

RESEARCH Open Access

# Global and blow-up solutions for nonlinear parabolic problems with a gradient term under Robin boundary conditions

Juntang Ding\*

\*Correspondence: djuntang@sxu.edu.cn School of Mathematical Sciences, Shanxi University, Tajyuan, 030006, PR. China

#### **Abstract**

In this paper, we study the global and blow-up solutions of the following nonlinear parabolic problems with a gradient term under Robin boundary conditions:

$$\begin{cases} (b(u))_t = \nabla \cdot (g(u)\nabla u) + f(x, u, |\nabla u|^2, t) & \text{in } D \times (0, T), \\ \frac{\partial u}{\partial n} + \gamma u = 0 & \text{on } \partial D \times (0, T), \\ u(x, 0) = u_0(x) > 0 & \text{in } \overline{D}, \end{cases}$$

where  $D \subset \mathbb{R}^N$  ( $N \ge 2$ ) is a bounded domain with smooth boundary  $\partial D$ . By constructing auxiliary functions and using maximum principles, the sufficient conditions for the existence of a global solution, an upper estimate of the global solution, the sufficient conditions for the existence of a blow-up solution, an upper bound for 'blow-up time', and an upper estimate of 'blow-up rate' are specified under some appropriate assumptions on the functions f, g, b and initial value  $u_0$ .

**Keywords:** global solution; blow-up solution; parabolic problem; Robin boundary condition; gradient term

#### 1 Introduction

**MSC:** 35K55; 35B05; 35K57

In this paper, we study the global and blow-up solutions of the following nonlinear parabolic problems with a gradient term under Robin boundary conditions:

$$\begin{cases} (b(u))_t = \nabla \cdot (g(u)\nabla u) + f(x, u, q, t) & \text{in } D \times (0, T), \\ \frac{\partial u}{\partial n} + \gamma u = 0 & \text{on } \partial D \times (0, T), \\ u(x, 0) = u_0(x) > 0 & \text{in } \overline{D}, \end{cases}$$

$$(1.1)$$

where  $q:=|\nabla u|^2$ ,  $D\subset\mathbb{R}^N$   $(N\geq 2)$  is a bounded domain with smooth boundary  $\partial D$ ,  $\partial/\partial n$  represents the outward normal derivative on  $\partial D$ ,  $\gamma$  is a positive constant,  $u_0$  is the initial value, T is the maximal existence time of u, and  $\overline{D}$  is the closure of D. Set  $\mathbb{R}^+:=(0,+\infty)$ . We assume, throughout the paper, that b(s) is a  $C^3(\mathbb{R}^+)$  function, b'(s)>0 for any  $s\in\mathbb{R}^+$ , g(s) is a positive  $C^2(\mathbb{R}^+)$  function, f(x,s,d,t) is a nonnegative  $C^1(\overline{D}\times\mathbb{R}^+\times\overline{\mathbb{R}^+}\times\mathbb{R}^+)$  function, and  $u_0(x)$  is a positive  $C^2(\overline{D})$  function. Under the above assumptions, the classical theory [1] of parabolic equation assures that there exists a unique classical solution u(x,t) with



some T > 0 for problem (1.1) and the solution is positive over  $\overline{D} \times [0, T)$ . Moreover, the regularity theorem [2] implies  $u(x, t) \in C^3(D \times (0, T)) \cap C^2(\overline{D} \times [0, T))$ .

Many papers have studied the global and blow-up solutions of parabolic problems with a gradient term (see, for instance, [3-13]). Some authors have discussed the global and blow-up solutions of parabolic problems under Robin boundary conditions and have got a lot of meaningful results (see [14-20] and the references cited therein). Some special cases of problem (1.1) have been treated already. Zhang [21] dealt with the following problem:

$$\begin{cases} u_t = \nabla \cdot (g(u)\nabla u) + f(u) & \text{in } D \times (0, T), \\ \frac{\partial u}{\partial n} + \gamma u = 0 & \text{on } \partial D \times (0, T), \\ u(x, 0) = u_0(x) > 0 & \text{in } \overline{D}, \end{cases}$$

where  $D \subset \mathbb{R}^N$  ( $N \ge 2$ ) is a bounded domain with smooth boundary  $\partial D$ . By constructing auxiliary functions and using maximum principles, the sufficient conditions characterized by functions f, g and  $u_0$  were given for the existence of a blow-up solution. Zhang [22] investigated the following problem:

$$\begin{cases} (b(u))_t = \Delta u + f(u) & \text{in } D \times (0, T), \\ \frac{\partial u}{\partial n} + \gamma u = 0 & \text{on } \partial D \times (0, T), \\ u(x, 0) = u_0(x) > 0 & \text{in } \overline{D}, \end{cases}$$

where  $D \subset \mathbb{R}^N$   $(N \ge 2)$  is a bounded domain with smooth boundary  $\partial D$ . By constructing some auxiliary functions and using maximum principles, the sufficient conditions were obtained there for the existence of global and blow-up solutions. Meanwhile, the upper estimate of a global solution, the upper bound of 'blow-up time' and the upper estimate of 'blow-up rate' were also given. Ding [21] considered the following problem:

$$\begin{cases} (b(u))_t = \nabla \cdot (g(u)\nabla u) + f(u) & \text{in } D \times (0, T), \\ \frac{\partial u}{\partial n} + \gamma u = 0 & \text{on } \partial D \times (0, T), \\ u(x, 0) = u_0(x) > 0 & \text{in } \overline{D}, \end{cases}$$

where  $D \subset \mathbb{R}^N$   $(N \ge 2)$  is a bounded domain with smooth boundary  $\partial D$ . By constructing some appropriate auxiliary functions and using a first-order differential inequality technique, the sufficient conditions were obtained for the existence of global and blow-up solutions. For the blow-up solution, an upper and a lower bound on blow-up time were also given.

In this paper, we study problem (1.1). Since the function f(x,u,q,t) contains a gradient term  $q = |\nabla u|^2$ , it seems that the methods of [21–23] are not applicable for problem (1.1). In this paper, by constructing completely different auxiliary functions with those in [21–23] and technically using maximum principles, we obtain some existence theorems of a global solution, an upper estimate of the global solution, the existence theorems of a blow-up solution, an upper bound of 'blow-up time', and an upper estimates of 'blow-up rate'. Our results extend and supplement those obtained [21–23].

We proceed as follows. In Section 2 we study the global solution of (1.1). Section 3 is devoted to the blow-up solution of (1.1). A few examples are presented in Section 4 to illustrate the applications of the abstract results.

#### 2 Global solution

The main result for the global solution is the following theorem.

**Theorem 2.1** Let u be a solution of problem (1.1). Assume that the following conditions (i)-(iv) are satisfied:

(i) for any  $s \in \mathbb{R}^+$ ,

$$(sb'(s))' \ge 0, \qquad sb'(s) - (sb'(s))' \le 0, \qquad \left(\frac{g(s)}{b'(s)}\right)' \le 0,$$

$$\left[\frac{1}{g(s)} \left(\frac{g(s)}{b'(s)}\right)' + \frac{1}{b'(s)}\right]' + \frac{1}{g} \left(\frac{g(s)}{b'(s)}\right)' + \frac{1}{b'(s)} \le 0;$$
(2.1)

(ii) for any  $(x, s, d, t) \in D \times \mathbb{R}^+ \times \overline{\mathbb{R}^+} \times \mathbb{R}^+$ ,

$$f_{t}(x, s, d, t) \leq 0, f_{d}(x, s, d, t) \left[ \left( \frac{1}{b'(s)} \right)' + \frac{1}{b'(s)} \right] \leq 0,$$

$$\left( \frac{f(x, s, d, t)b'(s)}{g(s)} \right)_{s} - \frac{f(x, s, d, t)b'(s)}{g(s)} \leq 0;$$
(2.2)

(iii)

$$\int_{m_0}^{+\infty} \frac{b'(s)}{e^s} \, \mathrm{d}s = +\infty, \quad m_0 := \min_{\overline{D}} u_0(x); \tag{2.3}$$

(iv)

$$\alpha := \max_{\overline{D}} \frac{\nabla \cdot (g(u_0) \nabla u_0) + f(x, u_0, q_0, 0)}{e^{u_0}} > 0, \quad q_0 := |\nabla u_0|^2.$$
 (2.4)

Then the solution u to problem (1.1) must be a global solution and

$$u(x,t) \le H^{-1}(\alpha t + H(u_0(x,t))), \quad (x,t) \in \overline{D} \times \overline{\mathbb{R}^+},$$
 (2.5)

where

$$H(z) := \int_{m_0}^{z} \frac{b'(s)}{e^s} ds, \quad z \ge m_0,$$
 (2.6)

and  $H^{-1}$  is the inverse function of H.

**Proof** Consider the auxiliary function

$$P(x,t) := b'(u)u_t - \alpha e^u. \tag{2.7}$$

Now we have

$$\nabla P = b'' u_t \nabla u + b' \nabla u_t - \alpha e^u \nabla u, \tag{2.8}$$

$$\Delta P = b''' u_t |\nabla u|^2 + 2b'' \nabla u \cdot \nabla u_t + b'' u_t \Delta u + b' \Delta u_t - \alpha e^u |\nabla u|^2 - \alpha e^u \Delta u, \tag{2.9}$$

and

$$P_{t} = b''(u_{t})^{2} + b'(u_{t})_{t} - \alpha e^{u}u_{t}$$

$$= b''(u_{t})^{2} + b'\left(\frac{g}{b'}\Delta u + \frac{g'}{b'}|\nabla u|^{2} + \frac{f}{b'}\right)_{t} - \alpha e^{u}u_{t}$$

$$= b''(u_{t})^{2} + \left(g' - \frac{b''g}{b'}\right)u_{t}\Delta u + g\Delta u_{t} + \left(g'' - \frac{b''g'}{b'}\right)u_{t}|\nabla u|^{2}$$

$$+ \left(2g' + 2f_{q}\right)\nabla u \cdot \nabla u_{t} + \left(f_{u} - \frac{b''f}{b'} - \alpha e^{u}\right)u_{t} + f_{t}.$$
(2.10)

It follows from (2.9) and (2.10) that

$$\frac{g}{b'}\Delta P - P_t = \left(\frac{b'''g}{b'} + \frac{b''g'}{b'} - g''\right)u_t|\nabla u|^2 + \left(2\frac{b''g}{b'} - 2g' - 2f_q\right)\nabla u \cdot \nabla u_t 
+ \left(2\frac{b''g}{b'} - g'\right)u_t\Delta u - \alpha\frac{g}{b'}e^u|\nabla u|^2 - \alpha\frac{g}{b'}e^u\Delta u - b''(u_t)^2 
+ \left(\frac{b''f}{b'} - f_u + \alpha e^u\right)u_t - f_t.$$
(2.11)

By (1.1), we have

$$\Delta u = \frac{b'}{g} u_t - \frac{g'}{g} |\nabla u|^2 - \frac{f}{g}. \tag{2.12}$$

Substitute (2.12) into (2.11), to get

$$\frac{g}{b'} \Delta P - P_t = \left(\frac{b'''g}{b'} - \frac{b''g'}{b'} - g'' + \frac{(g')^2}{g}\right) u_t |\nabla u|^2 + \left(2\frac{b''g}{b'} - 2g' - 2f_q\right) \nabla u \cdot \nabla u_t 
- \frac{(b')^2}{g} \left(\frac{g}{b'}\right)' (u_t)^2 + \left(\frac{fg'}{g} - \frac{b''f}{b'} - f_u\right) u_t + \left(\alpha \frac{g'}{b'} e^u - \alpha \frac{g}{b'} e^u\right) |\nabla u|^2 
+ \alpha \frac{f}{b'} e^u - f_t.$$
(2.13)

With (2.8), we have

$$\nabla u_t = \frac{1}{b'} \nabla P - \frac{b''}{b'} u_t \nabla u + \alpha \frac{e^u}{b'} \nabla u. \tag{2.14}$$

Next, we substitute (2.14) into (2.13) to obtain

$$\frac{g}{b'}\Delta P + \left[2\left(\frac{g}{b'}\right)' + 2\frac{f_q}{b'}\right]\nabla u \cdot \nabla P - P_t$$

$$= \left(\frac{b'''g}{b'} + \frac{b''g'}{b'} - g'' + \frac{(g')^2}{g} - 2\frac{(b'')^2g}{(b')^2} + 2\frac{b''f_q}{b'}\right)u_t|\nabla u|^2$$

$$+ \left(2\alpha\frac{b''g}{(b')^2}e^u - \alpha\frac{g'}{b'}e^u - \alpha\frac{g}{b'}e^u - 2\alpha\frac{f_q}{b'}e^u\right)|\nabla u|^2$$

$$- \frac{(b')^2}{g}\left(\frac{g}{b'}\right)'(u_t)^2 + \left(\frac{fg'}{g} - \frac{b''f}{b} - f_u\right)u_t + \alpha\frac{f}{b'}e^u - f_t. \tag{2.15}$$

In view of (2.7), we have

$$u_t = \frac{1}{h'}P + \alpha \frac{e^u}{h'}.\tag{2.16}$$

Substituting (2.16) into (2.15), we get

$$\frac{g}{b'}\Delta P + \left[2\left(\frac{g}{b'}\right)' + 2\frac{f_q}{b'}\right]\nabla u \cdot \nabla P 
+ \left\{\left[g\left(\frac{1}{g}\left(\frac{g}{b'}\right)'\right)' + 2f_q\left(\frac{1}{b'}\right)'\right]|\nabla u|^2 + \frac{g}{(b')^2}\left(\frac{fb'}{g}\right)_u\right\}P - P_t 
= -\alpha e^u \left\{g\left[\left(\frac{1}{g}\left(\frac{g}{b'}\right)' + \frac{1}{b'}\right)' + \frac{1}{g}\left(\frac{g}{b'}\right)' + \frac{1}{b'}\right] + 2f_q\left[\left(\frac{1}{b'}\right)' + \frac{1}{b'}\right]\right\}|\nabla u|^2 
- \frac{(b')^2}{g}\left(\frac{g}{b'}\right)'(u_t)^2 - \alpha \frac{ge^u}{(b')^2}\left[\left(\frac{fb'}{g}\right)_u - \frac{fb'}{g}\right] - f_t.$$
(2.17)

The assumptions (2.1) and (2.2) guarantee that the right-hand side of (2.17) is nonnegative, *i.e.*,

$$\frac{g}{b'}\Delta P + \left[2\left(\frac{g}{b'}\right)' + 2\frac{f_q}{b'}\right]\nabla u \cdot \nabla P + \left\{\left[g\left(\frac{1}{g}\left(\frac{g}{b'}\right)'\right)' + 2f_q\left(\frac{1}{b'}\right)'\right]|\nabla u|^2 + \frac{g}{(b')^2}\left(\frac{fb'}{g}\right)_u\right\}P - P_t \\
\ge 0 \quad \text{in } D \times (0, T). \tag{2.18}$$

By applying the maximum principle [24], it follows from (2.18) that P can attain its non-negative maximum only for  $\overline{D} \times \{0\}$  or  $\partial D \times (0, T)$ . For  $\overline{D} \times \{0\}$ , by (2.4), we have

$$\begin{split} \max_{\overline{D}} P(x,0) &= \max_{\overline{D}} \left\{ b'(u_0)(u_0)_t - \alpha e^{u_0} \right\} = \max_{\overline{D}} \left\{ \nabla \cdot \left( g(u_0) \nabla u_0 \right) + f(x,u_0,q_0,0) - \alpha e^{u_0} \right\} \\ &= \max_{\overline{D}} \left\{ e^{u_0} \left[ \frac{\nabla \cdot \left( g(u_0) \nabla u_0 \right) + f(x,u_0,q_0,0)}{e^{u_0}} - \alpha \right] \right\} = 0. \end{split}$$

We claim that P cannot take a positive maximum at any point  $(x, t) \in \partial D \times (0, T)$ . In fact, suppose that P takes a positive maximum at a point  $(x_0, t_0) \in \partial D \times (0, T)$ , then

$$P(x_0, t_0) > 0$$
 and  $\frac{\partial P}{\partial n}\Big|_{(x_0, t_0)} > 0.$  (2.19)

With (1.1) and (2.16), we have

$$\frac{\partial P}{\partial n} = b'' u_t \frac{\partial u}{\partial n} + b' \frac{\partial u_t}{\partial n} - \alpha e^u \frac{\partial u}{\partial n} = -\gamma b'' u u_t + b' \left(\frac{\partial u}{\partial n}\right)_t + \gamma \alpha u e^u$$

$$= -\gamma b'' u u_t + b' (-\gamma u)_t + \gamma \alpha u e^u = -\gamma (ub')' u_t + \gamma \alpha u e^u$$

$$= -\gamma (ub')' \left(\frac{1}{b'} P + \alpha \frac{1}{b'} e^u\right) + \gamma \alpha u e^u$$

$$= -\gamma \frac{(ub')'}{b'} P + \gamma \alpha e^u \frac{ub' - (ub')'}{b'} \quad \text{on } \partial D \times (0, T). \tag{2.20}$$

Next, by using the fact that  $(sb'(s))' \ge 0$ ,  $sb'(s) - (sb'(s))' \le 0$  for any  $s \in \mathbb{R}^+$ , it follows from (2.20) that

$$\left. \frac{\partial P}{\partial n} \right|_{(x_0,t_0)} \le 0,$$

which contradicts with inequality (2.19). Thus we know that the maximum of P in  $\overline{D} \times [0, T)$  is zero, *i.e.*,

$$P \leq 0$$
 in  $\overline{D} \times [0, T)$ ,

and

$$\frac{b'(u)}{e^u}u_t \le \alpha. \tag{2.21}$$

For each fixed  $x \in \overline{D}$ , integration of (2.21) from 0 to t yields

$$\int_0^t \frac{b'(u)}{e^u} u_t \, \mathrm{d}t = \int_{u_0(x)}^{u(x,t)} \frac{b'(s)}{e^s} \, \mathrm{d}s \le \alpha t, \tag{2.22}$$

which implies that u must be a global solution. Actually, if that u blows up at finite time T, then

$$\lim_{t\to T^-}u(x,t)=+\infty.$$

Passing to the limit as  $t \to T^-$  in (2.22) yields

$$\int_{u_{\alpha}(s)}^{+\infty} \frac{b'(s)}{e^{s}} \, \mathrm{d}s \le \alpha T$$

and

$$\int_{m_0}^{+\infty} \frac{b'(s)}{e^s} ds = \int_{m_0}^{u_0(x)} \frac{b'(s)}{e^s} ds + \int_{u_0(x)}^{+\infty} \frac{b'(s)}{e^s} ds \le \int_{m_0}^{u_0(x)} \frac{b'(s)}{e^s} ds + \alpha T < +\infty,$$

which contradicts with assumption (2.3). This shows that u is global. Moreover, it follows from (2.22) that

$$\int_{u_0(x)}^{u(x,t)} \frac{b'(s)}{e^s} ds = \int_{m_0}^{u(x,t)} \frac{b'(s)}{e^s} ds - \int_{m_0}^{u_0(x)} \frac{b'(s)}{e^s} ds = H(u(x,t)) - H(u_0(x)) \le \alpha t.$$

Since H is an increasing function, we have

$$u(x,t) \leq H^{-1}(\alpha t + H(u_0(x))).$$

The proof is complete.

#### 3 Blow-up solution

The following theorem is the main result for the blow-up solution.

**Theorem 3.1** Let u be a solution of problem (1.1). Assume that the following conditions (i)-(iv) are fulfilled:

(i) for any  $s \in \mathbb{R}^+$ ,

$$(sb'(s))' \ge 0, \qquad sb'(s) - (sb'(s))' \ge 0, \qquad \left(\frac{g(s)}{b'(s)}\right)' \ge 0,$$

$$\left[\frac{1}{g(s)} \left(\frac{g(s)}{b'(s)}\right)' + \frac{1}{b'(s)}\right]' + \frac{1}{g} \left(\frac{g(s)}{b'(s)}\right)' + \frac{1}{b'(s)} \ge 0;$$
(3.1)

(ii) for any  $(x, s, d, t) \in D \times \mathbb{R}^+ \times \overline{\mathbb{R}^+} \times \mathbb{R}^+$ ,

$$f_{t}(x,s,d,t) \ge 0, \qquad f_{d}(x,s,d,t) \left[ \left( \frac{1}{b'(s)} \right)' + \frac{1}{b'(s)} \right] \ge 0,$$

$$\left( \frac{f(x,s,d,t)b'(s)}{g(s)} \right)_{s} - \frac{f(x,s,d,t)b'(s)}{g(s)} \ge 0;$$
(3.2)

(iii)

$$\int_{M_0}^{+\infty} \frac{b'(s)}{e^s} \, \mathrm{d}s < +\infty, \quad M_0 := \max_{\overline{D}} u_0(x); \tag{3.3}$$

(iv)

$$\beta := \min_{\overline{D}} \frac{\nabla \cdot (g(u_0)\nabla u_0) + f(x, u_0, q_0, 0)}{e^{u_0}} > 0, \quad q_0 := |\nabla u_0|^2.$$
 (3.4)

Then the solution u of problem (1.1) must blow up in finite time T, and

$$T \le \frac{1}{\beta} \int_{M_0}^{+\infty} \frac{b'(s)}{e^s} \, \mathrm{d}s,\tag{3.5}$$

$$u(x,t) \le G^{-1}(\beta(T-t)), \quad (x,t) \in \overline{D} \times [0,T),$$
 (3.6)

where

$$G(z) := \int_{z}^{+\infty} \frac{b'(s)}{e^{s}} ds, \quad z > 0,$$
 (3.7)

and  $G^{-1}$  is the inverse function of G.

**Proof** Construct the following auxiliary function:

$$Q(x,t) := b'(u)u_t - \beta e^u.$$
(3.8)

Replacing P and  $\alpha$  with Q and  $\beta$  in (2.17), respectively, we get

$$\frac{g}{b'}\Delta Q + \left[2\left(\frac{g}{b'}\right)' + 2\frac{f_q}{b'}\right]\nabla u \cdot \nabla Q 
+ \left\{\left[g\left(\frac{1}{g}\left(\frac{g}{b'}\right)'\right)' + 2f_q\left(\frac{1}{b'}\right)'\right]|\nabla u|^2 + \frac{g}{(b')^2}\left(\frac{fb'}{g}\right)_u\right\}Q - Q_t 
= -\beta e^u \left\{g\left[\left(\frac{1}{g}\left(\frac{g}{b'}\right)' + \frac{1}{b'}\right)' + \frac{1}{g}\left(\frac{g}{b'}\right)' + \frac{1}{b'}\right] + 2f_q\left[\left(\frac{1}{b'}\right)' + \frac{1}{b'}\right]\right\}|\nabla u|^2 
- \frac{(b')^2}{g}\left(\frac{g}{b'}\right)'(u_t)^2 - \beta \frac{ge^u}{(b')^2}\left[\left(\frac{fb'}{g}\right)_u - \frac{fb'}{g}\right] - f_t.$$
(3.9)

Assumptions (3.1) and (3.2) imply that the right-hand side in equality (3.9) is nonpositive, *i.e.*,

$$\frac{g}{b'}\Delta Q + \left[2\left(\frac{g}{b'}\right)' + 2\frac{f_q}{b'}\right]\nabla u \cdot \nabla Q + \left\{\left[g\left(\frac{1}{g}\left(\frac{g}{b'}\right)'\right)' + 2f_q\left(\frac{1}{b'}\right)'\right]|\nabla u|^2 + \frac{g}{(b')^2}\left(\frac{fb'}{g}\right)_u\right\}Q - Q_t \\
< 0 \quad \text{in } D \times (0, T).$$
(3.10)

With (3.4), we have

$$\min_{\overline{D}} Q(x,0) = \min_{\overline{D}} \left\{ b'(u_0)(u_0)_t - \beta e^{u_0} \right\} = \min_{\overline{D}} \left\{ \nabla \cdot \left( g(u_0) \nabla u_0 \right) + f(x, u_0, q_0, 0) - \beta e^{u_0} \right\} 
= \min_{\overline{D}} \left\{ e^{u_0} \left[ \frac{\nabla \cdot \left( g(u_0) \nabla u_0 \right) + f(x, u_0, q_0, 0)}{e^{u_0}} - \beta \right] \right\} = 0.$$
(3.11)

Substituting P and  $\alpha$  with Q and  $\beta$  in (2.20), respectively, we have

$$\frac{\partial Q}{\partial n} = -\gamma \frac{(ub')'}{b'} Q + \gamma \beta e^{u} \frac{ub' - (ub')'}{b'} \quad \text{on } \partial D \times (0, T).$$
 (3.12)

Combining (3.10)-(3.12) with the fact that  $(sb'(s))' \ge 0$ ,  $sb'(s) - (sb'(s))' \ge 0$  for any  $s \in \mathbb{R}^+$ , and applying the maximum principles again, it follows that the minimum of Q in  $\overline{D} \times [0, T)$  is zero. Thus

$$Q \ge 0$$
 in  $\overline{D} \times [0, T)$ ,

and

$$\frac{b'(u)}{e^u}u_t \ge \beta. \tag{3.13}$$

At the point  $x^* \in \overline{D}$ , where  $u_0(x^*) = M_0$ , integrate (3.13) over [0, t] to get

$$\int_{0}^{t} \frac{b'(u)}{e^{u}} u_{t} dt = \int_{M_{0}}^{u(x^{*},t)} \frac{b'(s)}{e^{s}} ds \ge \beta t,$$
(3.14)

which implies that u must blow up in finite time. Actually, if u is a global solution of (1.1), then for any t > 0, (3.14) shows

$$\int_{M_0}^{+\infty} \frac{b'(s)}{e^s} \, \mathrm{d}s \ge \int_{M_0}^{u(x^*,t)} \frac{b'(s)}{e^s} \, \mathrm{d}s \ge \beta t. \tag{3.15}$$

Letting  $t \to +\infty$  in (3.15), we have

$$\int_{M_0}^{+\infty} \frac{b'(s)}{e^s} \, \mathrm{d}s = +\infty,$$

which contradicts with assumption (3.3). This shows that u must blow up in finite time t = T. Furthermore, letting  $t \to T$  in (3.14), we get

$$T \le \frac{1}{\beta} \int_{M_0}^{+\infty} \frac{b'(s)}{e^s} \, \mathrm{d}s.$$

By integrating inequality (3.13) over [t, s] (0 < t < s < T), for each fixed x, we obtain

$$G(u(x,t)) \ge G(u(x,t)) - G(u(x,s)) = \int_{u(x,t)}^{+\infty} \frac{b'(s)}{e^s} ds - \int_{u(x,s)}^{+\infty} \frac{b'(s)}{e^s} ds$$
$$= \int_{u(x,t)}^{u(x,s)} \frac{b'(s)}{e^s} ds = \int_{t}^{s} \frac{b'(u)}{e^u} u_t dt \ge \beta(s-t).$$

Hence, by letting  $s \to T$ , we have

$$G(u(x,t)) \ge \beta(T-t)$$
.

Since *G* is a decreasing function, we obtain

$$u(x,t) \leq G^{-1}(\beta(T-t)).$$

The proof is complete.

### 4 Applications

When  $b(u) \equiv u$  and  $f(x, u, q, t) \equiv f(u)$ , the results stated in Theorem 3.1 are valid. When  $g(u) \equiv 1$  and  $f(x, u, q, t) \equiv f(u)$  or  $f(x, u, q, t) \equiv f(u)$ , the conclusions of Theorems 2.1 and 3.1 still hold true. In this sense, our results extend and supplement the results of [21–23].

In what follows, we present several examples to demonstrate the applications of the abstract results.

**Example 4.1** Let *u* be a solution of the following problem:

$$\begin{cases} u_t = \Delta u + \frac{2+u}{1+u} |\nabla u|^2 + \frac{e^{-u}(e^{-u}+e^q)}{1+u} (e^{-t} + |x|^2) & \text{in } D \times (0, T), \\ \frac{\partial u}{\partial n} + 2u = 0 & \text{on } \partial D \times (0, T), \\ u(x, 0) = 2 - |x|^2 & \text{in } \overline{D}, \end{cases}$$

where  $q = |\nabla u|^2$ ,  $D = \{x = (x_1, x_2, x_3) \mid |x|^2 < 1\}$  is the unit ball of  $\mathbb{R}^3$ . The above problem can be transformed into the following problem:

$$\begin{cases} (ue^{u})_{t} = \nabla \cdot ((1+u)e^{u}\nabla u) + (e^{-u} + e^{q})(e^{-t} + |x|^{2}) & \text{in } D \times (0,T), \\ \frac{\partial u}{\partial n} + 2u = 0 & \text{on } \partial D \times (0,T), \\ u(x,0) = 2 - |x|^{2} & \text{in } \overline{D}. \end{cases}$$

Now

$$b(u) = ue^{u},$$
  $g(u) = (1 + u)e^{u},$   $f(x, u, q, t) = (e^{-u} + e^{q})(e^{-t} + |x|^{2}),$   
 $u_{0}(x) = 2 - |x|^{2},$   $\gamma = 2.$ 

In order to determine the constant  $\alpha$ , we assume

$$s := |x|^2$$
,

then  $0 \le s \le 1$  and

$$\alpha = \max_{\overline{D}} \frac{\nabla \cdot (g(u_0)\nabla u_0) + f(x, u_0, q_0, 0)}{e^{u_0}}$$

$$= \max_{\overline{D}} \left\{ 32|x|^2 - 4|x|^4 - 18 + \left(1 + |x|^2\right) \left[ \exp(-4 + 2|x|^2) + \exp(-2 + 5|x|^2) \right] \right\}$$

$$= \max_{0 \le s \le 1} \left\{ 32s - 4s^2 - 18 + (1 + s) \left[ \exp(-4 + 2s) + \exp(-2 + 5s) \right] \right\}$$

$$= 50.4417.$$

It is easy to check that (2.1)-(2.3) hold. By Theorem 2.1, u must be a global solution, and

$$\begin{split} u(x,t) &\leq H^{-1} \Big( \alpha t + H \Big( u_0(x) \Big) \Big) = -1 + \sqrt{50.4417 t + \Big( 1 + u_0(x) \Big)^2} \\ &= -1 + \sqrt{50.4417 t + \Big( 3 - |x|^2 \Big)^2}. \end{split}$$

**Example 4.2** Let *u* be a solution of the following problem:

$$\begin{cases} u_t = \Delta u - \frac{1}{u(1+u)} |\nabla u|^2 + \frac{u(e^u - e^{-q})}{1+u} (6+t|x|^2) & \text{in } D \times (0,T), \\ \frac{\partial u}{\partial n} + 2u = 0 & \text{on } \partial D \times (0,T), \\ u(x,0) = 2 - |x|^2 & \text{in } \overline{D}, \end{cases}$$

where  $q = |\nabla u|^2$ ,  $D = \{x = (x_1, x_2, x_3) \mid |x|^2 < 1\}$  is the unit ball of  $\mathbb{R}^3$ . The above problem may be turned into the following problem:

$$\begin{cases} (u + \ln u)_t = \nabla \cdot ((1 + \frac{1}{u})\nabla u) + (e^u - e^{-q})(6 + t|x|^2) & \text{in } D \times (0, T), \\ \frac{\partial u}{\partial n} + 2u = 0 & \text{on } \partial D \times (0, T), \\ u(x, 0) = 2 - |x|^2 & \text{in } \overline{D}. \end{cases}$$

Now we have

$$b(u) = u + \ln u,$$
  $g(u) = 1 + \frac{1}{u},$   $f(x, u, q, t) = (e^{u} - e^{-q})(6 + t|x|^{2}),$   $u_{0}(x) = 2 - |x|^{2},$   $\gamma = 2.$ 

By setting

$$s := |x|^2$$
,

we have 0 < s < 1 and

$$\beta = \min_{\overline{D}} \frac{\nabla \cdot (g(u_0)\nabla u_0) + f(x, u_0, q_0, 0)}{e^{u_0}}$$

$$= \min_{\overline{D}} \left\{ \frac{-6|x|^4 + 26|x|^2 - 36}{(2 - |x|^2)^2 \exp(2 - |x|^2)} + 6\left[1 - \exp(-3|x|^2 - 2)\right] \right\}$$

$$= \min_{0 \le s \le 1} \left\{ \frac{-6s^2 + 26s - 36}{(2 - s)^2 \exp(2 - s)} + 6\left[1 - \exp(-3s - 2)\right] \right\}$$

$$= 0.0735.$$

Again it is easy to check that (3.1)-(3.3) hold. By Theorem 3.1, u must blow up in finite time T, and

$$T \le \frac{1}{\beta} \int_{M_0}^{+\infty} \frac{b'(s)}{e^s} ds = \frac{1}{0.0735} \int_{2}^{+\infty} \left(1 + \frac{1}{s}\right) \frac{1}{e^s} ds = 2.5066,$$
  
$$u(x, t) \le G^{-1}(\beta(T - t)) = G^{-1}(0.0735(T - t)),$$

where

$$G(z) = \int_{z}^{+\infty} \frac{b'(s)}{e^{s}} ds = \int_{z}^{+\infty} \left(1 + \frac{1}{s}\right) \frac{1}{e^{s}} ds, \quad z \ge 0,$$

and  $G^{-1}$  is the inverse function of G.

**Remark 4.1** We can see from Example 4.1 that when the equation has a gradient term with exponential increase, the functions g and b increase exponentially to ensure that the solution of (1.1) blows up. It follows from Example 4.2 that when the equation has a gradient term with exponential decay, the appropriate assumptions on the functions g and b can guarantee the solution of (1.1) to be global.

#### Competing interests

The author declares that he has no competing interests.

#### Author's contributions

All results belong to Juntang Ding.

#### Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61074048 and 61174082) and the Research Project Supported by Shanxi Scholarship Council of China (Nos. 2011-011 and 2012-011).

Received: 25 July 2013 Accepted: 25 September 2013 Published: 08 Nov 2013

#### References

- Amann, H: Quasilinear parabolic systems under nonlinear boundary conditions. Arch. Ration. Mech. Anal. 92, 153-192 (1986)
- 2. Sperb, RP: Maximum Principles and Their Applications. Academic Press, New York (1981)
- 3. Ding, JT, Guo, BZ: Global existence and blow-up solutions for quasilinear reaction-diffusion equations with a gradient term. Appl. Math. Lett. 24, 936-942 (2011)
- 4. Tersenov, A: The preventive effect of the convection and of the diffusion in the blow-up phenomenon for parabolic equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21, 533-541 (2004)
- Zheng, SN, Wang, W: Effects of reactive gradient term in a multi-nonlinear parabolic problem. J. Differ. Equ. 247, 1980-1992 (2009)
- Payne, LE, Song, JC: Lower bounds for blow-up time in a nonlinear parabolic problem. J. Math. Anal. Appl. 354, 394-396 (2009)
- Chen, SH: Global existence and blowup of solutions for a parabolic equation with a gradient term. Proc. Am. Math. Soc. 129, 975-981 (2001)
- Chen, SH: Global existence and blowup for quasilinear parabolic equations not in divergence form. J. Math. Anal. Appl. 401, 298-306 (2013)
- 9. Chipot, M, Weissler, FB: Some blowup results for a nonlinear parabolic equation with a gradient term. SIAM J. Math. Anal 20, 886-907 (1989)
- Fila, M: Remarks on blow up for a nonlinear parabolic equation with a gradient term. Proc. Am. Math. Soc. 111, 795-801 (1991)
- 11. Souplet, P, Weissler, FB: Poincaré's inequality and global solutions of a nonlinear parabolic equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16, 335-371 (1999)
- Souplet, P: Recent results and open problems on parabolic equations with gradient nonlinearities. Electron. J. Differ. Equ. 2001, 1-19 (2001)
- Souplet, P: Finite time blow-up for a non-linear parabolic equation with a gradient term and applications. Math. Methods Appl. Sci. 19, 1317-1333 (1996)
- 14. Friedman, A, Mcleod, B: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. **34**, 425-447 (1985)
- 15. Enache, C: Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition. Appl. Math. Lett. 24, 288-292 (2011)
- Payne, LE, Schaefer, PW: Blow-up in parabolic problems under Robin boundary conditions. Appl. Anal. 87, 699-707 (2008)
- 17. Rault, JF: The Fujita phenomenon in exterior domains under the Robin boundary conditions. C. R. Math. Acad. Sci. Paris 349, 1059-1061 (2011)
- Li, YF, Liu, Y, Xiao, SZ: Blow-up phenomena for some nonlinear parabolic problems under Robin boundary conditions. Math. Comput. Model. 54, 3065-3069 (2011)
- Liu, Y, Luo, SG, Ye, YH: Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions. Comput. Math. Appl. 65, 1194-1199 (2013)
- Li, YF, Liu, Y, Lin, CH: Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions. Nonlinear Anal., Real World Appl. 11, 3815-3823 (2010)
- 21. Zhang, LL: Blow-up of solutions for a class of nonlinear parabolic equations. Z. Anal. Anwend. 25, 479-486 (2006)
- Zhang, HL: Blow-up solutions and global solutions for nonlinear parabolic problems. Nonlinear Anal. TMA 69, 4567-4574 (2008)
- 23. Ding, JT: Global and blow-up solutions for nonlinear parabolic equations with Robin boundary conditions. Comput. Math. Appl. 65, 1808-1822 (2013)
- 24. Protter, MH, Weinberger, HF: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs (1967)

#### 10.1186/1687-2770-2013-237

Cite this article as: Ding: Global and blow-up solutions for nonlinear parabolic problems with a gradient term under Robin boundary conditions. Boundary Value Problems 2013, 2013:237

## Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com