–�u) = λFu(x,u, v) +μGu(x,u, v), in �,
�(|�u|q(x)–�u) = λFv(x,u, v) +μGv(x,u, v), in �,
u =�u = v =�v = , on ∂�,

(P)

where λ,μ ∈ [, +∞), � ⊂ RN (N ≥ ) is a nonempty bounded open set with a boundary
∂� of class C, F ,G :� × R× R→ R are functions such that F(·, s, t), G(·, s, t) are measur-
able in� for all (s, t) ∈ R×R and F(x, ·, ·) is C in R×R for a.e. x ∈ �, Fi denotes the partial
derivative of F with respect to i, i = u, v, so does Gi. And p,q ∈ C(�),  < p– = infx∈� p(x) ≤
p+ = supx∈� p(x) < +∞,  < q– = infx∈� q(x)≤ q+ = supx∈� q(x) < +∞. Moreover,

p∗(x) =

{
Np(x)
N–p(x) if p(x) <N ,
∞ if p(x) ≥N ,

is the critical exponent just as in many papers. Obviously, p(x) < p∗(x), q(x) < q∗(x) for all
x ∈ �.
In what follows, E denotes the Cartesian product of two Sobolev spaces W ,p(x)(�) ∩

W ,p(x)
 (�) and W ,q(x)(�) ∩ W ,q(x)

 (�), i.e., E = (W ,p(x)(�) ∩ W ,p(x)
 (�)) × (W ,q(x)(�) ∩

W ,q(x)
 (�)), and X denotes the Sobolev spaceW ,p(x)(�)∩W ,p(x)

 (�).
In recent years, the study of differential equations and variational problems with p(x)-

growth conditions has been an interesting topic resulting from nonlinear electrorheolog-
ical fluids (see []) and elastic mechanics (see []).
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Some authors considered elliptic systems (see [–]) which have been used in a wide
range of applications. Existence andmultiplicity results for elliptic systems involving vari-
ational structure have been extensively investigated.
In [], Boccardo and Figueiredo studied the following boundary value problem involving

the (p,q)-Laplacian:

{
–�pu = Fu(x,u, v),
–�qu = Fv(x,u, v),

where p and q are real numbers larger than .
In [], applying the fibering method established by Pohozaev, Bozhkova and Mitidieri,

the authors studied the existence of multiple solutions for quasilinear system involving a
pair of (p,q)-Laplacian operators.
In [], Chun Li and Chun-Lei Tang ensured the existence of three solutions for the prob-

lem

⎧⎪⎨
⎪⎩
–�pu = λFu(x,u, v), in �,
–�qu = λFv(x,u, v), in �,
u = v = , on ∂�,

where p >N , q >N and F satisfies suitable assumptions.
In [], Afrouzi and Heidarkhani studied the existence of three solutions for a class of

Dirichlet quasilinear elliptic systems involving the (p, . . . ,pn)-Laplacian. In [], Jing-Jing
Liu andXia-Yang Shi proved the existence ofmultiple solutions for a quasilinear system in-
volving a pair of (p(x),q(x))-Laplacian operators. In [], Bin Ge and Ji-Hong Shen obtained
multiple solutions for a class of differential inclusion systems involving the (p(x),q(x))-
Laplacian.
Recently, Lin Li and Chun-Lei Tang (see []) considered the Navier boundary value

problem involving the (p,q)-biharmonic systems

⎧⎪⎨
⎪⎩

�(|�u|p–�u) = λFu(x,u, v) +μGu(x,u, v), in �,
�(|�u|q–�u) = λFv(x,u, v) +μGv(x,u, v), in �,
u =�u = v =�v = , on ∂�,

where p >max{, N }, q >max{, N }, and F , G satisfy suitable assumptions.
The main result of this paper is the following theorem.

Theorem . Suppose that there exist two positive constants C, d and two functions
γ (x),β(x) ∈ C(�) with  < γ – < γ + < p–,  < β– < β+ < q– such that
(j) F(x, s, t)≥  for a.e. x ∈ � and all (s, t) ∈ [,d]× [,d];
(j) ∃p(x),q(x) ∈ C(�) and p+ < p– ≤ p(x) < p∗(x), q+ < q– ≤ q(x) < q∗(x) such that

lim sup sup
(s,t)→(,)x∈�

F(x, s, t)
|s|p(x) + |t|q(x) < +∞;

(j) |F(x, s, t)| ≤ C( + |s|γ (x) + |t|β(x)) for a.e. x ∈ � and all (s, t) ∈ R× R;
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(j) F(x, , ) =  for a.e. x ∈ �. Then there exist an open interval � ⊆ [, +∞) and a
positive real number r with the following property: for each λ ∈ � and each function
G :� × R× R �→ R,measurable in �, C in R× R and satisfying

sup
(x,s,t)→(�×R×R)

|G(x, s, t)|
 + |s|p(x) + |t|q(x) <∞,

where p,q ∈ C(�) and p(x) < p∗(x), q(x) < q∗(x) for all x ∈ �, there exists δ > 
such that, for each μ ∈ [, δ], problem (P) has at least three weak solutions whose
norms in (W ,p(x)(�)∩W ,p(x)

 (�))× (W ,q(x)(�)∩W ,q(x)
 (�)) are less than r.

The paper is organized as follows. In Section , we present some necessary preliminary
knowledge about the Lebesgue and Sobolev spaces with variable exponents, and present
Ricceri’s three-critical-points theorem. In Section , we prove the main result.

2 Preliminaries
Assume that � is a bounded domain of RN (N ≥ ) with a smooth boundary ∂�. Let

C+(�) =
{
h|h ∈ C(�),h(x) >  for all x ∈ �

}
,

L∞
+ (�) =

{
p ∈ L∞(�) : ess inf

x∈�
p(x) > 

}
.

For p ∈ L∞
+ (�), set

p– = p–(�) = ess inf
x∈�

p(x), p+ = p+(�) = ess sup
x∈�

p(x).

For p ∈ L∞
+ (�), define

Lp(x)(�) =
{
u|u :� → R is measurable and

∫
�

|u|p(x) dx < ∞
}

with the norm

‖u‖Lp(x)(�) = |u|p(x) = inf

{
λ :

∫
�

∣∣∣∣uλ
∣∣∣∣
p(x)

dx≤ 
}

and

W ,p(x)(�) =
{
u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)

}

endowed with the norm

‖u‖W ,p(x)(�) = |u|p(x) + |∇u|p(x).

We denote byW ,p(x)
 (�) the closure of C∞

 (�) inW ,p(x)(�).
For the basic properties of the spaces Lp(x)(�),W ,p(x)(�) andW ,p(x)

 (�), please refer to
[–]. Now we recite some known results which will be used later.
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Huang et al. Boundary Value Problems 2013, 2013:228 Page 4 of 11
http://www.boundaryvalueproblems.com/content/2013/1/228

Proposition . (see [])
(i) The spaces Lp(x)(�),W ,p(x)(�) andW ,p(x)

 (�) are separable and reflexive Banach
spaces;

(ii) If q ∈ C+(�) and q(x) < p∗(x) for any x ∈ �, then the imbedding fromW ,p(x)(�) to
Lq(x)(�) is compact and continuous;

(iii) There is a constant C >  such that |u|p(x) ≤ C|∇u|p(x) ∀u ∈ W ,p(x)
 (�).

By (iii) of Proposition ., we know that |∇u|p(x) and ‖u‖ are equivalent norms on
W ,p(x)

 (�). We use |∇u|p(x) to replace ‖u‖ in the following discussion.

Proposition . (see []) Set ρ(u) =
∫
�

|u|p(x) dx for u,uk ∈ Lp(x)(�), we obtain
() For u �= , |u|p(x) = λ ⇔ ρ( u

λ
) = ;

() |u|p(x) <  (= ; > )⇔ ρ( u
λ
) <  (= ; > );

() If |u|p(x) > , then |u|p–p(x) ≤ ρ(u)≤ |u|p+p(x);
() If |u|p(x) < , then |u|p+p(x) ≤ ρ(u) ≤ |u|p–p(x);
() limk→∞|uk|p(x) =  ⇔ limk→∞ρ(uk) = ;
() |uk|p(x) → ∞ ⇔ ρ(uk) → ∞.

In this paper, the space E is endowed with the following equivalent norm:

∥∥(u, v)∥∥ = ‖u‖ + ‖v‖,

where

‖u‖ = inf

{
λ >  :

∫
�

∣∣∣∣�u
λ

∣∣∣∣
p(x)

dx ≤ 
}
, ‖v‖ = inf

{
μ >  :

∫
�

∣∣∣∣�v
μ

∣∣∣∣
q(x)

dx ≤ 
}
.

Similar to Proposition ., we obtain the following.

Proposition . Let φ(u) =
∫
�

|�u|p(x) dx for u,uk ∈W ,p(x)(�), we obtain:
() For u �= , ‖u‖ = λ ⇔ φ( u

λ
) = ;

() ‖u‖ <  (= ; > ) ⇔ φ( u
λ
) <  (= ; > );

() If ‖u‖ > , then ‖u‖p– ≤ φ(u) ≤ ‖u‖p+ ;
() If ‖u‖ < , then ‖u‖p+ ≤ φ(u) ≤ ‖u‖p– ;
() limk→∞‖uk‖ = ⇔ limk→∞φ(uk) = ;
() ‖uk‖ → ∞ ⇔ φ(uk) → ∞.

Let G(u) =
∫
�


p(x) |�u|p(x) dx, u ∈ X and denote L =G′ : X → X∗, then

(
L(u), v

)
=

∫
�

|�u|p(x)–�u�vdx ∀u, v ∈ X.

Proposition . (see [])
(i) L : X → X∗ is a continuous, bounded and strictly monotone operator;
(ii) L is a mapping of type (S+), i.e., if un → u in X and

limn→∞((L(un) – L(u),un – u)) ≤ , then un → u in X ;
(iii) L : X → X∗ is a homeomorphism.

http://www.boundaryvalueproblems.com/content/2013/1/228
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Proposition . (see []) Let X be a separable and reflexive real Banach space; I ⊆ R;
let � : X → R be a continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X∗;
J : X → R is a continuously Gâteaux differentiable functional whose Gâteaux derivative is
compact. In addition, � is bounded on each bounded subset of X. Assume that

lim‖u‖→+∞
(
�(u) + λJ(u)

)
= +∞ (.)

for all λ ∈ I ⊆ [,∞[, and that there exists ρ ∈ R such that

sup
λ∈I

inf
u∈X

(
�(u) + λ

(
J(u) + ρ

))
< inf

u∈X supλ∈I

(
�(u) + λ

(
J(u) + ρ

))
. (.)

Then there exist a nonempty open set A ⊆ I and a positive real number r with the following
property: for every λ ∈ A and every C functional 
 : X → R with a compact derivative,
there exists δ >  such that, for each μ ∈ [, δ], the equation

�′(u) + λJ ′(u) +μ
 ′(u) = 

has at least three solutions in X whose norms are less than r.

Proposition . (see []) Let X be a nonempty set, and let �, J be two real functionals
on X. Assume that there are r >  and x,x ∈ X such that

�(x) + J(x) = , �(x) > r,

sup
x∈�–(]–∞,r])

J(x) < r
J(x)
�(x)

. (.)

Then, for each ρ satisfying

sup
x∈�–(]–∞,r])

J(x) < ρ < r
J(x)
�(x)

,

one has

sup
λ≥

inf
x∈X

(
�(x) + λ

(
ρ – J(x)

))
< inf

x∈X supλ≥

(
�(x) + λ

(
ρ – J(x)

))
.

3 Proof of themain result
Definition . A weak solution of problem (P) is any (u, v) ∈ E such that

∫
�

(|�u|p(x)–�u�ξ + |�v|q(x)–�v�η
)
dx

– λ

∫
�

(Fuξ + Fvη)dx –μ

∫
�

(Guξ +Gvη)dx = 

http://www.boundaryvalueproblems.com/content/2013/1/228
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for all ∀(ξ ,η) ∈ E. We define the corresponding energy functional of problem (P) as

H(u, v) = �(u, v) + λJ(u, v) +μ
(u, v)

=
∫

�

(


p(x)
|�u|p(x) + 

q(x)
|�v|q(x)

)
dx – λ

∫
�

F(x,u, v)dx –μ

∫
�

G(x,u, v)dx,

where

�(u, v) =
∫

�

(


p(x)
|�u|p(x) + 

q(x)
|�v|q(x)

)
dx,

J(u, v) = –
∫

�

F(x,u, v)dx; 
(u, v) = –
∫

�

G(x,u, v)dx.

Then H(u, v) is a C functional and the critical points of it are weak solutions of problem
(P).

Proof of Theorem . Let �, J , 
 as above. So, for each u, v, ξ ,η ∈ E, one has

�′(u, v)(ξ ,η) =
∫

�

(|�u|p(x)–�u�ξ + |�v|q(x)–�v�η
)
dx,

J ′(u, v)(ξ ,η) = –
∫

�

Fu(x,u, v)ξ dx –
∫

�

Fv(x,u, v)ηdx,


 ′(u, v)(ξ ,η) = –
∫

�

Gu(x,u, v)ξ dx –
∫

�

Gv(x,u, v)ηdx.

Therefore, the weak solutions of problem (P) are exactly the solutions of the equation

�′(u, v) + λJ ′(u, v) +μ
 ′(u, v) = .

In view of Proposition . (or [] for details), certainly,� is a continuouslyGâteaux differ-
entiable and sequentially weakly lower semi-continuous functional whoseGâteaux deriva-
tive admits a continuous inverse on E∗. Moreover, J and 
 are continuously Gâteaux dif-
ferentiable functionals whose Gâteaux derivatives are compact. Obviously, � is bounded
on each bounded subset of X under our assumptions.
By Proposition ., set G(u) =

∫
�


p(x) |�u|p(x) dx just as before, then for ‖u‖ ≥ ,


p+

‖u‖p– ≤G(u) ≤ 
p–

‖u‖p+ ; (.)

for ‖u‖ < ,


p+

‖u‖p+ ≤G(u) ≤ 
p–

‖u‖p– . (.)

Actually, for ‖u‖ < , set C ≥ 
p+ ‖u‖p– – 

p+ ‖u‖p+ ≥ , then we can obtain

G(u) =
∫

�


p(x)

|�u|p(x) dx≥ 
p+

‖u‖p– –C.

http://www.boundaryvalueproblems.com/content/2013/1/228
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Hence we have

G(u) =
∫

�


p(x)

|�u|p(x) dx≥ 
p+

‖u‖p– –C, ∀u ∈ X.

So, there exists a constant C ≥  such that

�(u, v) =
∫

�

(


p(x)
|�u|p(x) + 

q(x)
|�v|q(x)

)
dx

≥ 
p+

‖u‖p– + 
q+

‖u‖q– –C

holds for any (u, v) ∈ E.

λJ(u, v) = –λ

∫
�

F(x,u, v)dx

≥ –λ

∫
�

C
(
 + |u|γ (x) + |v|β(x))dx

≥ –λC
(|�| + |u|γ +

γ (x) + |u|γ –

γ (x) + |v|β+

β(x) + |v|β–

β(x)
)

≥ –C
(
 + |u|γ +

γ (x) + |v|β+

β(x)
)

≥ –C
(
 + ‖u‖γ + + ‖v‖β+)

holds for any (u, v) ∈ E, where constants C ≥ , C ≥ . Here, by using conditions (j) and
(ii) of Proposition ., combining the two inequalities above, we can obtain

�(u, v) + λJ(u, v)≥ 
p+

‖u‖p– + 
q+

‖v‖q– –C
(
 + ‖u‖γ +

+ ‖v‖β+)
–C.

Due to γ + < p–, β+ < q–, we get

lim
‖(u,v)‖→+∞

(
�(u, v) + λJ(u, v)

)
= +∞ ∀(u, v) ∈ E,λ ∈ [,∞).

Then assumption (.) of Proposition . is fulfilled.
Next, we derive that assumption (.) is also fulfilled. It is easy to verify the conditions

of Proposition .. Let (u, v) = (, ), we can easily have

�(u, v) = –J(u, v) = .

Then there exist γ >  and (u, v) ∈ E such that �(u, v) > γ and (.) is satisfied.
There is a point x ∈ � since it is a nonempty bounded open set. Let r > r > , put

w(x) =

⎧⎪⎨
⎪⎩
, x ∈ �\B(x, r),
d((l–r )–(r+r)(l

–r)+rr(l
–r))

(r–r)(r+r)
, x ∈ B(x, r)\B(x, r),

d, x ∈ B(x, r),

http://www.boundaryvalueproblems.com/content/2013/1/228
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where B(x, r) is the open ball in RN of radius r centered at x,

l = dist
(
x,x

)
=

√√√√ N∑
i=

(
xi – xi

).

Let (u(x), v(x)) = (w(x),w(x)), then by (j) we can derive that

–J(u, v) = –J(w,w) =
∫

�

F(x,w,w)dx > .

From (j), ∃η ∈ [, ], C >  such that

F(x, s, t) < C
(|s|p(x) + |t|q(x))

< C
(|s|p– + |t|q– ) ∀(s, t) ∈ [–η,η]× [–η,η] a.e. x ∈ �.

By (j), there are nine positive real numbersMi (i = , , . . . , ) according to |s|, |t| larger or
smaller than η and . For example, when |s| > , |t| < η some

Mi = sup
|s|>,|t|<η

C( + |s|γ + + |s|β–)
|s|p– + |t|q– .

SetM =max{C,M, . . . ,M}, then

F(x, s, t) <M
(|s|p– + |t|q– ) ∀(s, t) ∈ R× R a.e. x ∈ �.

Hence, fix γ such that  < γ < . And for 
p+ ‖u‖p+ + 

q+ ‖v‖q+ ≤ γ < , by the Sobolev em-
bedding theorem (X → Lp– (�) is continuous), there exist suitable positive constants C

and C such that

–J(u, v) =
∫

�

F(x,u, v)dx <M
∫

�

(|u|p– + |v|q– )dx
≤ C

(‖u‖p– + ‖v‖q– )
≤ C

(
γ

p–
P+ + γ

q–
q+

)
.

Since p– > p+, q– > q+, we have

lim
γ→+

sup 
p+ ‖u‖p++ 

q+ ‖v‖q+≤γ –J(u, v)

γ
= . (.)

We choose w(x) ∈ X as above such that –J(w,w) > . Fix γ such that  < γ < γ <
min{ 

p+ ,

q+ } ·min{‖w‖p+ + ‖w‖q+ ,‖w‖p– + ‖w‖q– , } ≤ . Then we divide the proof into two

cases.

http://www.boundaryvalueproblems.com/content/2013/1/228
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(i) For ‖w‖ < , by (.) we have

�(u, v) = �(w,w)

=
∫

�

(


p(x)
|�w|p(x) + 

q(x)
|�w|q(x)

)
dx

≥min

{

p+

,

q+

}∫
�

(|�w|p(x) + |�w|q(x))dx
≥min

{

p+

,

q+

}(‖w‖p+ + ‖w‖q+)
≥ γ > γ .

By (.), we obtain

sup

p+ ‖u‖p++ 

q+ ‖v‖q+≤γ

–J(u, v) ≤ γ


–J(u, v)

max{ 
p– ,


q– }(‖w‖p– + ‖w‖q– )

≤ γ


–J(u, v)
�(u, v)

< γ
–J(u, v)
�(u, v)

.

(ii) For ‖w‖ ≥ , from (.) we get

�(u, v) = �(w,w)

=
∫

�

(


p(x)
|�w|p(x) + 

q(x)
|�w|q(x)

)
dx

≥min

{

p+

,

q+

}∫
�

(|�w|p(x) + |�w|q(x))dx
≥min

{

p+

,

q+

}(‖w‖p– + ‖w‖q–)
≥ γ > γ .

From (.), we have

sup

p+ ‖u‖p++ 

q+ ‖v‖q+≤γ

–J(u, v) ≤ γ


–J(u, v)

max{ 
p– ,


q– }(‖w‖p+ + ‖w‖q+ )

≤ γ


–J(u, v)
�(u, v)

< γ
–J(u, v)
�(u, v)

.

For any (u, v) ∈ �–((–∞,γ ]), we can obtain �(u, v) < γ , i.e.,

�(u, v) =
∫

�

(


p(x)
|�u|p(x) + 

q(x)
|�v|q(x)

)
dx ≤ γ .

Then we can have

min

{

p+

,

q+

}∫
�

(|�u|p(x) + |�v|q(x))dx≤ γ .

http://www.boundaryvalueproblems.com/content/2013/1/228
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So, ∫
�

(|�u|p(x) + |�v|q(x))dx < γ · 
min{ 

p+ ,

q+ } < γ · 

min{ 
p+ ,


q+ } < .

This inequality implies∫
�

|�u|p(x) dx < ,
∫

�

|�v|q(x) dx < ,

i.e.,

‖u‖ < , ‖v‖ < .

Therefore we have


p+

‖u‖p+ + 
q+

‖u‖q+ <
∫

�

(


p(x)
|�u|p(x) + 

q(x)
|�v|q(x)

)
dx≤ γ .

So, we can get that

�–((–∞,γ ]
) ⊂

{
(u, v) : (u, v) ∈ E,


p+

‖u‖p+ + 
q+

‖u‖q+ < γ

}
.

Then

sup
(u,v)∈�–((–∞,γ ])

–J(u, v) ≤ sup

p+ ‖u‖p++ 

q+ ‖v‖q+≤γ

–J(u, v) < γ
–J(u, v)
�(u, v)

,

that is,

sup
(u,v)∈�–((–∞,γ ])

–J(u, v) < γ
–J(u, v)
�(u, v)

.

Hence we can find γ > , u = v = w and �(w,w) ≤ γ satisfying (.). Also, we can find ρ

satisfying

sup
(u,v)∈�–((–∞,γ ])

–J(u, v) < ρ < γ
–J(u, v)
�(u, v)

.

Put I = [,∞), moreover, �(u, v), –J(u, v) fulfil the assumption of Proposition .. So,
applying Proposition ., we can easily get that (.) is fulfilled.
Thus,�, J and
 fulfil all the assumptions of Proposition ., and our conclusion follows

from Proposition .. �

Remark Applying Theorem . in [] to the proof of Theorem ., an upper bound of
the interval of parameters λ, for which (P) has at least three weak solutions, is obtained.
To be precise, in the conclusion of Theorem ., one has

� ⊆
[
,

hγ
inf

(u,v)∈�–((–∞,γ ])
J(u, v) – γ

J(u,v)
�(u,v)

]

for each h >  and (u, v) as in the proof of Theorem . (namely, u = v = w).
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