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Abstract
We are concerned with local existence of the Vlasov-Fokker-Planck equation in a 2D
anisotropic space Lpx L1v in a bounded domain with respect to the space variable. The
energy method is used to construct the result and the Hardy inequality is used to
estimate the electric field.
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1 Introduction
Through this paper, as in the title, when anisotropic space is mentioned, we mean that the
space variable x and the velocity variable v have different regularities, such as integrability
and differentiability. Firstly, we would like to give a review which has close relationship
with our paper. As to a classical solution, it is worthy to mention the paper of Yang and
Yu []. They constructed the global-in-time classical solutions to the Vlasov-Maxwell-
Fokker-Planck system near Maxwellian using an approach by combining the compen-
sating function and energy method. For the system of (.) in the whole space, there are
many results about weak solutions. We refer to them as follows. Triolo [] obtained the
global (local) existence in  and -dimension (-dimension) for the Cauchy problem of the
Vlasov-Poisson-Fokker-Planck equation under the initial value f ∈ L∩L∞ ∩C(Rn×R

n),
n = , , . Neunzert and some other authors [] considered the modified Vlasov-Fokker-
Planck equation problem, under the condition that the initial value f ∈ L∞(R ×R

) has
compact support in v, they got a solutionwhich is a probabilitymeasure. Zheng andMajda
[] gave the existence of a global weak solution of the Vlasov-Fokker-Planck system under
the measure-valued initial data. Degond [] obtained the existence of solution which has
the same regularity as the initial value

f ∈ W ,(
R

n), (
 + |v|)(|f| + |Df|

) ∈ L∞.

The author required that f has the same index of differentiability and integrability with
respect to variables x and v, i.e., they are isotropic. Comparing with [], we do not need
f, Df to be bounded, continuous to offset, we cannot obtain the global existence even in
a D space because of the difficulty to get the Gronwall inequality which can be solved in
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t ∈ [,∞). Roughly speaking, the essential difficult point lies in that ‖∇xEn · ∇vf n+‖LpxLv is
in proportion to ‖f ‖

LpxLv
, which is super-linear.

In this paper, we consider the initial boundary problemwith  boundary value (see (.)).
The problem about general boundary value [, ] is so tough that we are going to consider
it in the next paper. Moreover, we focus on the case in which the initial value f has dif-
ferent regularities with respect to the x and v variables, i.e., they have different integral
and differential indices. An anisotropic space is natural since the variables x and v need
not to have the same regularity. For instance, Strain [] considered the anisotropic space
Ḃ–�,∞
 Lv when he studied the optimal decay rate of the solution to the hard and soft po-

tential Boltzmann equation.
Before narrating the main theorem, we would like to introduce some notations.

Notation
(i) f (x, v, t), x ∈ � ⊂R

 with ∂� ∈ C, v ∈R
, t > , the distribution function of the

particles, where � is a bound open set with a C boundary (for Definition see p.
of []).

(ii) LpxLv is a space in which the elements are given the norm (
∫
�

‖f ‖pLv dx)

p , ≤ p < ∞,

here Lv is the Lebesgue space with the norm given by ‖f ‖Lv :=
∫
R |f |dv.

(iii) L([,T]× �x,H(R
v)) is a space given the norm (

∫
[,T]×�x

‖f ‖H
v
dt dx)  , here H

v

is the Sobolev space with respect to v.

Now we are ready to state our main theorem.
In the theorem, we denote respectively by E(x, t), ρ(x, t) the electric field and the electric

charge. σ >  is a diffusion coefficient which is very small in physical situations.

Theorem . Suppose f ∈ L(� × R

v) and ‖f‖Lv |∂� = . Also, we assume that f is non-

negative and

‖f‖LpxLv ,‖∇vf‖LpxLv ,‖∇xf‖LpxLv ≤ const.

Here p = 
 . Then the Vlasov-Fokker-Planck system with bounded domain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂f
∂t + v · ∇xf + E|� · ∇vf – σ�vf = ;
E(x, t) =

∫
R

x–y
|x–y| ρ(y, t)dy;

ρ(x, t) =
∫
R f (x, v, t)dv;

f (x, v, ) = f(x, v), ‖f (x, v, t)‖Lv |∂� =  for t > 

(.)

admits a solution in the interval [,T), i.e., f (x, v, t) ∈ L∞
loc([,T),L

p
xLv). Here we mean the

boundary value in the sense of trace (see p. of []). Moreover, we have that ∇xf ,∇vf ∈
L∞
loc([,T),L

p
xLv). The solution is unique.

The arrangement of this paper is the following. In Section , we cite or prove some
lemmas which will be used in the proof of Theorem .. In Section , we give the proof of
the main theorem in several steps.

http://www.boundaryvalueproblems.com/content/2013/1/233


Chen and He Boundary Value Problems 2013, 2013:233 Page 3 of 7
http://www.boundaryvalueproblems.com/content/2013/1/233

2 Some lemmas
Consider the linear equation, i.e.,

∂f
∂t

+ v · ∇xf + E|� · ∇vf – σ�vf =U ; f (x, v, ) = f(x, v). (.)

Next we introduce some lemmas, which are modified versions of the lemmas in Ap-
pendix A in [] and will be used in the proof of Theorem . in Section . We only point
out the differences, the details can be found in the reference.

Lemma . Assume

f ∈ L
(
� ×R

); U ∈ L
(
[,T]× �x,H–(

R
n
v
))
;

E(x, t) ∈ L∞(
[,T],Lp

(
R


x
))
,

(.)

where p > . Then equation (.) has a unique solution f in a class of functions Y defined
according to

Y =
{
f ∈ L

(
[,T]× �x,H(

R

v
))
,∀ fixed x ∈ �,

∂f
∂t

+ v · ∇x ∈ L
(
[,T],H–(

R

v
))}

.

Proof Since E(x, t) ∈ L∞
t Lpx ,

∫∫ ∇vϕ · Eϕ dxdv exists for any ϕ ∈ D, which implies
∫ ∇vϕ ·

Eϕ dv = .
On the other hand, since f ∈ L([,T] × �x,H(R

v)), we have ∀x ∈ �, ∇vf ∈ L([,T],
H–(R

v)), which implies ∀x ∈ �,

∂f
∂t

+ v · ∇xf =U – E · ∇vf + σ�vf ∈ L
(
[,T],H–(

R

v
))
.

The other processes are similar. �

Remark . Similar to Lemma A. on p. of [], we mean the initial condition that for
any u ∈ Y , u admits trace value u(x, v, ) ∈ Lv for a.e. x ∈ �.

Lemma . Assume in addition f ∈ LpxLv; U ∈ Lt L
p
xLv, then the solution defined in

Lemma . belongs to L∞([,T],LpxLv) and satisfies for t ∈ [,T] a.e.,

∥∥f (t)∥∥LpxLv
≤ ‖f‖LpxLv +

∫ t



∥∥U(s)
∥∥
LpxLv

ds. (.)

Proof Using quite a similar method to that on p. of [], we get for a.e. x,

∥∥f (t,x)∥∥Lv
≤ ‖f‖Lv +

∫ t



∥∥U(s)
∥∥
Lv
ds.

Taking the Lp norm with respect to x yields the desired result. �
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3 Proof of themain theorem
After the above preparation, we are in a position to prove our main theorem.

Proof To prove the theorem, we split the process into several steps. The first step is to
construct the approximating solution sequence; in the second step, we prove the regularity
of the solution we have obtained; and in the last step, we prove the uniqueness. To get the
existence of a weak solution in the space Lpx , it is natural to require f n to be a Cauchy
sequence in the strong topology of Lpx and E(t,x) to be bounded in Lp

′
x , here 

p +

p′ = . To

estimate the Lp′ norm of E(t,x), we will use the Hardy inequality.
Step : We construct an iterative solution sequence to approximate the solution of the

original equation.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂f n+
∂t + v · ∇xf n+ + En|� · ∇vf n+ – σ�vf n+ = ;

En(x, t) =
∫
R

x–y
|x–y| ρ

n(y, t)dy;
ρn(x, t) =

∫
R f n(x, v, t)dv;

f n+(x, v, ) = f(x, v);
‖f n+‖Lv |∂� = .

(.)

Firstly, on the one hand, to guarantee the weak convergence, we need the weak conver-
gence of En in Lp′ , which in turn can be deduced by the boundedness of En in Lp′ . By the
Hardy inequality [–], we have

∥∥En∥∥
Lp′ ≤

∥∥∥∥ 
|x| ∗

x
ρn

∥∥∥∥
Lp′

≤ C
∥∥f n∥∥LpxLv

,

where


p
+


=  +


p′ . (.)

On the other hand, by Lemma . and Lemma ., let f  = , we obtain a unique solution
f n+ to (.). To pass to the limit in the system of (.), we need a strong convergence. In
order to get this, we compute the Cauchy sequence as follows:

∥∥f n+(x, v, t) – f n(x, v, t)
∥∥
LpxLv

≤
∫ t



∥∥(
En(x, s) – En–(x, s)

)∥∥∇vf n
∥∥
Lv

∥∥
Lpx
ds

≤
∫ t



∥∥∥∥ 
|x| ∗

x

∣∣ρn – ρn–∣∣∥∥∇vf n
∥∥
Lv

∥∥∥∥
Lpx
ds

≤
∫ t



∫
R

y

∣∣ρn(y, s) – ρn–(y, s)
∣∣dy

·
(∫

R

x

(


|x – y|n–
∥∥∇vf n(x, v, s)

∥∥
Lv

)p

dx
) 

p
ds

≤
∫ t



∥∥ρn(·, s) – ρn–(·, s)∥∥Lpx

∥∥∥∥
(


|x|p ∗

x

∥∥∇vf n(x, v, s)
∥∥p
Lv

) 
p
∥∥∥∥
Lp

′
x

ds.

http://www.boundaryvalueproblems.com/content/2013/1/233


Chen and He Boundary Value Problems 2013, 2013:233 Page 5 of 7
http://www.boundaryvalueproblems.com/content/2013/1/233

Here


p
+


p′ = . (.)

Combining (.) with (.), we solve the indices p = 
 and p′ = . We claim that

∥∥∥∥
(


|x|p ∗

x

∥∥∇vf n(x, v, s)
∥∥p
Lv

) 
p
∥∥∥∥
Lp

′
x

≤ C (.)

uniformly in n. Thus,

∥∥f n+(x, v, t) – f n(x, v, t)
∥∥
LpxLv

≤
∫ t



∥∥f n(·, s) – f n–(·, s)∥∥LpxLv
. (.)

By a process of induction, we obtain

∥∥(
f n+ – f n

)
(x, v, t)

∥∥
LpxLv

≤ Cntn

n!
max
t∈[,T]

∥∥(
f  – f 

)
(x, v, t)

∥∥
LpxLv

,

which implies f n converges to some f in L∞
loc([,T),L

p
xLv).

Proof of the claim of (.).
A direct calculation by using the Hardy inequality yields

∥∥∥∥
(


|x|p ∗

x

∥∥∇vf n(x, v, s)
∥∥p
Lv

) 
p
∥∥∥∥
Lp

′
x

≤ C
∥∥∥∥∇vf n(x, v, s)

∥∥p
Lv

∥∥
Lqx

= C
∥∥∇vf n(x, v, s)

∥∥
Lpqx Lv

,

here 
q +

p
 =  + p

p′ , q > .
Differentiating equation (.) by Dx and Dv, respectively, we get

{
∂(Dxf n+)

∂t + v · ∇x(Dxf n+) + En · ∇v(Dxf n+) – σ�v(Dxf n+) = –∇xEn · ∇vf n+;
∂(Dvf n+)

∂t + v · ∇x(Dvf n+) + En · ∇v(Dvf n+) – σ�v(Dvf n+) = –∇xf n+.
(.)

Applying Lemma . to (.) yields

{
‖∇xf n+‖LpxLv ≤ ‖∇xf‖LpxLv +

∫ t
 ‖∇xEn · ∇vf n+‖LpxLv ds;

‖∇vf n+‖LpxLv ≤ ‖∇vf‖LpxLv +
∫ t
 ‖∇xf n+‖LpxLv ds,

(.)

where p > . Since

∥∥∇xEn · ∇vf n+
∥∥
LpxLv

≤ ∥∥∇xEn∥∥
Lpx

∥∥∇vf n+
∥∥
Lpx Lv

,

p

+

p

=

p
, (.)

∥∥∇xEn∥∥
Lpx

≤
∥∥∥∥ 
|x|N– ∗

x
∇xρ

n
∥∥∥∥
Lpx

≤ C
∥∥∇xf n

∥∥
Lpqx Lv

,

pq

+


=  +


p
. (.)
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We require p ≤ p′, p < p′, this is an easy thing. Note that Lpq(�) ⊂ Lp(�) and Lp (�) ⊂
Lp(�). Plugging (.) and (.) into (.) yields

{
‖∇xf n+‖LpxLv ≤ ‖∇xf‖LpxLv +

∫ t
 ‖∇xf n‖LpxLv‖∇vf n+‖LpxLv ds;

‖∇vf n+‖LpxLv ≤ ‖∇vf‖LpxLv +
∫ t
 ‖∇xf n+‖LpxLv ds.

Next, we only have to solve the Gronwall inequalities in the form

{
f (t) ≤ C +

∫ t
 f (s)g(s)ds,

g(t) ≤ C +
∫ t
 f (s)ds.

These inequalities only hold in finite time, we denote the maximal existence time by T ,
i.e., for t ∈ [,T), there exists α(t) ∈ L∞([,T)) such that

∥∥∇vf n(t)
∥∥
LpxLv

≤ α(t),
∥∥∇xf n(t)

∥∥
LpxLv

≤ α(t).

Therefore, the claim of (.) holds.
According to the standard weak convergence process, we conclude that f is a solution

of the Cauchy problem of equations of (.).
Step : Regularity of the solution.
Denote Dx or Dv by D. Since f n → f in LpxLv, which deduces Df n →Df in D′(�x ×R


v),

note that ‖Df n‖LpxLv ≤ const, we have ‖Df ‖LpxLv ≤ ‖Df n‖LpxLv ≤ const.
By property (i) of Proposition A. in [], we conclude that f n is nonnegative. Moreover,

f n → f , a.e. (x, v) ∈ �x ×R

v , since f n → f in LpxLv, which implies that f is nonnegative.

Step : Uniqueness of the solution.
The uniqueness is a direct consequence of

∥∥(f – f̃ )(x, v, t)
∥∥
LpxLv

≤ C
∫ t



∥∥(f – f̃ )(x, v, t)
∥∥
LpxLv

, (.)

which in turn is a result of a very similar process to (.).
Next we are going to deal with the boundary, i.e., to show that the solution satisfied the

boundary condition.
On the one hand, by Lemma ., we have ‖f n‖Lv ≤ ‖f‖Lv for x a.e.; on the other hand,

‖f n(t,x, v)‖Lv → ‖f (t,x, v)‖Lv for x a.e. Thus ‖f (t,x, v)‖Lv ≤ ‖f‖Lv for x a.e., note the as-
sumption of ‖f‖Lv |∂� =  in the sense of trace of Lpx , we conclude in the sense of trace
of Lpx , since the boundary is C and ‖f n‖Lv ∈W ,p

x :

∥∥f (t,x, v)∥∥Lv
|∂� = . �
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