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Abstract
In this paper, we investigate the Cauchy problem for the generalized
Degasperis-Procesi equation in a Besov space. Firstly, we prove that the generalized
Degasperis-Procesi equation is locally well posed in Bsp,r with s > 1 + 1

p (or s ≥ 1 + 1
p if

r = 1 with p ∈ [1, +∞)). Secondly, we prove that the generalized Degasperis-Procesi
equation possesses the peaked solitary wave which is the weak solution to the
generalized Degasperis-Procesi equation. Thirdly, we prove that the data-to-solution
map for the generalized Degasperis-Procesi equation is not uniformly continuous
in B3/22,∞. Fourthly, we prove that the data-to-solution map for the generalized
Degasperis-Procesi equation is not uniformly continuous in Hs(R) with s < 3/2. Finally,
we give a blow-up criterion.
MSC: 35G25; 35L05
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1 Introduction
In this paper, we consider the Cauchy problem for the following generalized Degasperis-
Procesi equation:

ut – utxx + ukux –
(
ukux

)
xx +Q

[
uk+

]
x = , (.)

u(x, ) = u(x), (.)

where Q ∈ R is a constant. When k =  and Q = 
 , (.) reduces to the Degasperis-Procesi

equation

ut – utxx + uux = uxuxx + uuxxx. (.)

Equation (.) possesses the Lax pair and bi-Hamiltonian structures and infinite many
conservation laws []. The Degasperis-Procesi equation [] possesses peaked solitons
which are stable [] and shock peakons of the form u(x, t) = – 

t+k sign(x)e
–|x|, k > . The

Degasperis-Procesi equation possesses the global weak solution and blow-up structure
[–]. Constantin and Lannes studied the relevance between theCamassa-Holm equation
and the Degasperis-Procesi equation []. The Degasperis-Procesi equation possesses the
infinite propagation speed []. The Degasperis-Procesi equation possesses multi-peakon
solutions [] and multisoliton []. Himonas and his co-authors [, ] proved that the
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data-to-solution for the Camassa-Holm equation, the Degasperis-Procesi equation is not
uniformly continuous in Hs(R) with s > /, respectively. Himonas et al. proved the non-
uniform continuity in H of the solution map of the CH equation []. Recently, Gui and
Liu [] studied the Cauchy problem for the Degasperis-Procesi equation in Besov spaces.
Yan et al. [] studied the Cauchy problem for the Novikov equation in Besov spaces.
Let P(D) = –∂x( – ∂

x )– and p(x) = 
e

–|x|, x ∈ R. By using the identity ( – ∂
x )–f = p ∗ f

for f ∈ L, we can rewrite (.)-(.) as follows:

ut + ukux =QP(D)
[
uk+

]
, (.)

u(x, ) = u(x). (.)

In this paper, motivated by [], we study the Cauchy problem for (.) in Besov spaces.
Firstly, we use the standard iterative method to prove that the generalized Degasperis-
Procesi equation is locally well posed in Bs

p,r with s >  + 
p (or s ≥  + 

p if r =  with p ∈
[, +∞)). Secondly, we prove that the generalized Degasperis-Procesi equation possesses
the peaked solitary wave which is the weak solution to the generalized Degasperis-Procesi
equation. Thirdly, we prove that the data-to-solution map for the generalized Degasperis-
Procesi equation is not uniformly continuous in B/

,∞. Fourthly, we prove that the data-to-
solutionmap for the generalizedDegasperis-Procesi equation is not uniformly continuous
in Hs(R) with s < /. Finally, we give a blow-up criterion.
Notice that the structure of (.) is more complicated than that of the Degasperis-

Procesi equation. Thus, to prove that the sequence of smooth solutions (u(n))n∈N is uni-
formly bounded in C([,T];Bs

p,r) ∩ C([,T];Bs–
p,r ) with s >  + 

p (or s ≥  + 
p if r =  with

p ∈ [, +∞)), we choose that

∥∥u(n)∥∥Bsp,r
≤ ‖u‖Bsp,r

( – kC‖u‖kBsp,r t)/k
, t ∈ [,T]. (.)

In proving Theorem ., we explain why we choose (.). It is worthy of pointing out that
we use Fatou’s lemma and the upper limit as well as Gronwall’s inequality to prove that
(u(n))n∈N is a Cauchy sequence in C([,T];Bs–

p,r ) with s >  + 
p (or s ≥  + 

p if r =  with
p ∈ [, +∞)).
To introduce the main results, we define

Es
p,r(T) = C

(
[,T];Bs

p,r
) ∩C([,T];Bs–

p,r
)
.

The main results of this paper are as follows.

Theorem . Let u(x) ∈ Bs
p,r with s >  + 

p (or s ≥  + 
p if r =  with p ∈ [, +∞)). Problem

(.)-(.) is locally well posed.Moreover,

∥∥u(t)∥∥Bsp,r
≤ ‖u‖Bsp,r

( – kC‖u‖kBsp,r t)/k
, t ∈ [,T]. (.)

http://www.boundaryvalueproblems.com/content/2013/1/235
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A function u : [,T) × R is called a weak solution to (.) (or (.)) if u belongs to
L∞
loc([,T);H

) and satisfies the following identity:

∫ T



∫
R

[
uφt +


k + 

uk+φx + p ∗
[
k + k
k + 

uk+
]
φx

]
dxdt

+
∫
R
u(x, )φ(x, )dx = , (.)

where p(x) = 
e

–|x|, for any smooth test function φ(x, t) ∈ C∞
c ([,T) × R). If u is a weak

solution on [,T) for every T > , then it is called a global weak solution.

Theorem . When Q = k(k+)
k+ in (.), uc(x, t) = c/ke–|x–ct| with c >  is a weak solution of

(.) in the sense of (.).

Theorem . When Q = k(k+)
k+ in (.), the data-to-solution map for the generalized

Degasperis-Procesi equation is not uniformly continuous in B/
,∞.More precisely, there ex-

ists a global solution u ∈ L∞(R+;B/
,∞) to the Cauchy problem for (.) such that for any

T >  and ε > , there exists a solution v ∈ L∞(,T ;B/
,∞) with

∥∥v() – u()
∥∥
B/,∞

≤ ε,
∥∥v(t) – u(t)

∥∥
L∞(,T ;B/,∞) ≥ .

Theorem . When Q = k(k+)
k+ in (.), the data-to-solution map for the generalized

Degasperis-Procesi equation is not uniformly continuous in Hs(R) with s < /.

Theorem . Assume that T� is the maximal time of existence of the solution to problem
(.)-(.). If T� < ∞, then

∫ T�


‖ux‖kL∞ dτ = +∞. (.)

Moreover, T� ≥ 
Ck‖u‖kBsp,r

.

The remainder of this paper is organized as follows. In Section , we give some pre-
liminaries. In Section , we prove Theorem .. In Section , we prove Theorem .. In
Section , we prove Theorem .. In Section , we prove Theorem .. In Section , we
prove Theorem ..

2 Preliminaries
In this section, we give Lemmas .-.. The proof of Lemmas .-. can be seen in
[–].

Lemma . (Littlewood-Paley decomposition) Let B = {ξ ∈ Rn, |ξ | ≤ 
 } and C = {ξ ∈

Rn,  ≤ |ξ | ≤ 
 }. There exists a couple of smooth radial functions (χ ,φ) ∈ (C∞

c (B),C∞
c (C))

such that

∀ξ ∈ Rn, χ (ξ ) +
∑
q∈N

φ
(
–qξ

)
= 

http://www.boundaryvalueproblems.com/content/2013/1/235


Zuo et al. Boundary Value Problems 2013, 2013:235 Page 4 of 16
http://www.boundaryvalueproblems.com/content/2013/1/235

and

Suppφ
(
–q·) ∩ Suppφ

(
–q

′ ·) = ∅ if
∣∣q – q′∣∣ ≥ ,

Suppχ (·)∩ Suppφ
(
–q·) = ∅ if |q| ≥ 

and




≤ χ (ξ ) +
∑
q≥

φ
(
–qξ

) ≤ , ∀ξ ∈ Rn. (.)

Then, for u ∈ S ′(R), the nonhomogeneous dyadic blocks are defined as follows:

	qu =  if q ≤ –,

	–u = χ (D)u =F –
x χFxu,

	qu = φ
(
–qD

)
=F –

x φ
(
–qξ

)
Fxu if q ≥ .

Thus we obtain

u =
∑
q∈Z

	qu in S ′(R),

and the low frequency cut-off Sq is defined by

Squ =
q–∑
p=–

	pu = χ
(
–qD

)
u =F –

x χ
(
–qξ

)
Fxu, ∀q ∈N,

as well as

	p	qu≡  if |p – q| ≥ ,

	q(Sp–u	pv)≡  if |p – q| ≥ ,∀u, v ∈ S ′(R),

‖	pu‖Lp ≤ C‖u‖Lp ,
‖Squ‖Lp ≤ C‖u‖Lp , ∀≤ p ≤ +∞,

where C is a positive constant independent of q.

Definition (Besov spaces) Let s ∈ R and  ≤ p≤ +∞. The nonhomogeneous Besov space
Bs
p,r(Rn) is defined by

Bs
p,r

(
Rn)

=
{
f ∈ S ′(Rn) : ‖f ‖Bsp,r = ∥∥qs	qf

∥∥
lr (Lp) =

∥∥(
qs‖	qf ‖Lp

)
q≥–

∥∥
lr < ∞}

.

In particular, if s =∞, then Bs
p,r =

⋂
s∈R Bs

p,r .

Lemma . Let s ∈ R, ≤ p, r,pj, rj ≤ ∞, j = , , then:

http://www.boundaryvalueproblems.com/content/2013/1/235
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() Bs
p,r is a Banach space and is continuously embedded in S ′(Rn).

() Bs
p,r ↪→ Bs

p,r , if p ≤ p and r ≤ r and s = s – n( 
p
– 

p
)

Bs
p,r ↪→ Bs

p,r locally compact if s < s.

() ∀s > , Bs
p,r ∩ L∞ is a Banach algebra. Bs

p,r is a Banach algebra iff Bs
p,r ↪→ L∞ and iff

s > 
p or (s ≥ 

p and r = ).
() (i) For s > ,

‖fg‖Bsp,r ≤ C
(‖f ‖Bsp,r‖g‖L∞ + ‖f ‖L∞‖g‖Bsp,r

)
, ∀f , g ∈ Bs

p,r ∩ L∞.

(ii) ∀s ≤ 
p < s (s ≥ 

p if r = ) and s + s > ,

‖fg‖Bsp,r ≤ C‖f ‖Bsp,r‖g‖Bsp,r , ∀f ∈ Bs
p,r , g ∈ Bs

p,r .

() ∀θ ∈ [, ] and s = θs + ( – θ )s,

‖f ‖Bsp,r ≤ C‖f ‖θ

Bsp,r
‖f ‖–θ

Bsp,r
, ∀f ∈ Bs

p,r ∩ Bs
p,r .

() If (un)n∈N is bounded in Bs
p,r and un → u in S ′(Rn), then u ∈ Bs

p,r and

‖u‖Bsp,r ≤ lim inf
n→∞ ‖un‖Bsp,r .

() Let m ∈ R and � be an Sm-multiplier. Then the operator �(D) is continuous from
Bs
p,r into Bs–m

p,r . In particular, –∂x( – ∂
x )– is continuous from Bs

p,r into Bs–
p,r .

Lemma . (A priori estimates in Besov spaces) Let  ≤ p, r ≤ ∞ and s > –min{ 
p ,  –


p }.

Assume that f ∈ Bs
p,r , F ∈ L(,T ;Bs

p,r) and that ∂xv belongs to L(,T ;Bs–
p,r ) if s >  + 

p or
to L(,T ;B/p

p,r ∩ L∞) otherwise. If f ∈ L∞(,T ;Bs
p,r)∩C([,T];S ′(R)) solves the following

-D linear transport equation:

ft + vfx = F , (.)

f (x, ) = f, (.)

then there exists a constant C depending only on s, p, r such that the following statements
hold:
() If r =  or s �=  + 

p , then

‖f ‖Bsp,r ≤ ‖f‖Bsp,r +
∫ t



∥∥F(τ )∥∥Bsp,r
dτ +C

∫ t


V ′(τ )

∥∥f (τ )∥∥Bsp,r
dτ

or

‖f ‖Bsp,r ≤ eCV (t)
(

‖f‖Bsp,r +
∫ t


e–CV (τ )∥∥F(τ )∥∥Bsp,r

dτ

)
(.)

with V (t) =
∫ t
 ‖vx(τ )‖B/pp,r ∩L∞ dτ if s <  + 

p and V (t) =
∫ t
 ‖vx(τ )‖Bs–p,r

dτ else.

http://www.boundaryvalueproblems.com/content/2013/1/235
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() If s≤  + 
p , f

′
 ∈ L∞ and fx ∈ L∞((,T)×R) and Fx ∈ L(,T ;L∞), then

∥∥f (t)∥∥Bsp,r
+

∥∥fx(t)∥∥L∞

≤ eCV (t)
(

‖f‖Bsp,r +
∥∥f ′


∥∥
L∞ +

∫ t


e–CV (τ )[∥∥F(τ )∥∥Bsp,r

+
∥∥Fx(τ )∥∥L∞

]
dτ

)

with

V (t) =
∫ t



∥∥∂xv(τ )
∥∥
B/pp,r ∩L∞ dτ .

() If f = v, then for all s > , () holds true when V (t) =
∫ t
 ‖vx(τ )‖L∞ dτ .

() If r < ∞, then f ∈ C([,T];Bs
p,r). If r =∞, then f ∈ C([,T];Bs′

p,) for all s′ < s.

Lemma . (Existence and uniqueness) Let p, r, s, f and F be as in the statement of
Lemma ..Assume that v ∈ Lρ(,T ;B–M∞,∞) for some ρ >  andM >  and vx ∈ L(,T ;Bs–

p,r )
if s > + 

p or s = + 
p and r =  and vx ∈ L(,T ;B/p

p,∞ ∩L∞) if s < + 
p . Then problem (.)-

(.) has a unique solution f ∈ L∞(,T ;Bs
p,r)∩ (

⋂
s′<s C([,T];Bs′

p,)) and the inequalities of
Lemma . can hold true.Moreover, if r < ∞, then f ∈ C([,T];Bs

p,r).

3 Proof of Theorem 1.1
In this section, we complete the proof of Theorem . and suppose that s > + 

p (or s ≥ + 
p

if r =  with p ∈ [, +∞)).

First step: approximate solution
By using the standard iterative process, we construct a sequence of smooth solutions
(u(n))n∈N ∈ C(R+;B∞

p,r). Assume that u() := , by induction we define a sequence of smooth
functions (u(n))n∈N by solving the following linear transport equation:

u(n+)t +
[
u(n)

]ku(n+)x =QP(D)
[(
u(n)

)k+], (.)

u(n+)(x, ) = u(n+) (x) = Sn+u(x). (.)

By using the fact that Sn+u belong to B∞
p,r , from Lemma ., for all n ∈ N, we can show

by induction that problem (.)-(.) has a global solution (u(n))n∈N ∈ C(R+,B∞
p,r).

Second step: uniform bounds
For s >  + 

p (or s ≥  + 
p if r =  with p ∈ [, +∞)) and n ∈N, we prove that

∥∥u(n+)∥∥Bsp,r

≤ eCU
n(t)

(
‖u‖Bsp,r +C

∫ t


e–CU

n(τ )∥∥u(n)∥∥k+
Bsp,r

dτ

)
, (.)

with Un =
∫ t
 ‖u(n)‖kBsp,r dτ .

http://www.boundaryvalueproblems.com/content/2013/1/235
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From (.) of Lemma . and (.), we derive that

∥∥u(n+)(t)∥∥Bsp,r
≤ e

C
∫ t
 ‖u(n)x (t′)‖Bs–p,r

dt′ ‖u‖Bsp,r

+C
∫ t


e
C

∫ t
τ ‖u(n)x (t′)‖Bs–p,r

dt′∥∥F(
u(n)

)∥∥
Bsp,r

dτ , (.)

where

F
(
u(n)

)
= P(D)

[(
u(n)

)k+]. (.)

By using the S– multiplier property of P(D) and the fact Bs
p,r with s >  + 

p (or s ≥  + 
p if

r =  with p ∈ [, +∞)) is a Banach algebra, we have

∥∥F(
u(n)

)∥∥
Bs–p,r

≤ C
∥∥P(D)[(u(n))k+](t′)∥∥Bsp,r

≤ C
∥∥(
u(n)

)k+(t′)∥∥Bs–p,r
≤ C

∥∥u(n)(t′)∥∥k+
Bsp,r

. (.)

Inserting (.) into (.) yields (.).
Let us fix T >  such that

T ≤ 
kC‖u‖kBsp,r

, (.)

and suppose that

∥∥u(n)(t)∥∥Bsp,r
≤ ‖u‖Bsp,r

( – kC‖u‖kBsp,r t)/k
, t ∈ [,T]. (.)

Since Un(t) =
∫ t
 ‖u(n)‖kBsp,r dτ , by using (.), we have

eC(U
n(t)–Un(τ )) = e

C
∫ t
τ ‖u(n)(t′)‖kBsp,r dt

′
≤ e

– 
k

∫ t
τ

d(–kC‖u‖kBsp,r
t′)

(–kC‖u‖kBsp,r
t′)

=
( – kC‖u‖kBsp,rτ
 – kC‖u‖kBsp,r t

) 
k
. (.)

When τ =  in (.), we have

eCU
n(t) ≤

(


 – kC‖u‖kBsp,r t
) 

k
. (.)

Inserting (.), (.) into (.) yields

∥∥u(n+)(t)∥∥Bsp,r
≤ ‖u‖Bsp,r

( – kC‖u‖kBsp,r t)/k
[
 –


k

∫ t



d( – kC‖u‖kBsp,r t)
( – kC‖u‖kBsp,r t)

+ 
k

]

≤ ‖u‖Bsp,r
( – kC‖u‖kBsp,r t)/k

. (.)

http://www.boundaryvalueproblems.com/content/2013/1/235
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Thus, (u(n))n∈N is uniformly bounded in C([,T];Bs
p,r). By using (.) and the fact that Bs

p,r
is a Banach algebra and (.) and using the S–-multiplier property of P(D), we have that

∥∥[
u(n)

]ku(n+)x
∥∥
Bsp,r

≤ C
∥∥u(n)∥∥k

Bsp,r

∥∥u(n+)∥∥Bsp,r
≤

C‖u‖k+Bsp,r

( – C‖u‖kBsp,r t)
k+
k

(.)

and ∥∥P(D)[(u(n))k+]∥∥Bs–p,r
≤ C

∥∥(
u(n)

)k+∥∥
Bs–p,r

≤ C
∥∥u(n)∥∥k+

Bsp,r

≤
C‖u‖k+Bsp,r

( – kC‖u‖Bsp,r t)
k+
k
. (.)

Consequently,

(
u(n)

)
n ⊂ C

(
[,T];Bs

p,r
) ∩C([,T];Bs–

p,r
)
. (.)

Remark Inserting (.) into (.) yields∥∥u(n)∥∥Bsp,r
≤ ‖u‖Bsp,r (.)

for n ∈N. From (.) and (.), ∀n ∈N+, we have that

eCU
n ≤ exp

[∫ t



C‖u‖kBsp,r
 – kC‖u‖kBsp,r t

dτ

]
≤  (.)

and

∥∥u(t)∥∥Bsp,r
≤ ‖u‖Bsp,r

( – kC‖u‖kBsp,r t)/k
(.)

with the aid of Fatou’s lemma. We define

L = 
(‖u‖Bsp,r + 

)
. (.)

Thus,∥∥u(n)∥∥Bsp,r
+  ≤ L (.)

for n ∈N+.

Third step: convergence
We prove that (u(n))n∈N is a Cauchy sequence in C([,T];Bs–

p,r ). For (m,n) ∈N, we have

[
∂t +

(
u(n+m))k∂x](u(n++m) – u(n+)

)
=

((
u(n)

)k – (
u(n+m))k)∂xu(n+)

+QP(D)

[(
u(n+m) – u(n)

) k∑
j=

(
u(n+m))k–j(u(n))j]. (.)

http://www.boundaryvalueproblems.com/content/2013/1/235
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Combining (.) with (.), we have that

∥∥[
u(n++m) – u(n+)

]
(t)

∥∥
Bs–p,r

≤ eU
n(t)(∥∥u(n++m)

 – u(n+)
∥∥
Bs–p,r

)
+

∫ t


eU

n(t)–Un(τ )∥∥F(
u(n),u(n+m), ∂xu(n+)

)∥∥
Bs–p,r

dτ , (.)

where

Un(t) =
∫ t



∥∥(
u(n+m))k∥∥

Bsp,r
dτ ,

F
(
u(n),u(n+m), ∂xu(n+)

)
=

((
u(n)

)k – (
u(n+m))k)∂xu(n+) +QP(D)

[(
u(n+m) – u(n)

) k∑
j=

(
u(n+m))k–j(u(n))j].

By using () and () of Lemma ., we have that

∥∥F(
u(n),u(n+m), ∂xu(n+)

)∥∥
Bs–p,r

≤ C
∥∥(
u(n)

)k – (
u(n+m))k∥∥

Bs–p,r

∥∥∂xu(n+)
∥∥
Bs–p,r

+C

∥∥∥∥∥P(D)
[(

u(n+m) – u(n)
) k∑

j=

(
u(n+m))k–j(u(n))j]∥∥∥∥∥

Bs–p,r

≤ C
∥∥u(n) – u(n+m)∥∥

Bs–p,r

[∥∥u(n)∥∥Bsp,r
+

∥∥u(n+)∥∥Bsp,r
+

∥∥u(n+m)∥∥
Bsp,r

+ 
]k

≤ CLk
∥∥u(n) – u(n+m)∥∥

Bs–p,r
. (.)

Inserting (.) into (.) yields

∥∥[
u(n++m) – u(n+)

]
(t)

∥∥
Bs–p,r

≤ eU
n(t)(∥∥u(n++m)

 – u(n+)
∥∥
Bs–p,r

)
+CLk

∫ t


eU

n(t)–Un(τ )∥∥u(n) – u(n+m)∥∥
Bs–p,r

dτ . (.)

From (.) and Lemma ., we can easily obtain that

∥∥u(n++m)
 – u(n+)

∥∥
Bs–p,r

≤ C–n. (.)

Obviously,

eU
n(t) ≤ , eU

n(t)–Un(τ ) ≤ . (.)

Inserting (.) and (.) into (.) leads to∥∥(
u(n++m) – u(n+)

)
(t)

∥∥
Bs–p,r

≤ C–n +CLk
∫ t



∥∥(
u(n) – u(n+m))(τ )∥∥Bs–p,r

dτ . (.)
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We define

A(n,m)(t) =
∥∥(
u(n+m) – u(n)

)∥∥
Bs–p,r

. (.)

Inserting (.) into (.) leads to

A(n+,m)(t) ≤ C–n +CLk
∫ t


A(n,m)(τ )dτ . (.)

We define

ρn(t) = sup
m∈N+

A(n,m)(t) = sup
m∈N+

∥∥(
u(n+m) – u(n)

)
(t)

∥∥
Bsp,r

(.)

and

ρ̃(t) = lim sup
n→+∞

ρn(t). (.)

Combining (.) with (.), (.), by using Fatou’s lemma, we have that

ρ̃(t) = lim sup
n→+∞

ρn+(t) ≤ Ck
∫ t


ρ̃(τ )dτ . (.)

Applying Gronwall’s inequality to (.) yields

ρ̃(t) ≤ etC
k
ρ̃() (.)

for t ∈ [,T]. According to the definition of ρ̃(t), we can easily obtain that

ρ̃() = . (.)

Combining (.) with (.), we have that

ρ̃(t) = . (.)

Hence, (un)n is a Cauchy sequence in C([,T];Bs–
p,r ).

Fourth step: existence in Esp,r(T)
Now we prove that u ∈ Es

p,r(T) and satisfies (.)-(.) since (un)n∈N is uniformly bounded
in L∞(,T ;Bs

p,r). From () in Lemma ., we have that u ∈ L∞(,T ;Bs
p,r). From (.), we

can easily prove that ut ∈ L∞(,T ;Bs–
p,r ). It is easily checked that u is indeed a solution to

(.)-(.) by passing to the limit in (.)-(.).
Now we prove that u ∈ Es

p,r(T). Since u ∈ Bs
p,r , ∀ε > , there exists q ∈N+ such that

∑
q≥q

qsr‖	qu‖rL∞(,T ;Lp) ≤
ε


. (.)

http://www.boundaryvalueproblems.com/content/2013/1/235
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From the definition of Besov spaces, we have that

∥∥u(t + δ) – u(t)
∥∥r
Bsp,r

=
∑
q<q

qsr
∥∥	qu(t) –	qu(t + δ)

∥∥r
Lp +

∑
q≥q

qsr
∥∥	qu –	qu(t + δ)

∥∥r
Lp

≤
∑
q<q

qsr
∥∥	qu(t) –	qu(t + δ)

∥∥r
Lp + 

∑
q≥q

qsr
∥∥	qu(t)

∥∥r
L∞(,T ;Lp)

≤
∑
q<q

qsr
∥∥	qu(t) –	qu(t + δ)

∥∥r
Lp +

ε


. (.)

By using the mean value theorem, we have that

∥∥	qu(t) –	qu(t + δ)
∥∥
Lp =

∥∥	qut(t + θδ)
∥∥
Lp |δ| ≤

∥∥	qut(t)
∥∥
L∞(,T ;Lp)|δ|, (.)

where  < θ < . Inserting (.) into (.) yields

∥∥u(t + δ) – u(t)
∥∥r
Bsp,r

=
∑
q<q

qsr
∥∥	qu(t) –	qu(t + δ)

∥∥r
Lp +

∑
q≥q

qsr
∥∥	qu(t) –	qu(t + δ)

∥∥r
Lp

≤ |δ|
∑
q<q

∥∥	qut(t)
∥∥r
L∞(,T ;Lp) +

ε



≤ |δ|‖ut‖rL∞(,T ;Bs–p,r )
+

ε


. (.)

We may choose δ sufficiently small such that

|δ|‖ut‖rL∞(,T ;Bs–p,r )
≤ ε


. (.)

Inserting (.) into (.) leads to

∥∥u(t + δ) – u(t)
∥∥
Bsp,r

≤ ε/r . (.)

Thus, we derive that

u ∈ C
(
[,T];Bs

p,r
)
. (.)

Combining (.) with (.), we can easily obtain

ut ∈ C
(
[,T];Bs–

p,r
)
. (.)

From (.) and (.), we have that u ∈ Es
p,r(T).

Fifth step: uniqueness of solution
The uniqueness of the solution to the Cauchy problem for (.) can be proved similarly to
Proposition . of [].
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Sixth step: continuity in Esp,r(T) with s > 1 + 1
p (or s≥ 1 + 1

p if r = 1 with p ∈ [1, +∞))
The continuity of the solution to the Cauchy problem for (.) can be proved similarly
to the continuity of the solution to the Degasperis-Procesi equation which can be seen
in [].

4 Proof of Theorem 1.2
From (.) and (.) of [], we have that

∂xuc(x, t) = – sign(x – ct)uc(x, t), ∂tuc(x, t) = c sign(x – ct)uc(x, t), (.)

where uc(x, t) = c/ke–|x–ct|. By using integration by parts and (.), we have that

∫ +∞



∫
R

(
uc∂tφ +


k + 

uk+∂xφ
)
dxdt +

∫
R
uc(x, )φ(x, )dx

= –
∫ +∞



∫
R
φ
[
∂tuc + ukc∂xuc

]
dxdt

= –
∫ +∞



∫
R
φ sign(x – ct)

[
cuc – uk+c

]
dxdt. (.)

Since uc(x, t) = c/ke–|x–ct|, we have that when x > ct,

sign(x – ct)
[
cuc – uk+c

]
= c+


k
[
ect–x – e(k+)(ct–x)

]
(.)

and when x ≤ ct,

sign(x – ct)
[
cuc – uk+c

]
= c+


k
[
e(x–ct) – e(k+)(x–ct)

]
. (.)

By using ( – ∂
x )–f = p ∗ f and (.), we have that

∫ +∞



∫
R
φ∂x

(
 – ∂

x
)–[k + k

k + 
uk+c

]
dxdt

=
∫ +∞



∫
R
φ∂xp ∗

[
k + k
k + 

uk+c

]
dxdt

= –
k + k
(k + )

c+

k

∫ +∞



∫
Rx

∫
Ry

φ sign(x – y)e–|x–y|e–(k+)|y–ct| dydxdt. (.)

Now, we compute

–
k + k
(k + )

c+

k

∫
Ry

sign(x – y)e–|x–y|e–(k+)|y–ct| dy

:= I + I + I. (.)

http://www.boundaryvalueproblems.com/content/2013/1/235
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When x > ct, we have that

I = –
k + k
(k + )

c+

k

∫ ct

–∞
e–(x–y)e(k+)(y–ct) dy

= –
k + k
(k + )

c+

k e–(x+(k+)ct)

∫ ct

–∞
e(k+)y dy

= –
k

(k + )
c+


k ect–x (.)

and

I = –
k + k
(k + )

c+

k

∫ x

ct
e–(x–y)e–(k+)(y–ct) dy

= –
k + k
(k + )

c+

k e–(x–(k+)ct)

∫ x

ct
e–

k(k+)
k+ y dy

= –
k + 

(k + )
c+


k
[
ect–x – e(k+)(ct–x)

]
(.)

and

I =
k + k
(k + )

c+

k

∫ ∞

x
e(x–y)e–(k+)(y–ct) dy

=
k + k
(k + )

c+

k e(x+(k+)ct)

∫ ∞

x
e–(k+)y dy

=
k

(k + )
c+


k e(k+)(ct–x). (.)

Thus, when x > ct, from (.)-(.), we have that

I + I + I

= –
k

(k + )
c+


k ect–x –

k + 
(k + )

c+

k
[
ect–x – e(k+)(ct–x)

]
+

k
(k + )

c+

k e(k+)(ct–x)

= –c+

k
[
e(k+)(ct–x) – ect–x

]
. (.)

Similarly, when x < ct, we can obtain

I + I + I = c+

k
[
e(k+)(x–ct) – ex–ct

]
. (.)

From (.), (.) and (.) as well as (.), we have that

∫ +∞



∫
R

[
ucφt +


k + 

uk+c φx + p ∗
[
k + k
k + 

uk+c

]
φx

]
dxdt

+
∫
R
uc(x, )φ(x, )dx = . (.)
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Thus, uc = c/ke–|x–ct| is the solution in the sense of (.). For c > , let uc(x, t) = c/ke–|x–ct|.
Thus uc(x, t) is the solitary wave for (.) (or (.)).

5 Proof of Theorem 1.3
Since when Q = k(k+)

k+ in (.), (.) possesses the peaked solitary wave c/ke|x–ct|, Theo-
rem . can be proved similarly to Proposition  of [].

6 Proof of Theorem 1.4
Since when Q = k(k+)

k+ in (.), (.) possesses the peaked solitary wave c/ke|x–ct|, Theo-
rem . can be proved similarly to Theorem  of [].

7 Proof of Theorem 1.5
In this section, we always assume that s >  + 

p (or s≥  + 
p if r =  with p ∈ [, +∞)).

Proof of Theorem . Applying 	q to (.) yields

(
∂t + uk∂x

)
	qu =

[
uk ,	q

]
∂xu +QP(D)	q

[
k + k
k + 

uk+
]
. (.)

From (.) of page  in [], since s >  + 
p (or s ≥  + 

p if r =  with p ∈ [, +∞)), we
have that

∥∥sq∥∥[
uk ,	q

]
∂xu

∥∥
Lp

∥∥
�r ≤ C‖ux‖kL∞‖u‖Bsp,r ≤ C‖u‖k+Bsp,r

. (.)

By using () of Lemma . and P(D) is an S–-multiplier, since s > + 
p (or s ≥  + 

p if r = 
with p ∈ [, +∞)), we have that

∥∥∥∥P(D)[k + k
k + 

uk+
]∥∥∥∥

Bsp,r
≤ C‖ux‖kL∞‖u‖Bsp,r ≤ C‖u‖k+Bsp,r

. (.)

Going along the lines of the proof of Proposition A. of [], from (.) and (.), we have
that

‖u‖Bsp,r ≤ ‖u‖Bsp,r +C
∫ t


‖ux‖kL∞‖u‖Bsp,r dτ (.)

≤ ‖u‖Bsp,r +C
∫ t


‖u‖k+Bsp,r

dτ . (.)

Solving (.) yields

‖u‖Bsp,r ≤ ec
∫ t
 ‖ux‖kL∞ dτ‖u‖Bsp,r . (.)

Solving (.) yields

‖u‖Bsp,r ≤ ‖u‖Bsp,r
( –Ckt‖u‖kBsp,r )/k

. (.)
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Assume that T� is the maximal time of existence of the solution to problem (.)-(.). If
T� < ∞, we claim that

∫ T�


‖ux‖kL∞ dτ = +∞. (.)

We prove the claim (.) by contradiction. If (.) is untrue, then from (.), we have that

∥∥u(
T�

)∥∥
Bsp,r

<∞, (.)

which contradicts the fact that T� is themaximal time of existence of the solution to prob-
lem (.)-(.). Consequently, (.) is true. From (.), we know that T� ≥ 

Ck‖u‖kBsp,r
. More-

over, (.) ensures the validity of (.).
The proof of Theorem . is completed. �
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