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Abstract
We show that systems of second-order ordinary differential equations, x′′ = f (t, x, x′),
subject to compatible nonlinear boundary conditions and impulses, have a solution x
such that (t, x(t)) lies in an admissible bounding subset of [0, 1]×R

n when f satisfies a
Hartman-Nagumo growth bound with respect to x′. We reformulate the problem as a
system of nonlinear equations and apply Leray-Schauder degree theory. We compute
the degree by homotopying to a new system of nonlinear equations based on the
simpler system of ordinary differential equations, x′′ =M0L(x – v), subject to Picard
boundary conditions and impulses and using the Leray index theorem. Our proof is
simpler than earlier existence proofs involving nonlinear boundary conditions
without impulses and requires weak assumptions on f .
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1 Introduction
Let q ∈N, the natural numbers,

Q = {t, . . . , tq :  = t < t < · · · < tq < tq+ = }.

J = [t, t] and Jk = (tk , tk+] for  ≤ k ≤ q. We call Q a division of the interval [, ].
We consider the system of second-order ordinary differential equations

x′′ = f
(
t,x,x′), t ∈ [, ] \Q ()

subject to very general nonlinear boundary conditions of the form

g
(
x(),x(),x′(),x′()

)
= (, ) ()

and very general nonlinear implicit impulses of the form

gk
(
x
(
t+k

)
,x

(
t–k

)
,x′(t+k ),x′(t–k ))

= (, ), k = , . . . ,q, ()
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where

f : [, ]×R
n →R

n

satisfies f |Jk×Rn has an extension to fk ∈ C(J̄k ×R
n;Rn) and

gk = (gk,, gk,) ∈ C
(
R

n ×R
n;Rn)

for  ≤ k ≤ q. Our fully nonlinear boundary conditions () include the Picard, periodic,
and Neumann boundary conditions as special cases. We establish a general existence re-
sult for solutions lying in an admissible bounding set for the system of ordinary differential
equations () satisfying boundary conditions () and impulses ().
Our result is closely related to those of Thompson [] and of Kongson et al. []. In []

and [], the authors established existence results for systems of second-order ordinary dif-
ferential equations in more general bounding sets and subject to general boundary condi-
tions () but not subject to impulses. Moreover, the proof in [] is incomplete as it fails to
establish the required derivative bounds; these appear to requiremore assumptions on the
Hartman-Nagumo growth bound than we assume here. Although our bounding sets are
more restrictive than those in [], our proof is much simpler than theirs. In particular, the
ideas introduced in our proof offer a fresh starting point for further work aimed at iden-
tifying the natural and most general concept of a bounding set and with this the natural
and most general existence results possible for system () subject to nonlinear boundary
conditions ().
Earlier works on boundary value problems homotopies the original problem (), plus

nonlinear boundary conditions (), to x′′(t) =  plus the Picard boundary conditions; see,
for example, []. This requires f to be redefined for (t,x) outside the admissible bounding
set in such a way that solutions to the associated boundary value problem lie in the admis-
sible bounding set. This in turn imposes restrictive assumptions on f and the associated
bounding set. A key to our new idea is the observation that it suffices to homotopy our as-
sociated system of nonlinear equations to a new system of nonlinear equations associated
with the simpler system x′′(t) =ML[x – v(t)] subject to Picard boundary conditions and
impulses. This is uniquely solvable with the solution lying in the admissible bounding set.
We use the Leray index theorem and the multiplication theorem to show that the degree
of the associated nonlinear equation is not zero. Using our homotopies, we do not need to
redefine the system outside the admissible bounding set. In the current work, we require
the bounding set to be {(t,x) ∈ [, ]×R

n : r(t,x) < }, where r : [, ]×R
n →R and r(t, ·)

is strongly convex as a function of x (see Remark (i)).
A further motivation for our work comes from the paper by Cabada and Thompson []

for a single equation with impulses. Recently, many papers devoted to the study of bound-
ary value problems for nonlinear differential equations with impulses have appeared be-
cause of their wide applicability and associated rich theory. In the literature one can find
different kinds of existence results for first-order [, ], second-order [–], and higher-
order [, ] ordinary differential equations with periodic boundary conditions and im-
pulses. In addition, some existence results for first-order impulsive differential equation
with nonlinear boundary conditions can be found in [–]. In the papers [, , ], the
φ-Laplacian and ϕ-Laplacian equations with impulses are considered.
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This paper is organized as follows. In Section , we introduce the notation and defi-
nitions that we use in this paper. We give the definition of compatible boundary condi-
tions and introduce our definition of compatible impulses in Section . In Section , we
present the Nagumo-type condition that we use in our existence result to a priori bound
the derivative of solutions. Section  is principally devoted to our main result where we
prove that there are solutions to (), (), and () lying in an admissible bounding set. In
Section , we present an example.

2 Notation and definitions
In this section, we present the notation, definitions, and assumptions that we use to obtain
a priori bounds on solutions.
LetH denote finite or infinite dimensional Hilbert spaces. For a bounded subset V ofH ,

let V ◦ denote its interior, ∂V its boundary and V̄ its closure. For a bounded subset U of
[, ]×R

n and t ∈ [, ], letU(t) denote its t-cross section and ∂U(t) denote the boundary
ofU(t) in R

n. ThusU(t) = {x ∈R
n : (t,x) ∈U}. Let ∂CU denote the curved boundary ofU ,

so ∂CU =
⋃

t∈[,] ∂U(t) excludes the sets {} ×U◦() and {} ×U◦() from ∂U . For x ∈R,
|x| denotes the absolute value of x. For x = (x, . . . ,xn) ∈ R

n and y = (y, . . . , yn) ∈ R
n, xT

denotes the transpose of x while x · y denotes the scalar product of x and y. Let I denote
the identity on H so I(x) = x for all x. If X is a Banach space and A ⊂ H , then Cm(A;X)
denotes the space of m-times continuously differentiable functions from A to X with a
finite norm. In the case of continuous functions, we omit the m, while in the case of real-
valued functions, we omit the X.
Let J ⊂R be an interval. For r ∈ C(J ×R

n), let rt(t,x) denote the partial derivative with
respect to t, rx(t,x) denote the gradient, and rxx(t,x) denote the matrix of second-order
partial derivatives of r with respect to x.
The norm on Cm(J ;Rn) is given by

‖u‖cm(J) = sup
k≤m;t∈J

∥∥u(k)(t)∥∥,
where u(k) denotes the kth derivative of u. By abuse of notation, we abbreviated Cm(J ;Rn)
to Cm(J). Further we will abbreviate ‖u‖Cm(J) to ‖u‖ when the meaning is clear from the
context.
For τ ∈ [, ), let u(l)(τ+) = limt→τ+ u(l)(t) and for τ ∈ (, ], let u(l)(τ–) = limt→τ– u(l)(t)

for ≤ l ≤m. To simplify statements of results, set u(l)(+) = u(l)() and u(l)(–) = u(l)()
for  ≤ l ≤m, where u(l)() and u(l)() are the appropriate one-sided derivatives.
In order to define the concept of solution for our problem, we consider the following

sets. Let

Cm
Q =

{
u : [, ] →R

n : u|Jk ∈ Cm(Jk),u(m)(t+k )
exist for k = , . . . ,q

}
.

All our limits are assumed to be R
n-valued when they exist. Thus, for u ∈ Cm

Q , u(l)(t
±
k )

exists for k = , . . . ,q + , l = , . . . ,m. Note that C
Q is defined in the obvious way. Thus we

may identify x ∈ Cm
Q with x̃ = (x, . . . ,xq) ∈ ∏q

k=C
m(J̄k), where x̃(t) = xk(t), for all t ∈ Jk .

http://www.boundaryvalueproblems.com/content/2013/1/240
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By abuse of notation, we will denote x̃ by x where the meaning is clear from the context.
Further we define a norm on Cm

Q by

‖x‖Cm
Q
=max

k
‖x‖Cm(Jk ).

If A is a bounded open subset of H , G(x) = x +K(x), where K ∈ C(Ā,H), K(Ā) has com-
pact closure and p ∈ H \ G(∂A), then d(G,A,p) denotes the Leray-Schauder degree of G
on A at p. In the special case that H = R

n and G ∈ C(Ā,Rn), p ∈ R
n \ G(∂A), d(G,A,p) is

the Brouwer degree.
By a solution x we mean a function x ∈ C

Q satisfying () for all t ∈ [, ] \Q, () and ().
We look for solutions to problem () together with the fully nonlinear boundary condi-

tions () and impulses () in the following admissible bounding set which provides a priori
bounds on solutions to ().

Definition  Let� ⊂ [, ]×R
n be a bounded set and v ∈ C

Q.We call (�, v) an admissible
bounding set for () if it has the following properties:

(i) There is r : [, ]×R
n →R such that

(a) r|Jk×Rn can be uniquely extended to rk ∈ C(J̄k ×R
n) for all ≤ k ≤ q;

(b) � := {(t,x) ∈ [, ]×R
n : r(t,x) < };

(c)
∑n

i,j= rxixj (t,x)ξiξj ≥ �‖ξ‖ for some constants � > , all ξ ∈R
n and (t,x) ∈ �;

(ii) There is ε >  such that Bε(vk(t))⊆ �k(t), where �k := {(t,x) ∈ J̄k ×R
n : rk(t,x) < }

for all  ≤ k ≤ q;
(iii) If t ∈ (, ) \Q, p ∈R

n, r(t,u) =  and r′(t,u,p) = , then

r′′f (t,u,p) > ,

where

r′(t,u,p) = rt(t,u) + rTx (t,u)p, ()

r′′f (t,u,p) = rtt(t,u) + rTtx(t,u)p + pTrxx(t,u)p + rTx (t,u)f (t,u,p); ()

(iv) ‖rx(t,x)‖ ≥ c >  for all (t,x) ∈ ∂C� and some constant c > .

Remark 
(i) A function r ∈ C(Rn) is strongly convex iff for some constants � > ,

n∑
i,j=

rxx(x)ξiξj ≥ �‖ξ‖ ()

for x, ξ ∈R
n (see Part  in []). If r ∈ C(Rn) satisfies (), then r is uniformly

convex, see Appendix B.. in []. Moreover, r ∈ C(Rn) satisfies () when � =  iff r
is convex (see Appendix B.. in []). From the definition of convex function, it is
easy to see that

�(t) =
{
x ∈R

n : r(t,x) < 
}

is a convex set for t ∈ [, ].

http://www.boundaryvalueproblems.com/content/2013/1/240
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It follows from Definition (i)(c) that for (t,x,p) ∈ �̄ ×R
n,

r′′(t,x,p) = pTrxx(t,x)p + pTrtx(t,x) + rtt(t,x)

≥ �‖p‖ – D‖p‖ –D

> –K, ()

where D = sup(t,x)∈�{‖rtx(t,x)‖,‖rtt(t,x)‖} and K > .
(ii) It follows from Definition (i)(a), (ii) and (iv) that

∥∥rx(t,x)∥∥ ≥ c > ,(
x – v(t)

) · rx(t,x) > η
∥∥rx(t,x)∥∥ and hence(

x – v(t)
) · rx(t,x) > ηc >  ()

for all (t,x) ∈ ⋃
k ∂C�k and some η > .

Set

� =�()× �(), �k =�k(tk)× �k–(tk) =�
(
t+k

) × �
(
t–k

)
()

for  ≤ k ≤ q, where �(t+k ) = �k(tk) and �(t–k ) = �k–(tk). Let

R = sup
{∥∥x – v(t)

∥∥ : (t,x) ∈ �
}
+ ; R = R + sup

∥∥v(t)∥∥. ()

We assume that f satisfies the following conditions.

Definition  Let (�, v) be an admissible bounding set for (). We say that f satisfies the
Hartman-Nagumo condition on � if:

(i) f |Jk×Rn has an extension to fk ∈ C(J̄k ×R
n);

(ii) ‖f (t,x,p)‖ ≤ �(‖p‖) for all (t,x,p) ∈ � ×R
n, where

∫ ∞ s
�(s)

ds =∞;

(iii) ‖f (t,x,p)‖ ≤Mr′′f (t,x,p) +K for all (t,x,p) ∈ � ×R
n, whereM and K are

nonnegative constants and r′′f is given by ().

Remark  If conditions (ii) and (iii) above are satisfied, a solution x of () with (t,x(t)) ∈ �

satisfies the Hartman-Nagumo inequality (see the second paragraph on p. in []).

3 Compatibility
Following [], we give the definition of compatible boundary conditions and introduce the
definition of compatible impulses. These are simple, degree-based relationships between
the boundary conditions, the impulses, and the associated admissible bounding set. For
more information on compatibility of boundary conditions, we refer the reader to [, ],
and [, Definition ].

http://www.boundaryvalueproblems.com/content/2013/1/240
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Definition  For  ≤ k ≤ q, we call the vector field k = (ψ
k ,ψ


k ) ∈ C(�̄k ;Rn) strongly

inwardly pointing on �k if for all (Ck ,Dk) ∈ �̄k ,

r′k
(
tk ,Ck ,ψ

k (Ck ,Dk)
)
<  for all Ck ∈ ∂�k(tk),

r′k–
(
tk ,Dk ,ψ 

k (Ck ,Dk)
)
>  for all Dk ∈ ∂�k–(tk),

where �k , �k(tk), �k–(tk) are given in (). We call the vector field  = (ψ
 ,ψ 

) ∈
C(�̄;Rn) strongly inwardly pointing on � :=�()× �q() if for all (C,D) ∈ �̄,

r′
(
,C,ψ

 (C,D)
)
<  for all C ∈ ∂�(),

r′q
(
,D,ψ 

(C,D)
)
>  for all D ∈ ∂�q(),

where rk (k = , . . . ,q) is the extension to J̄k of r|J◦k and r′k is given by (). From (),
�() = �(); �q() = �(). For k = , . . . ,q, we call k inwardly pointing on �k if the
above inequalities are weak.

In what follows, where there is a strongly inwardly pointing vector field k on �̄k for all
 ≤ k ≤ q, then Gk is defined by

Gk(Ck ,Dk) = gk
(
(Ck ,Dk);k(Ck ,Dk)

)
()

for all (Ck ,Dk) ∈ �̄k , ≤ k ≤ q.
The following definition is a variant of Definition . given in [].

Definition  Let  ≤ k ≤ q and gk ∈ C(�̄k × R
n;Rn). We say gk is strongly compatible

with � if

gk
(
(Ck ,Dk), (uk , vk)

) �= 

for all (Ck ,Dk ,uk , vk) ∈ �̄k ×R
n such that

Ck ∈ ∂�k(tk) and r′k(tk ,Ck ,uk) < 

and/or

Dk ∈ ∂�k–(tk) and r′k–(tk ,Dk , vk) > 

and

d(Gk ,�k , ) �=  ()

for any strongly inwardly pointing vector field k on �̄k .
For  ≤ k ≤ q, we say that gk is compatible with � if there is a sequence gki ∈ C(�̄k ×

R
n;Rn) strongly compatible with � and converging uniformly to gk on compact subsets

of �̄k ×R
n.

http://www.boundaryvalueproblems.com/content/2013/1/240
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4 Nagumo-type conditions
In the literature, there are many variants of the ‘Nagumo condition’ which are used to
establish a priori bounds on the derivative of bounded solutions.
We use the following variant of Lemma . in [].

Lemma  Let � ∈ C([,∞); [,∞)) satisfy

∫ ∞ s
�(s)

ds =∞ ()

and r be given in Definition (i). Let x be a solution of () satisfying r(t,x(t)) ≤ . Assume
that

∥∥f (t,x,p)∥∥ ≤M�
(‖p‖),∥∥f (t,x,p)∥∥ ≤Mr′′f (t,x,p) +K

for (t,x) such that r(t,x) ≤  and p ∈ R
n, where M, M, and K are nonnegative constants

and r′′f is given by (). Then there exists N =N(r,M,M,K ,�) >  such that ‖x′(t)‖ <N .

Proof Since r is given in Definition (i), then ‖x‖ ≤ R when r(t,x) ≤ , where R is given
in (). Thus the proof of Lemma . of Hartman [] carries over to our case on �̄k , and
it follows that ‖x′(t)‖ <Nk(r,M,M,K ,�) for t ∈ J̄k . Thus ‖x′(t)‖ <N for t ∈ [, ], where
N =max≤k≤q Nk(r,M,M,K ,�). �

Remark  The function � ≡  satisfies ().

5 Themain result
In this section, we present the main result of this paper. We prove the existence of at
least one solution to nonlinear problem (), (), and () lying in an admissible bound-
ing set. To achieve this, we turn our impulsive boundary value problem into an equiv-
alent nonlinear equation and use Leray-Schauder degree theory. We compute the de-
gree using three homotopies, the Leray index theorem and the multiplication theo-
rem.
The first homotopy involves S(x,C,D,λ) = (S, . . . ,Sq), where

Sk = gk
(
(Ck ,Dk);λ

(
x′(),x′()

)
+ ( – λ)k(Ck ,Dk)

)
.

The second and third homotopies are constructed using one-parameter families of sys-
tems of ordinary differential equations.
We construct our first family of systems of differential equations using f defined below.
Let �, K, M, and K be given in Lemma , Remark , and Definition , respectively.

Let

f(t,x,p) =Mmin
{
L,�

(‖p‖)}[x – v(t)
]

()

http://www.boundaryvalueproblems.com/content/2013/1/240
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for (t,x,p) ∈ [, ]×R
n, where

M := inf
{
a ≥  : a

[
x – v(t)

] · rx(t,x)≥
∥∥rx(t,x)∥∥, (t,x) ∈ ∂C�

}
, ()

L := inf
{
b :Mb

[
x – v(t)

] · rx(t,x) > K for (t,x) ∈ ∂C� and

Mbε >
∥∥v′′(t)

∥∥ for all t ∈ [, ]
}
, ()

and ε is given below. Firstly, we considerM >M >  whereM is given in Definition . For
caseM = , see Remark . Let

K := inf

{
d >

KM

M
:ML

∥∥x – v(t)
∥∥ ≤Mr′′(t,x,p) + d

+MMmin
{
L,�

(‖p‖)}rx(t,x) · [x – v(t)
]
,∀(t,x,p) ∈ �̄ ×R

n
}
. ()

Remark 
(i) It follows that f|Jk×Rn has a continuous extension to J̄k ×R

n.
(ii) It follows from Remark  thatM, K, and L are well defined whenM >  whereM

is given in Definition .

For λ ∈ [, ], we define fλ : [, ]×R
n →R

n by

fλ(t,x,p) = λf (t,x,p) + ( – λ)f(t,x,p), ()

where f and f are given in () and (), respectively.
We consider the system

x′′ = fλ
(
t,x,x′) for all t ∈ [, ] \Q. ()

Lemma  Let (�, v) be an admissible bounding set for () and assume that f satisfies the
Hartman-Nagumo condition and that fλ is given by (). Then for (t,x,p) ∈ �̄ ×R

n,

∥∥fλ(t,x,p)∥∥ ≤M�
(‖p‖),∥∥fλ(t,x,p)∥∥ ≤Mr′′fλ (t,x,p) +K,

where � is given in Lemma , K is given in () and r′′f is given by () and M, M are
nonnegative numbers.
If x is a solution of () with (t,x) ∈ �̄, then ‖x′(t)‖ <N where N is given in Lemma .
Moreover, if t ∈ (, ) \Q, p ∈R

n, r(t,x) = , and r′(t,x,p) = , then r′′fλ (t,x,p) > .

Proof It follows from () that

∥∥f(t,x,p)∥∥ ≤ ML
∥∥x – v(t)

∥∥
≤ M

{
r′′ + rx ·Mmin

{
L,�

(‖p‖)}(x – v(t)
)}

+K

= Mr′′f +K

http://www.boundaryvalueproblems.com/content/2013/1/240
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for (t,x,p) ∈ �̄ ×R
n. Since f satisfies the Hartman-Nagumo condition, thus for (t,x,p) ∈

�̄ ×R
n, and R is given in (), it is easy to see that

‖fλ‖ =
∥∥λf (t,x,p) + ( – λ)f(t,x,p)

∥∥ ≤MR�
(‖p‖) :=M�

(‖p‖).
SinceM >M > , it follows from () that

‖fλ‖ =
∥∥λf (t,x,p) + ( – λ)f(t,x,p)

∥∥
≤ λ

[
Mr′′f +K

]
+ ( – λ)

[
Mr′′f +K

]
= Mr′′fλ +K.

If x is a solution of () with (t,x) ∈ �̄, it follows from Lemma  that ‖x′(t)‖ <N where N
is given in Lemma .
From Definition (iii), if t ∈ (, ) \ Q, p ∈ R

n, r(t,x) = , and r′(t,x,p) = , then
r′′f (t,x,p) > . Since f satisfies the Hartman-Nagumo condition, so ‖f ‖ ≤ �(‖p‖). It fol-
lows from () that

M�
(‖p‖)rx · (x – v(t)

) ≥ ‖f ‖‖rx‖ ≥ rx · f .

If �(‖p‖)≤ L from (), then f =M�(‖p‖)[x – v(t)] and

r′′f = r′′ + rx ·M�
(‖p‖)[x – v(t)

] ≥ r′′f > .

If L ≤ �(‖p‖) from (), then f =ML[x – v(t)]. It follows from () and () that

r′′f = r′′ + rx ·ML
[
x – v(t)

]
> r′′ +K > .

Thus

r′′fλ (t,x,p) = λ
[
r′′ + rx · f (t,x,p)] + ( – λ)

[
r′′ + rx · f(t,x,p)

]
= λr′′f + ( – λ)r′′f > . �

Now we construct the second one-parameter family of systems of ordinary differential
equations.
For λ ∈ [, ], we define f,λ : [, ]×R

n →R
n by

f,λ(t,x,p) = λf(t,x,p) + ( – λ)ML
[
x – v(t)

]
, ()

where f,M, L are given in (), (), and (), respectively.
We consider the system

x′′ = f,λ
(
t,x,x′) for all t ∈ [, ] \Q. ()

http://www.boundaryvalueproblems.com/content/2013/1/240
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Lemma  Assume that (�, v) is an admissible bounding set for () and that f,λ is defined
in (). Then, for (t,x,p) ∈ �̄ ×R

n,

∥∥f,λ(t,x,p)∥∥ ≤MLR and∥∥f,λ(t,x,p)∥∥ ≤Mr′′f,λ (t,x,p) +K,

where R is given in ().
If x is a solution of () with (t,x) ∈ �̄, then ‖x′(t)‖ <N , where N is given in Lemma .
Moreover, if t ∈ (, ) \Q, p ∈R

n, r(t,x) = , and r′(t,x,p) = , then r′′f,λ (t,x,p) > .

Proof Clearly,

∥∥f,λ(t,x,p)∥∥ ≤ λ
∥∥f(t,x,p)∥∥ + ( – λ)

∥∥ML(x – v(t)
∥∥ ≤MLR

for all (t,x,p) ∈ �̄×R
n, where R is given in (). From the proof of Lemma , ‖f(t,x,p)‖ ≤

Mr′′f +K for all (t,x) ∈ �̄, p ∈R
n. It follows from () and () that

∥∥ML
[
x – v(t)

]∥∥ ≤ M
{
r′′ + rx ·Mmin

{
L,�

(‖p‖)}[x – v(t)
]}

+K

≤ M
{
r′′ + rx ·ML

(
x – v(t)

)}
+K

= Mr′′ML(x–v(t)) +K.

Thus

∥∥f,λ(t,x,p)∥∥ ≤ λ
∥∥f(t,x,p)∥∥ + ( – λ)

∥∥ML
(
x – v(t)

)∥∥
≤ λ

[
Mr′′f +K

]
+ ( – λ)

[
Mr′′ML(x–v(t)) +K

]
= Mr′′f,λ +K.

If x is a solution of () with (t,x) ∈ �̄, then it follows from Lemma  that ‖x′(t)‖ < N ,
where N is given in Lemma .
From the proof of Lemma , if t ∈ (, ) \ Q, p ∈ R

n, r(t,x) = , r′(t,x,p) = , then
r′′f (t,x,p) > . It follows from () and (), respectively, that

rx ·ML
(
x – v(t)

)
> K for (t,x) ∈ ∂C�,

where K is given in Remark (i). Therefore,

r′′f,λ (t,x,p) = λ
[
r′′ + rx · f(t,x,p)

]
+ ( – λ)

[
r′′ + rx ·ML

(
x – v(t)

)]
> λr′′f (t,x,p) + ( – λ)

[
r′′(t,x,p) +K

]
> . �

Remark  If M = , where M is given in Definition , we do not need to choose M and
K in (). We set

f(t,x,p) =ML
[
x – v(t)

]

http://www.boundaryvalueproblems.com/content/2013/1/240
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for (t,x,p) ∈ [, ] × R
n. Moreover, we do not need the second one-parameter fam-

ily of systems of ordinary differential equations based on f,λ to construct our homo-
topy.

For  ≤ k ≤ q and (t,x) ∈ �̄k , let Gk : J̄k × J̄k → R be Green’s function for () restricted
to J̄k together with the homogeneous boundary conditions xk(tk) = A =  = B = xk(tk+),
thus

Gk(t, s) =

{ (t–tk )(tk+–s)
tk+–tk

for tk ≤ t ≤ s ≤ tk+,
(tk+–t)(s–tk )

tk+–tk
for tk ≤ s ≤ t ≤ tk+.

()

For  ≤ k ≤ q, let

wk(Ck ,Dk+)(t) =
(tk+ – t)Ck

tk+ – tk
+
(t – tk)Dk+

tk+ – tk
. ()

Using the above two families of systems of ordinary differential equations, we can ho-
motopy the original problem (), (), and () to the following solvable system of ordinary
differential equations subject to Picard boundary conditions and impulses.

x′′ =ML
[
x – v(t)

]
for t ∈ [, ] \Q, ()

x
(
t+k

)
= v

(
t+k

)
and x

(
t–k+

)
= v

(
t–k+

)
, ∀ ≤ k ≤ q, ()

where M, L are given in () and (), respectively. Then () and () have a solution
V ∈ C

Q = C
Q[, ] of the form

V (t) = Vk(t)

=
(tk+ – t)v(t+k )

tk+ – tk
+
(t – tk)v(t–k+)

tk+ – tk

–ML
∫ tk+

tk
Gk(t, s)

[
Vk(s) – vk(s)

]
ds

= wk
(
v
(
t+k

)
, v

(
t–k+

))
(t)

–ML
∫ tk+

tk
Gk(t, s)

[
Vk(s) – vk(s)

]
ds ()

for t ∈ Jk and  ≤ k ≤ q, where we have identified V with Ṽ = (V, . . . ,Vq).
We show that V (t) ∈ �(t) for all t ∈ [, ].

Lemma  Assume that (�, v) is an admissible bounding set for () and V (t) is given by
(). Then V (t) ∈ �(t) for t ∈ [, ].Moreover, ‖V ′(t)‖ <N , where N is given in Lemma .

Proof Suppose (t̃,V (t̃)) /∈ � for some t̃ ∈ J̄k . Set q(t) = [V (t)–v(t)]. SinceV (t) is a solution
of () and (), it follows that q(t+k ) = q(t–k+) = , ∀ ≤ k ≤ q, and so t̃ �= tk and t̃ �= tk+.
Therefore t̃ ∈ J◦k . So q(t) has a local maximum at t̃ ∈ J◦k and (t̃,V (t̃)) /∈ �. Hence q(t̃) ≥ ε,
where ε is given below. But it follows from () and () thatMLε > ‖v′′(t)‖ for all t ∈ [, ]

http://www.boundaryvalueproblems.com/content/2013/1/240
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and hence

q′′(t̃)


=
[
V ′(t̃) – v′(t̃)

] + [
V (t̃) – v(t̃)

]ML –
[
V (t̃) – v(t̃)

]
v′′(t̃)

≥ [
V ′(t̃) – v′(t̃)

] + ∥∥V (t̃) – v(t̃)
∥∥[

εML –
∥∥v′′(t̃)

∥∥]
> ,

a contradiction. Thus (t,V (t)) ∈ � for t ∈ [, ]. Since V (t) is a solution of () and () is
()when λ = , it follows fromLemma that ‖V ′(t)‖ <N , whereN is given in Lemma .�

Now we present our main result.

Theorem  Assume that (�, v) is an admissible bounding set for () and that f satisfies the
Hartman-Nagumo condition. Suppose that the boundary conditions () and impulses ()
are compatible with �. Then there is at least one solution x ∈ C

Q of problem (), (), and
() such that (t,x(t)) ∈ �̄ for t ∈ [, ].

Proof Now �k �= ∅ for  ≤ k ≤ q. First consider the case that all gk are strongly compatible
with �.
Choose ε ∈ (, ) such that Bε(v(t)) ⊆ �(t) for all t ∈ [, ]. It follows from Remark (ii)

that (x – v(t)) · rx(t,x) > ηc > , where η > , c > , for x ∈ ⋃
k ∂C�k(t) and all t ∈ [, ]. Let

M, L, and K be given in (), (), and (), respectively. LetM >M whereM is given in
Definition .
Let

� =
{
x ∈ C

Q :
(
t,xk(t)

) ∈ �k ,
∥∥x′

k(t)
∥∥ <N ,∀t ∈ J̄k , ≤ k ≤ q

}
,

and let � =� × �, where � =
∏q

k= �k and �k is given in () and N is given in Lemma .
Following [], we interpret (C,D) = (C, . . . ,Cq,D, . . .Dq) ∈ � to mean (Ck ,Dk) ∈ �k for

k = , . . . ,q and set Dq+ = D. Let (C,D) = ((C,D), . . . ,q(Cq,Dq)), where k is a
strongly inwardly pointing vector field on �k for each k. Let G(C,D) = (G(C,D), . . . ,
Gq(Cq,Dq)), where Gk(Ck ,Dk) is given in (), for all  ≤ k ≤ q.
Let fλ be given in (). For all t ∈ J̄k , let

Tk
(
fλ(xk)

)
(t) = –

∫ tk+

tk
Gk(t, s)fλ

(
s,xk(s),x′

k(s)
)
ds, ()

where Gk(t, s) is given in (). Define

T
(
fλ(x)

)
(t) =

(
T

(
fλ(x)

)
(t), . . . ,Tq

(
fλ(xq)

)
(t)

)
, ()

where we identify x and x̃ = (x, . . . ,xq).
Consider the solutions (x,C,D) ∈ �̄ of

�(x,C,D) =
(
x – T(f) –w(C,D), g

(
C,D,x′(),x′()

))
= (, ), ()

http://www.boundaryvalueproblems.com/content/2013/1/240
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where

w(C,D)(t) =
(
w(C,D)(t), . . . ,wq–(Cq–,Dq)(t),wq(Cq,D)(t)

)

and wk(Ck ,Dk+)(t) is given in () for all  ≤ k ≤ q.
From () and (), problem (), (), and () has a solution x satisfying (t,x) ∈ �̄ if and

only if (x,C,D) is a solution of () in �̄ since Ck = xk(tk) and Dk = xk–(tk) for  ≤ k ≤ q
in that case.
To show that () has a solution, we use Leray-Schauder degree theory.
DefineHi : [, ]× �̄ → ∏q

k=C
(J̄k ;Rn)×R

(q+)n for i = , ,  by

H
(
λ, (x,C,D)

)
=

(
x – T

(
f(x)

)
–w(C,D),S(x,C,D,λ)

)
H

(
λ, (x,C,D)

)
=

(
x – T

(
fλ(x)

)
–w

(
λC + ( – λ)v(),λD + ( – λ)v()

)
,G(C,D)

)
H

(
λ, (x,C,D)

)
=

(
x – T

(
f,λ(x)

)
–w

(
v(), v()

)
,G(C,D)

)
,

where

S(x,C,D,λ) = g
(
(C,D);λ

(
x′(),x′()

)
+ ( – λ)(C,D)

)
and

g(C,D,u, v) :=
(
g(C,D,u, v), . . . , gq(Cq,Dq,uq, vq)

)

for (u, v) = (u, . . . ,uq, v, . . . vq) ∈R
(q+)n, f,λ is given in ().

NowHi is completely continuous since T is completely continuous.We show that either
there is a solution to our problem or the above functionsHi define homotopies.
It is easy to see that (x,C,D) ∈ �̄ is a solution of (), (), and () with (C,D) =

(x(),x(t), . . . ,xq(tq),x(t), . . . ,xq()) ∈ �̄ if

H(x,C,D,λ) = , ()

when λ = . Now if there is a solution of () with (x,C,D) ∈ ∂� for λ = , then (C,D) =
(x(),x(t), . . . ,xq(tq),x(t), . . . ,xq()) ∈ �̄ and x = (x, . . . ,x) is the required solution, so
we assume there is no solution on ∂�. We show that H is a homotopy for the Leray-
Schauder degree on � at , that is, there are no solutions (x,C,D) ∈ ∂� of () for  ≤
λ < . We argue by contradiction and assume that there is a solution of () with λ ∈ [, )
and (x,C,D) ∈ ∂�. From the definition ofH, x is a solution of () such that

g
(
(C,D);λ

(
x′(),x′()

)
+ ( – λ)(C,D)

)
=  ∈ R

(q+)n

for λ ∈ [, ). Suppose (C,D) ∈ ∂�. Assume Ck ∈ ∂�k(tk). Since xk(tk) = Ck , then
rk(tk ,Ck) =  so that r′k(tk ,Ck ,x′

k(tk)) ≤ . Since k is a strongly inwardly pointing vec-
tor field on �k for each k and  ≤ λ < , thus

r′k
(
tk ,Ck ,λx′

k(tk) + ( – λ)ψ
k (Ck ,Dk)

)
< .

http://www.boundaryvalueproblems.com/content/2013/1/240
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Thus gk((Ck ,Dk);λ(x′
k(tk),x

′
k–(tk)) + ( – λ)k(Ck ,Dk)) �=  as g is strongly compatible

with �. Thus S(x,C,D,λ) �= , a contradiction. Similarly, the other cases (C,D) ∈ ∂� lead
to a contradiction, so (C,D) /∈ ∂�. Suppose x ∈ ∂�. By the choice of N , ‖x′

k(t)‖ < N for
all k. Assume that x(t̃) ∈ ∂�(t̃) for some t̃ ∈ J◦k . Then r(t̃,x(t̃)) = . Since (t,x(t)) ∈ �̄ for
t ∈ J◦k , it follows that r attains a local maximum at t̃ ∈ J◦k . Thus r′(t̃,x(t̃),x′(t̃)) = . How-
ever, r′′f (t̃,x(t̃),x′(t̃)) > , a contradiction. Thus H(λ, (x,C,D)) �=  for any (x,C,D) ∈ ∂�,
λ ∈ [, ).
Suppose thatH(λ, (x,C,D)) =  has a solution (x,C,D) ∈ ∂�. From the definition ofH,

x is a solution of () with G(C,D) = . Since G(C,D) �=  on ∂�, it follows that (C,D) /∈ ∂�.
Suppose x ∈ ∂�. By the choice of N , ‖x′

k(t)‖ < N for all k. Assume that x(t̃) ∈ ∂�(t̃) for
some t̃ ∈ J◦k . Then r(t̃,x(t̃)) = . Since (t,x(t)) ∈ �̄ for t ∈ J◦k , it follows that r attains a local
maximum at t̃ ∈ J◦k . Thus r′(t̃,x(t̃),x′(t̃)) = . However, r′′fλ (t̃,x(t̃),x

′(t̃)) >  by Lemma .
Since (Ck ,Dk) /∈ ∂�k and Bε(v(t)) ⊆ �(t) for all t ∈ [, ], so (vk(tk), vk–(tk)) ∈ �◦

k for  ≤
k ≤ q. Moreover, from Remark (i), �(t) is convex for all t ∈ [, ], it follows that xk(tk) =
λCk + ( – λ)vk(tk) /∈ ∂�k(tk) and xk–(tk) = λDk + ( – λ)vk–(tk) /∈ ∂�k–(tk) for all k =
, . . . ,q. Thus x /∈ ⋃

k ∂C�k . ThereforeH(λ, (x,C,D)) �=  for any (x,C,D) ∈ ∂�, λ ∈ [, ].
Suppose thatH(λ, (x,C,D)) =  has a solution (x,C,D) ∈ ∂�. From the definition ofH,

x is a solution of () with xk(tk) = vk(tk) /∈ ∂�k(tk) and xk–(tk) = vk–(tk) /∈ ∂�k–(tk) for
all  ≤ k ≤ q and G(C,D) = . Since G(C,D) �=  on ∂�, so (C,D) /∈ ∂�. Suppose x ∈ ∂�.
By the choice of N , ‖x′

k(t)‖ < N for all k. Assume that x(t̃) ∈ ∂�(t̃) for some t̃ ∈ J◦k . Then
r(t̃,x(t̃)) = . Since (t,x(t)) ∈ �̄ for t ∈ J◦k , it follows that r attains a local maximum at t̃ ∈ J◦k .
Thus r′(t̃,x(t̃),x′(t̃)) = . However, r′′f,λ (t̃,x(t̃),x

′(t̃)) >  by Lemma , so x /∈ ⋃
k ∂C�k . Thus

H(λ, (x,C,D)) �=  for any (x,C,D) ∈ ∂�, λ ∈ [, ].
ThereforeHi are homotopies for i = , , . For all λ ∈ [, ] and i = , , , by the homo-

topy invariance of the Leray-Schauder degree, we have

d
(
Hi(λ, ·),�, 

)
= constant.

In particular,

d(�,�, ) = d
(
H(, ·),�, 

)
= d

(
H(λ, ·),�, 

)
= d

(
H(λ, ·),�, 

)
= d

(
H(, ·),�, 

)
= d(I –MLT ,�,W ) · d(G,�, )

∈ {
d(G,�, ), –d(G,�, )

}
=

{ q∏
k=

d(Gk ,�k , ), –
q∏

k=

d(Gk ,�k , )

}

�= ,

where T is defined in () andW is given by

W (t) = wk
(
v
(
t+k

)
, v

(
t–k+

))
(t) +ML

∫ tk+

tk
Gk(t, s)vk(s)ds

for t ∈ (tk , tk+), where wk(v(t+k ), v(t
–
k+))(t) and Gk(t, s) are given in () and (), respec-

tively. Moreover, since V ∈ � is the solution of (), using the Leray index theorem, The-

http://www.boundaryvalueproblems.com/content/2013/1/240


Song and Thompson Boundary Value Problems 2013, 2013:240 Page 15 of 18
http://www.boundaryvalueproblems.com/content/2013/1/240

orem . in [], it is easy to show

d(I –MLT ,�,W ) = d(I –MLT ,� –V , )

= d(I –MLT ,B, ) ∈ {,–},

where B is an open ball in � – V = {x : x + V ∈ �}. Thus there is a solution (x,C,D) ∈ �

of H(, (x,C,D)) =  and x ∈ C
Q is a solution of (). By the above argument, x is the

required solution of (), (), and ().
Suppose now that gk for  ≤ k ≤ q is compatible with �k . Then there is a sequence

{gki}∞i= strongly compatible with �k and converging uniformly to gk on compact subsets
of �̄k ×R

n for  ≤ k ≤ q. Let yi be the corresponding solution. By compactness, there is a
subsequence of yij converging in C

Q to the desired solution of integral equation (), and
hence the differential equation, satisfying the boundary conditions and impulses. �

Remark 
(i) It is easy to see from the above proof that we can weaken our assumptions as

follows. We assume that f ∈ C({[, ] \Q} ×R
n;Rn) and look for solutions

x ∈ C
Q ∩C({[, ] \Q} ×R

n;Rn). Moreover, we may assume that r|J◦k ∈ C(J◦k ×R
n)

and has an extension rk ∈ C(J̄k ×R
n).

(ii) We can vary the assumptions on our admissible bounding sets. It is easy to see from
the proof that instead of assuming that pTrxx(t,x)p≥ �‖p‖ for some constants
� > , p ∈ R

n, and (t,x) ∈ �, it suffices to assume that pTrxx(t,x)p + pTrtx(t,x)≥ 
for p ∈ R

n and (t,x) ∈ �. Indeed, we can still recover our existence result by an
approximation argument if we can weaken this further to pTrxx(t,x)p≥  for p ∈R

n

and (t,x) ∈ �. We apply our Theorem using rε = r + ε x
 noting that rε,xx satisfies ()

and �ε = {(t,x) ∈ [, ]×R
n : rε(t,x) < } ⊆ �. Since solutions xε with (t,xε(t)) ∈ �̄ε

satisfy (t,xε(t)) ∈ �̄, we obtain derivative bounds independent of ε. Since ‖rx‖ �= 
on

⋃
k ∂C�k , strongly compatible boundary conditions on � will be strongly

compatible on �ε for  < ε sufficiently small. Letting ε approach  and choosing a
subsequence if necessary, xε converges to a solution of our problem.

6 Example
In this section we present an example to illustrate the power of our existence result. This
example is modeled on that in [] and we have added impulses.

Example  Let x = (x,x) and f = (f, f) and consider the problem

x′′
 = x + sinπ t – xx –w

(
t,x,x,x′

,x
′

)
xx

′
 +

x′



+ xx
′


= f
(
t,x,x′),

x′′
 = x + cosπ t + x +w

(
t,x,x,x′

,x
′

)
xx′



= f
(
t,x,x′) ()

http://www.boundaryvalueproblems.com/content/2013/1/240
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for t ∈ [, ] \ {/}, where w is a bounded continuous function. Let � =� ∪ �, where

� =
{
(t,x) ∈

[
,




]
×R

 : r(t,x) =
x


+
x


–


< 

}
,

� =
{
(t,x) ∈

(


, 

]
×R

 : r(t,x) =
x


+
x


–  < 
}
.

Let v(t) = (, ) for all t ∈ [, ], and let the Sturm-Liouville boundary conditions be given
by

x′() = x(), x′() = –x(). ()

Let the impulses be given by

x
(



–)
= x

(



+)
,

√
x

(



–)
= x

(



+)
,

x′


(



–)
– x′



(



+)
+ δx

(



–)[
 +

∣∣∣∣x
(



–)∣∣∣∣
]

= ,

x′


(



–)
–

√
x′



(



+)
+ δx

(



–)[
 +

∣∣∣∣x
(



–)∣∣∣∣
]

= , ()

where δ > .
To see that (�, v) is an admissible bounding set, first we note r′(t,x,p) = xp + xp and

r′′f (t,x,p) = x(x + sinπ t) + x(x + cosπ t)

+
(
x


+ 
)
p +

(
xxp


 + xp



)
,

for t ∈ (, )\{/}. If t ∈ (, /), r(t,x) =  and r′(t,x,p) = , thenKongson et al. [] proved
that r′′f >  for (t,x) ∈ ∂C�. We prove r′′f >  for (t,x) ∈ ∂C�.

Now ( x + )p + (xxp + xp) ≥ (p+x

p


)

 ≥  for all (t,x,p) ∈ �̄ ×R
 since ‖x‖ ≤ ,

‖x‖ ≤  
 . Moreover, it is not difficult to show that

x + x sinπ t + x + x cosπ t

≥ 
(
x


+
x


)
–

[
–
x


+
x


+
(
sin π t + cos π t

)]
> 

for (t,x) ∈ ∂C�. Thus r′′f (t,x,p) >  for (t,x) ∈ ∂C�.
It is not difficult to prove that f satisfies the Hartman-Nagumo condition. Some details

are similar to those in the analysis of Example  given in Kongson et al. [].
To show that the impulses given in () are compatible with �, let (C,D) =

(ψ
 (C,D),ψ 

 (C,D)) = ((–C,, –C,), (D,,D,)) be a strongly inwardly pointing vec-
tor field on � =�( 

+)× �( 
–). Then

r′

(


,C,ψ

 (C,D)
)
<  for C ∈ ∂�

(



+)
,

r′

(


,D,ψ 

 (C,D)
)
>  for D ∈ ∂�

(



–)
.
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Let g = (g,, g,) be given by

g,(C,D) = (D, –C,,
√
D, –C,) = ,

g,(C,D,u, v) =
(
v, – u, + δD,

[
 + |D,|

]
,

v, –
√
u, + δD,

[
 + |D,|

])
= 

for (C,D,u, v) ∈ �̄ × R
 so that the boundary conditions () are given by g(x( 

+),
x( 

–),x′( 
+),x′( 

–)) = . Therefore

G(C,D) = (g,, g,)
(
C,D,ψ

 (C,D),ψ 
 (C,D)

)
=

(
(D, –C,,

√
D, –C,),

((
 + δ

[
 + |D,|

])
D,

+C,,
(
 + δ

[
 + |D,|

])
D, +

√
C,

))
,

and so

G(C,D) ·
((

–


C,, –C,

)
, (D,,D,)

)
> 

for (C,D) ∈ ∂�. Thus

H(λ,C,D) = λG(C,D) + ( – λ)
((

–


C,, –C,

)
, (D,,D,)

)

is a homotopy for the Brouwer degree and

d(G,�, ) = d
(
H(, ·),�, 

)
= d

(
H(, ·),�, 

)
= d

(
H,(, ·),�

(



+)
, 

)
d
(
H,(, ·),�

(



–)
, 

)

= (–) = .

Therefore, the impulses are strongly compatible with � and hence compatible. Using a
similar proof, we can show that the boundary conditions given in () are strongly com-
patible with � and hence compatible.
Therefore our impulsive boundary value problem satisfies the conditions of Remark 

(ii) and therefore has a solution x ∈ C
{/} with x(t) ∈ �(t) for all t ∈ [, ].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors participated in the essential technical work of this article and read and approved the final manuscript. The
authors contributed to this work equally.

Acknowledgements
The first author thanks the University of Queensland for University of Queensland International Scholarship (UQI) and
University of Queensland Research Scholarship (UQRS).

Received: 16 July 2013 Accepted: 16 October 2013 Published: 11 Nov 2013

http://www.boundaryvalueproblems.com/content/2013/1/240


Song and Thompson Boundary Value Problems 2013, 2013:240 Page 18 of 18
http://www.boundaryvalueproblems.com/content/2013/1/240

References
1. Thompson, HB: Systems of differential equations with fully nonlinear boundary conditions. Bull. Aust. Math. Soc. 56,

197-208 (1997)
2. Kongson, J, Thompson, HB, Lenbury, Y: Multiple solutions for systems of differential equations with nonlinear

boundary conditions. Nonlinear Stud. 18, 27-50 (2011)
3. Schmitt, K, Thompson, R: Boundary value problems for infinite systems of second-order differential equations.

J. Differ. Equ. 18, 277-295 (1975)
4. Cabada, A, Thompson, HB: Nonlinear second-order equations with functional implicit impulses and nonlinear

functional boundary conditions. Nonlinear Anal. 74, 7198-7209 (2011)
5. Benchohra, M, Henderson, J, Ntouyas, SK: On a periodic boundary value problem for first order impulsive differential

inclusions. Dyn. Syst. Appl. 10, 477-488 (2001)
6. Shen, J: New maximum principles for first-order impulsive boundary value problems. Appl. Math. Lett. 16, 105-112

(2003)
7. Rachunková, I, Tvrdý, M: Impulsive periodic boundary value problem and topological degree. Funct. Differ. Equ. 9,

471-498 (2002)
8. Rachunková, I, Tvrdý, M: Existence results for impulsive second-order periodic problems. Nonlinear Anal. 59, 133-146

(2004)
9. Rachunková, I, Tvrdý, M: Non-ordered lower and upper functions in second order impulsive periodic problems. Dyn.

Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 12, 397-415 (2005)
10. Cabada, A, Liz, E, Lois, S: Green’s function and maximum principle for higher order ordinary differential equations with

impulses. Rocky Mt. J. Math. 30, 435-446 (2000)
11. Liu, Y, Yang, P, Ge, W: Solutions of two-point BVPs at resonance for higher order impulsive differential equations.

Nonlinear Anal. 60, 887-923 (2005)
12. Cabada, A, Liz, E: Discontinuous impulsive differential equations with nonlinear boundary conditions. Nonlinear Anal.

28, 1491-1497 (1997)
13. Erbe, LH, Liu, X: Existence results for boundary value problems of second order impulsive differential equations. J.

Math. Anal. Appl. 149, 56-69 (1990)
14. Liz, E: Existence and approximation of solutions for impulsive first order problems with nonlinear boundary

conditions. Nonlinear Anal. 25, 1191-1198 (1995)
15. Rachunková, I, Tomec̆ek, J: Impulsive BVPs with nonlinear boundary conditions for the second order differential

equations without growth restrictions. J. Math. Anal. Appl. 292, 525-539 (2004)
16. Polás̆ek, V Periodic BVP with φ-Laplacian and impulses. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 44,

131-150 (2005)
17. Cabada, A, Tomec̆ek, J: Extremal solutions for nonlinear functional φ-Laplacian impulsive equations. Nonlinear Anal.

67, 827-841 (2007)
18. Vial, J: Strong convexity of sets and functions. J. Math. Econ. 9, 187-205 (1982)
19. Evans, LC: Partial Differential Equation. Am. Math. Soc., Providence (2010)
20. Mawhin, J, Ureña, AJ: A Hartman-Nagumo inequality for the vector ordinary p-Laplacian and applications to

nonlinear boundary value problems. J. Inequal. Appl. 7, 701-725 (2002)
21. Thompson, HB: Second order ordinary differential equations with fully nonlinear two point boundary conditions. Pac.

J. Math. 172(255-277), 279-297 (1996)
22. Hartman, P: Ordinary Differential Equations. Wiley, New York (1964)
23. Deimling, K: Nonlinear Functional Analysis. Springer, Berlin (1985)

10.1186/1687-2770-2013-240
Cite this article as: Song and Thompson: Systems of differential equations with implicit impulses and fully nonlinear
boundary conditions. Boundary Value Problems 2013, 2013:240

http://www.boundaryvalueproblems.com/content/2013/1/240

	Systems of differential equations with implicit impulses and fully nonlinear boundary conditions
	Abstract
	MSC
	Keywords

	Introduction
	Notation and deﬁnitions
	Compatibility
	Nagumo-type conditions
	The main result
	Example
	Competing interests
	Authors' contributions
	Acknowledgements
	References


