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Abstract
This study considers the dynamics of cellular neural network-based inhomogeneous
lattice dynamical systems (CNN-based ILDS). The influence of three kinds of boundary
conditions, say, the periodic, Dirichlet, and Neumann boundary conditions, is
elucidated. We reveal that the complete stability of CNN-based ILDS and, under some
prescriptions, the topological entropies of CNN-based ILDS with/without the
boundary condition are identical.
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1 Introduction
In the past few decades, the standard cellular neural networks (CNNs) introduced byChua
and Yang [] have been one of the most investigated paradigms for neural information
processing []. In a wide range of applications, the CNNs are required to be completely
stable, i.e., each trajectory should converge toward some stationary state. In the study of
stationary solution, the investigation of mosaic solutions is most essential in CNNs due
to the learning algorithm and training processing. More abundant output patterns make
the learning algorithmmore efficient. Mathematically, the study of the mosaic solutions is
reasonable due to the following two facts: () complete stability of a wide range of param-
eters, and () the output function of CNNs is a piecewise linear function with constant
value for |x| ≥ ; namely,

f (x) =


(|x + | – |x – |).

The outputs y = (f (xi)), called patterns, are essential for understanding CNN systems.
Traditionally, the template for CNNs is homogeneous (also known as isotropic), i.e., the
template is space-invariant. However, there are more and more CNNs using inhomo-
geneous templates to describe some of the problems that arise from the biological and
ecological contexts [–], skeletonization [], image processing [, ], artificial loco-
motion control [], and delayed-type CNN [–]. Some new and interesting phenom-
ena of pattern formation and spatial chaos were also found in inhomogeneous multi-layer
neural networks. In this paper, the entropy with/without the boundary effect for stable
patterns of inhomogeneous CNN is investigated. Entropy is a quantity used for measur-
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ing the complexity of the output patterns and it plays an important role in learning al-
gorithm. Surprisingly, such a topic reveals the deep connection with symbolic dynam-
ical systems (SDS). In -d CNN, it has been proved that the space of the mosaic solu-
tions (defined later) forms a -d subshift of finite type (SFT, []). Recently, it has also
been proved that the mosaic solutions of a multi-layer CNN (MCNN) form a sofic space
[–], which is a factor of SFT. The mosaic solutions of inhomogeneous CNN, in-
deed, produce new shift spaces in SDS. To clarify the investigation of inhomogeneous
CNNs, we concentrate our discussion on two classes, and the methodology can be ap-
plied in a general case. More specifically, two types of inhomogeneous CNN, constant
and arithmetic CNN, are presented herein. It is proved that the space of the mosaic so-
lutions forms a new class in SDS (Theorem . and Theorem .), called a multiple
shift space, which was initiated from the study of the arithmetic regression property in
the number theory of mathematics [–]. The complexity (topological entropy) can
be computed due to the equivalence of the mosaic solutions and multiple shift spaces
(Theorem . and Theorem .). The positivity of entropy unveils the spatial chaos for
given systems and pattern formation for zero entropy. Such topics, e.g., pattern formation
or synchrony phenomena on LDS, have been investigated by many mathematicians and
physicists [–].
Besides the entropy formula being established, the boundary effect for constant CNNs

and arithmetic CNNs are also considered. Three types of boundary conditions, periodic,
Dirichlet, and Neumann, are proposed to a given constant CNN and arithmetic CNN.
Sufficient conditions are found for the preservation of entropy under the boundary con-
straint (Theorem . and Theorem .), i.e., hP = hD = hN = h. This extends the results
in the classical CNNs (cf. [, ]). The preservation of entropy under the boundary con-
straint is unavoidable []; since the number of nodes in a lattice is infinite, one usually
uses the finite approximation method to exploit the statistical properties of the whole lat-
tice.
Some related topics are also addressed herein. It is known that the mosaic solution

of single/multi-layer template-invariant CNNs is constrained by the so-called separation
property, namely, not all but some of the patterns that satisfy this property will appear as
the mosaic solution for a given CNN []. However, more combinations of mosaic pat-
terns will help the learning and training process to be more efficient. It is believed that the
template-variant or the multi-layer CNNwill achieve this goal. In mathematical language,
it means that h(T) will be ε-dense in [, log] when parameter T runs all of the param-
eter space, where h(T) denotes the entropy function according to the parameter T. It is
proved that constant CNNs possess the ε-dense property (Theorem .), and it seems
that arithmetic CNNs also satisfy the ε-dense property by numerical computation (Con-
jecture .). We believe that further interesting applications of the results presented (or of
the generalizations) can be obtained.
We organize the material in this paper as follows. Section  introduces the concepts

of general inhomogeneous CNN-based LDS and constant-type multiple CNNs. Stability,
partition of the parameter space and the equivalence of mosaic solutions with a multiple
shift space are discussed therein. This together with the exact number of mosaic solutions
under the boundary constraint (Lemma .) is used to derive the entropy formula and en-
tropy preservation property. Parallel discussions for arithmetic-type multiple CNNs can
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be found in Section . Some one- and two-dimensional examples are addressed in Sec-
tion , and we leave the discussion in Section .

2 Constant cellular neural networks
In this section, we investigate a specified type of inhomogeneous LDS named constant-
type multiple cellular neural network (constant CNN). To clarify the elucidation, Sec-
tion . concentrates on the constant CNNswith nearest neighborhood. The general cases
of constant CNNs and deeper architecture are investigated in the rest of this section.

2.1 Constant cellular neural networks with nearest neighborhood
First we consider the LDS realized as

{
d
dt xi+(t) = –xi+(t) + zo +

∑
|k|≤ ak;of (x(i+k)+(t)),

d
dt xi(t) = –xi(t) + ze +

∑
|k|≤ ak;ef (x(i+k)(t))

()

for i ∈ Z. Denote the parameters that relate to the odd and even positions by To =
[a–;o,a;o,a;o] and Te = [a–;e,a;e,a;e], respectively. We call T = [To,Te] the feedback
template of (), and z = [zo, ze] is the threshold. It is seen that the templates in () are
periodic; the prescribed model is a generalization of the classical cellular neural network
and is called the constant-type multiple cellular neural network.
A system of ordinary differential equations is called completely stable if each of its solu-

tion x approaches an equilibrium state. Let xo, xe denote the collection of cells in odd and
even coordinates, respectively. Express () as

ẋc = –xc +AcF(xc) + βc, ()

where c = o, e, xc ∈Rn, F(xc) ∈Rn is a diagonalmapping (herein F(xo) = (f (x), . . . , f (xn–))t

and F(xe) = (f (x), . . . , f (xn))t), and βc = (zc, . . . , zc)t ∈Rn. The sufficient conditions for the
complete stability of () are given as follows. The extension of Theorem . can be seen in
Theorem ..

Theorem . A constant CNN is completely stable if, for c = o, e, one of the following con-
ditions is satisfied.
S Tc is symmetric.
S Ac(i, i) >  and K–

c (i, j) ≥  for all i, j, where

Kc(i, j) =

{
Ac(i, i) – , i = j;
–|Ac(i, j)|, otherwise.

The complete stability of () demonstrates that the investigation of the equilibrium so-
lutions is essential. To make the discussion more clear, we focus on the mosaic solutions,
i.e., |xi| >  for all i, and study the complexity of the output space Y = {(yi) : yi = f (xi), i ∈ Z}
of the mosaic solutions. We investigate the complexity of the output space in two aspects:
• �n(Y): The exact number of patterns of length n.
• h(Y): The topological entropy of the output space.

http://www.boundaryvalueproblems.com/content/2013/1/249
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To achieve our target, we introduce the ordering matrix and transition matrix first. The
ordering matrix is defined as

X =

⎛
⎜⎜⎜⎝

–– –+ +– ++
–– ––– ––+ ∅ ∅

–+ ∅ ∅ –+– –++
+– +–– +–+ ∅ ∅

++ ∅ ∅ ++– +++

⎞
⎟⎟⎟⎠,

herein the pattern ‘–’ stands for the state yi = – and ‘+’ stands for yi = . Let

Yo =
{
(yi+) : (yi) ∈ Y

}
and Ye =

{
(yi) : (yi) ∈ Y

}
.

For c = o, e, define the transition matrix Tc of Yc by

Tc(i, j) =

{
, X(i, j) ∈ �(Yc);
, otherwise,

where�n(X) consists of patterns of length n inX. YieldingTo andTe, we derive the formula
of �n(Y) and h(Y). For the general cases of constant CNNs, Theorem . is generalized by
Lemma . and Theorem ..

Theorem . Suppose n = k + r for some k ≥ , r = , . To and Te are the transition
matrices of Yo and Ye, respectively. Then

�n(Y) =
∥∥Tk+r–

o
∥∥ · ∥∥Tk–

e
∥∥,

where ‖A‖ = �i,j|A(i, j)| for any nonnegative matrix A = (A(i, j)) ∈ Rm×n. Moreover, the
topological entropy of Y is

h(Y) =


log(ρo · ρe),

where ρo and ρe are the spectral radii of To and Te, respectively.

In the meantime, it is natural to elucidate the influence of boundary conditions on the
exact number of patterns of length n and topological entropy. Three types of boundary
conditions, periodic, Neumann, and Dirichlet boundary conditions, are considered. To
reflect the influence of the boundary conditions, we introduce three boundary matrices.
Let

E(o) =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ , E(e) =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ ,

E(u) =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ , E(l) =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ .
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The periodic boundary matrix RP is a ×  matrix defined by

RP =

⎛
⎜⎜⎜⎝
E(o) E(o) E(o) E(o)

E(o) E(o) E(o) E(o)

E(e) E(e) E(e) E(e)

E(e) E(e) E(e) E(e)

⎞
⎟⎟⎟⎠ .

The Neumann boundary condition infers zero flux on both sides of the space. The left and
right Neumann boundary matrices are then defined by

LN =

⎛
⎜⎜⎜⎝
E(u) E(u) E(u) E(u)

E(u) E(u) E(u) E(u)

E(l) E(l) E(l) E(l)

E(l) E(l) E(l) E(l)

⎞
⎟⎟⎟⎠ and RN =

⎛
⎜⎜⎜⎝
E(o) E(e) E(o) E(e)

E(o) E(e) E(o) E(e)

E(o) E(e) E(o) E(e)

E(o) E(e) E(o) E(e)

⎞
⎟⎟⎟⎠ ,

respectively. Furthermore, the Dirichlet boundary condition indicates that both sides of
the space are constant states and the corresponding boundary matrices are

LD– =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ , RD– =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ ,

LD+ =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ , RD+ =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ .

Herein D– and D+ relate to states ‘–’ (i.e., y = yn+ = –) and ‘+’ (i.e., y = yn+ = ), respec-
tively. Before presenting the formula of �B

n (Y) and hB(Y) under the boundary condition
B = P,N ,D–,D+, we introduce two operations of matrices.

Definition .
. Suppose that A ∈Mp×q(R) is a p× q matrix and B ∈Mr×s(R) is an r × smatrix.

The Kronecker product A⊗ B ∈Mpr×qs is defined by

A⊗ B =
(
A(i, j)B

)
≤i≤p,≤j≤q.

. Suppose that A,B ∈Mp×q(R) are p× q matrices. The Hadamard product
A ◦ B ∈Mp×q(R) is defined by

A ◦ B =
(
A(i, j)B(i, j)

)
≤i≤p,≤j≤q.

With the introduction of the boundarymatrices and theKronecker andHadamard prod-
ucts, we obtain Theorem . which reveals the formulae of exact number of patterns and
topological entropy under the influence of three kinds of boundary conditions. The ex-
tension of Theorem . for general constant CNNs is demonstrated by Lemma . and
Theorem ..
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Theorem . Suppose n = k + r for some k ≥ , r = , . To and Te are the transition
matrices of Yo and Ye, respectively. Then hB(Y) = h(Y), B = P,N ,D–,D+, if To and Te are
primitive matrices. Furthermore, the exact number of patterns of length n with boundary
condition B = P,N ,D–,D+ are as follows:
• The periodic boundary condition:

�P
n (Y) =

{
‖(Tk–

o ⊗ To) ◦ RP‖ · ‖Tk–
e ‖, r = ;

‖(Tk–
o ⊗ Tk–

e ) ◦ RP‖, r = .
()

• The Neumann boundary condition:

�N
n (Y) =

{
‖LN ◦ (Tk

o ⊗ Tk–
e ) ◦ RN‖, r = ;

‖((LN ◦ (Tk
o ⊗ Tk–

e ))⊗ Tk–
e ) ◦ (E ⊗ RN )‖, r = .

()

Herein E =
(  
 

)
.

• The Dirichlet boundary condition:

�B
n (Y) =

{
‖(LBTk–

e )⊗ (Tk–
o RB)‖, r = ;

‖Tk–
o ‖ · ‖LBTk

e RB‖, r = .
()

Herein B =D–,D+ relate to the conditions that the patterns on the boundary are ‘–’
and ‘+’, respectively.

2.2 Stability of constant cellular neural networks
The rest of this section extends the results in Section .. To make the paper compact, we
introduce the general setting for multi-dimensional inhomogeneous LDS and then con-
centrate on the one-dimensional case. The elucidation of multi-dimensional systems will
be investigated in another paper.
A D-dimensional inhomogeneous CNN-based LDS is realized as

d
dt

xi(t) = –xi(t) + zi +
∑
k∈Ni

ak;if
(
xk(t)

)
, ()

where i ∈ ZD, and Ni, which is a finite subset of ZD, indicates the neighborhood for neu-
ron xi. The piecewise linear function f (x) = 

 (|x+ |– |x– |) is called the output function;
z = [zi] refers to the threshold, and the feedback template T = [Ti]i∈ZD stores the weight of
local interaction between neurons, where Ti = [ak;i]k∈Ni .
An inhomogeneous CNN-based LDS is called a constant CNN if the neighborhoodN ,

the template T, and z are periodic up to shifts. More precisely, there exists � ∈ N such that
N ′ = {N ′

i : i ∈ ZD}, T′ = [T′
i]i∈ZD , and z = [zi]i∈ZD satisfyN ′

i+j� =N ′
i , T′

i+j� = T′
i, and zi+j� = zi

for i, j ∈ ZD, where

K′
i =Ki – i = {j – i : j ∈Ki}, K =N ,T.

It is seen that the constant CNNs generalize the concept of the classical CNNs that were
introduced in [, ]. More precisely, a classical CNN is a constant CNN with � = . The

http://www.boundaryvalueproblems.com/content/2013/1/249
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essential description of a one-dimensional constant CNN is presented in the following
form:

d
dt

xi(t) = –xi(t) + zi +
∑
k∈Ni

ak;if
(
xi+�·k(t)

)
, ()

where  ≤ i ≤ � and i = i (mod �). Without loss of generality, we assume Ni = {–d, . . . , ,
. . . ,d} for some d ∈ N,  ≤ i ≤ �. In this case, the feedback template of () is T = [Tj]≤j≤�,
where Tj = [a–d;j, . . . ,a;j, . . . ,ad;j]. A stationary solution x = (xi)i∈Z is called a mosaic solu-
tion if |xi| >  for all i ∈ Z, and y = (yi)i∈Z = (f (xi))i∈Z is called a mosaic pattern. A system
of ordinary differential equations is said to be completely stable if every trajectory tends
to an equilibrium point. Theorem . infers that a constant CNN is a completely stable
system. (We remark that Theorem . is an extension of Theorem ..)

Theorem . Suppose that (T,z) is the template of () and the system is written as

ẋj = –xj +AjF(xj) + βj, ≤ j ≤ n.

Then a constant CNN is completely stable if, for ≤ j ≤ �, one of the following conditions is
satisfied.
() Tj is symmetric.
() Kj is nonsingular and K–

j ≥ , where Kj is defined in ().

Let� = {, . . . ,�} be a finite index set. The one-dimensional latticeZ can be decomposed
into � non-overlapping subspaces

Z =
⋃
j∈�

Zj =
⋃
j∈�

{m :m = C� + j,C ∈ Z} =
⋃
j∈�

{ji, i ∈ Z}.

Equation () can then be restated as

d
dt

xji = –xji + zj +
∑
|k|≤d

ak;jf (xji+k ), j ∈ �, i ∈ Z. ()

(It is easily seen that ji = j + �i. We reindex the coordinates of neurons to clarify the up-
coming investigation.) To proveTheorem., we consider two kinds of feedback templates
separately. For the case that the feedback template of a classical CNN is symmetrical, Forti
and Tesi demonstrated that it is completely stable.

Theorem . ([]) A classical CNNwith symmetric feedback template is completely sta-
ble.

For the case that the feedback template is not symmetrical, suppose that a CNN with
n-neurons is described as follows:

ẋ = –x +AF(x) + β , ()

http://www.boundaryvalueproblems.com/content/2013/1/249


Ban and Chang Boundary Value Problems 2013, 2013:249 Page 8 of 26
http://www.boundaryvalueproblems.com/content/2013/1/249

where x ∈ Rn, A is an n× n constant matrix with diagonal elements satisfying

A(i, i) > , i = , , . . . ,n,

F(x) = (f (x), f (x), . . . , f (xn))t ∈ Rn is a diagonal mapping from Rn to Rn, and β =
(β,β, . . . ,βn)t is a constant vector. Takahashi and Chua proposed a criterion to deter-
mine whether a CNN is completely stable.

Theorem . ([]) Let K be an n× n matrix satisfying

K (i, j) =

{
A(i, i) – , i = j;
–|A(i, j)|, otherwise

()

for  ≤ i, j ≤ n. A classical CNN with asymmetric feedback template is completely stable if
K is nonsingular and K– ≥ , herein a matrix A ≥ means that A(i, j) ≥  for all i, j.

It comes immediately from Theorem . that if the feedback template A = [a–,a,a] of
a CNN is asymmetric, then the system is completely stable provided there exists a positive
constant r such that

a > r–a– + ra. ()

Proof of Theorem . Suppose |�| = ; in this case, a constant CNN is deduced to be a
classical CNN.Theorem. infers that a constantCNN is completely stable if the feedback
templateT is symmetrical.WheneverT is asymmetric, the system is still completely stable
if the matrix K defined in () is nonsingular and K– ≥ . It is indicated via () that a
constant CNN can be decomposed into � independent CNN subsystems, the complete
stability of a constant CNN comes from the complete stability of every subsystem. �

For a fixed template, the collection of mosaic patterns Y = {y = (yi)i∈Z : yi = f (xi), |xi| > }
is called the output space of (). Since the neighborhoodNi is finite for each i, the output
space is determined by the so-called admissible local patterns. Suppose that y is a mosaic
pattern, for each j ∈ � and i ∈ Z, the necessary and sufficient condition for yji =  is

a;j –  + zj > –
∑

<|k|≤d

ak;jyji+k , ()

and the necessary and sufficient condition for yji = – is

a;j –  – zj >
∑

<|k|≤d

ak;jyji+k . ()

Set

Bj(+) =
{
y–d · · · y · · · yd : y–d, . . . , yd ∈ {–, } satisfy (), y = 

}
,

Bj(–) =
{
y–d · · · y · · · yd : y–d, . . . , yd ∈ {–, } satisfy (), y = –

}
.

http://www.boundaryvalueproblems.com/content/2013/1/249
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The set of admissible local patterns B of a constant CNN is then

B(T,z) =
(
B(+), . . . ,B�(+),B(–), . . . ,B�(–)

)
.

Similar to the discussion in [], the output space Y can be represented as

Y =
{
y = (yji ) : yji–d · · · yji · · · yji+d ∈ (Bj(+),Bj(–)

)
for j ∈ �, i ∈ Z

}
.

(Recall that in the above equation, ji = j + �i.)
One of the important research issues in the circuit theory is the learning problem. That

is to say, mathematically, for what and how many phenomena the constant CNNs are ca-
pable of exhibiting. Theorem . infers that once |N | =max{|Nj| : j ∈ �} is fixed, there are
finitely many equivalent classes of templates T and z so that the basic sets of admissible
local patterns B(T,z) are constrained. Let Pn = {(T, z) : T = [a–d, . . . ,ad] ∈ Rd+, z ∈R} be
the parameter space of the classical CNNs, where n = d + . Theorem . indicates that
the Pn can be partitioned into a finite number of subregions such that each subregion has
the same mosaic patterns.

Theorem . ([]) There is a positive integer K (n) and a unique set of open subregions
{Pk}Kk= satisfying

(i) Pn =
⋃K

k= Pk ,
(ii) Pi ∩ Pj =∅ if i 
= j,
(iii) (T, z) and (T′, z′) ∈ Pk for some k if and only if B(T, z) = B(T′, z′).
Here P is the closure of P in Pn.

Let P = {(T, z) : T = [T, . . . ,T�], z = [z, . . . , z�]} be the parameter space of (). The fol-
lowing theorem demonstrates thatP is also partitioned into a finite number of equivalent
subregions.

Theorem . (Separation property) There is a positive integer K and a unique set of open
subregions {Pk}Kk= satisfying

(i) P =
⋃K

k= Pk ,
(ii) Pi ∩ Pj =∅ if i 
= j,
(iii) (T, z) and (T′, z′) ∈ Pk for some k if and only if B(T, z) = B(T′, z′).

Proof Similar to the proof of Theorem ., a constant CNN is reduced to a classical CNN
whenever |�| = , hence Theorem . is performed in this case. When |�| ≥ , the basic
set of admissible local patterns B(T, z) of () is the ordered union of the basic set of ad-
missible local patterns B(Tj, zj). More specifically, P is isomorphic to the direct product∏

j∈� Pj, where Pj is the parameter space of ()j, the subsystem of () restricting to the
cells {xC�+j}C∈Z. Since, for j = , . . . ,�, each parameter space Pj is partitioned into a finite
number of equivalent subregions by Theorem ., P is then the union of a unique set
of open subregions {Pk}Kk= which satisfies conditions (i) to (iii). This derives the desired
result. �

Let q ≥  be an integer, and let 	 be a subset of the symbolic space �m = {, . . . ,m – }Z
which is invariant under the shift map σ :�m → �m defined by σ (x)i = xi+. Denote

X	 =
{
ω = (xk)∞k= ∈ �m : (xi+qj)j∈Z ∈ 	 for all i

}
,

http://www.boundaryvalueproblems.com/content/2013/1/249
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which is invariant under σ . The set X	 is called a multiple subshift if 	 is a subshift.
Equation () together with the proof of Theorem . asserts that the output space Y of
a constant CNN is decomposed into subspaces Y, . . . ,Y�. Observe that Y is topologically
conjugated to the direct product of the output spaces Yj of the classical CNNs, that is,
Y ∼= ∏j∈� Yj, where Yj is determined by Bj = (Bj(+),Bj(–)). This derives Theorem .,
which indicates that the output space of a constant CNN is a multiple subshift for some
parameters.

Theorem . Given a set of templates (T,z), where T = [T, . . . ,T�] and z = [z, . . . , z�].
Let Y be the solution space of the constant CNN with respect to (T,z). Then

Y ∼= X	

if Ti = Tj and zi = zj for  ≤ i, j ≤ �, where 	 is a SFT that comes from the output space of
the classical CNN with respect to template (T, z).

2.3 Boundary effect on constant cellular neural networks
This subsection elucidates the influence of the boundary condition on the exact number
of mosaic patterns of finite length and on the growth rate as the length increases. The
investigation startswith formulating the number of patterns. Denote byZn× = {k ∈ Z : ≤
k ≤ n} the coordinates of the neurons. In this case, the boundary sites are B = {,n + }.
For the constant CNNs on Zn×, the following three types of boundary conditions are
considered:

(i) ()n-N: constant CNNs with Neumann boundary condition on Zn×;
(ii) ()n-P: constant CNNs with periodic boundary condition on Zn×;
(iii) ()n-D: constant CNNs with Dirichlet boundary condition on Zn×.
These boundary conditions are discrete analogues of the ones in PDEs; to be specific,

a pattern y · · · yn satisfies: (i) the Neumann boundary condition if yn+ = yn and y = y;
(ii) the periodic boundary condition if yn+ = y; (iii) the Dirichlet boundary condition if
y and yn+ are prescribed.
SinceY ∼= ∏j∈� Yj, the total number of patterns of finite length in a constantCNNrelates

to the number of patterns in the subspaces. For each j ∈ �, there is a transition matrix
Tj that is implemented for the investigation of the subspace Yj

a (cf. [] and Section ).
Lemma . elucidates the exact number of mosaic patterns of length n of a constant CNN
without the influence of the boundary condition. The verification is straightforward and
is omitted.

Lemma . For n ∈N, write n = k� + r for some k ∈ Z and r = , . . . ,� – . Then

�n(Y) =
(∏

j≤r

�k+(Yj)
)(∏

j>r

�k(Yj)
)
,

where j ∈ �, and �q(X) denotes the number of patterns of length q in X .

Let �B
n (Y) denote the collection of output patterns of length n with boundary condition

B, whereB = P,N , andD stands for the periodic, Neumann, andDirichlet boundary condi-
tions, respectively. To find the exact number �B

n (Y) = |�B
n (Y)|, we introduce the following

boundary matrices.

http://www.boundaryvalueproblems.com/content/2013/1/249
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(i) Periodic boundary matrix RP = td ⊗ (( E(o)
E(e)
)⊗ d–

)
. More precisely,

RP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E(o) · · · E(o)

...
...

E(o) · · · E(o)

E(e) · · · E(e)

...
...

E(e) · · · E(e)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈Md×d (R).

(ii) Dirichlet boundary matrices LD– = I(u), LD+ = I(l), RD– = I(o), and RD+ = I(e) stands
for the left/right Dirichlet boundary condition that is given by ‘–’ and ‘+’,
respectively.

(iii) Neumann boundary matrices LN = td ⊗ (( E(u)
E(l)
)⊗ d–

)
,

RN = td– ⊗ ((E(o) E(e))⊗ d ). More precisely,

LN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E(u) · · · E(u)

...
...

E(u) · · · E(u)

E(l) · · · E(l)

...
...

E(l) · · · E(l)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, RN =

⎛
⎜⎜⎝
E(o) E(e) · · · E(o) E(e)

...
...

...
...

E(o) E(e) · · · E(o) E(e)

⎞
⎟⎟⎠ .

Here ⊗ is the Kronecker product, E is a d × d matrix with entries being ’s, I is the
d × d identity matrix, and k is a k ×  column vector with entries being ’s. Suppose
that M is a k × k matrix. Define M(o)/M(e) by letting all the even/odd columns be zero
vectors. Furthermore, M(u)/M(l) indicates the matrix obtained from M by setting each of
the lower-/upper-half rows as a zero vector.
Recall that a set function χ : R → {, }R is defined by χ (E)(x) := χE(x) =  if and only if

x ∈ E for E being a nonempty subset of R. For n ∈N, define

k(n) =
([

n
�

]
– d

)
χN

([
n
�

]
– d

)
. ()

It is seen that k(n) is a nonnegative integer. To clarify the formulae of the exact number
of patterns of length n of constant CNNs with boundary conditions, we introduce some
notations first. Suppose n = k� + r, where  ≤ r ≤ � – . For j ∈ �, set

Kj(n) =

{
k(n), j > r;
k(n) + , otherwise

()

and

mj(n) =

⎧⎪⎨
⎪⎩

‖TKj(n)
j ‖, Kj(n) > ;

k , Kj(n) =  and j > r;
k+, otherwise.

()

http://www.boundaryvalueproblems.com/content/2013/1/249
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Herein ‖M‖ refers to the -norm of the matrixM. Lemma . demonstrates the explicit
formulae of the number of patterns of length n with boundary conditions.

Lemma . Let n = k�+ r,where  ≤ r ≤ �–. Suppose k ≥ d+, then the exact number
�B
n (Y) with boundary condition B ∈ {P,N ,D–,D+} are as follows:
(i) The periodic boundary condition:

�P
n (Y) =

{
‖(TK(n)

 ⊗ T) ◦ RP‖∏j>mj(n), r = ;
‖(TK(n)

 ⊗ TKr+(n)+
r+ ) ◦ RP‖∏j 
=,r+mj(n), otherwise.

()

(ii) The Dirichlet boundary condition:

�B
n (Y) =

{
‖LBTK�(n)+

� RB‖∏j<� mj(n), r = � – ;
‖(LBTK�(n)+

� )⊗ (TKr+(n)+
r+ RB)‖∏j 
=r+,� mj(n), otherwise,

()

where B =D–/D+ means the pattern on the boundary is ‘–/+’.
(iii) The Neumann boundary condition:

�N
n (Y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖LN ◦ (TK(n)+
 ⊗ TK�(n)+

� ) ◦ RN‖∏j 
=,� mj(n), r = ;
‖[(LN ◦ (TK(n)+

 ⊗ TK�(n)+
� ))⊗ TK(n)+

 ]
◦ (E ⊗ RN )‖∏�–

j= mj(n), r = ;
‖[TK�–(n)+

�– ⊗ (LN ◦ (TK(n)+
 ⊗ TK�(n)+

� ))]
◦ (E ⊗ RN )‖∏�–

j= mj(n), r = � – 

()

and

�N
n (Y) =

∥∥LN ◦ (TK(n)+
 ⊗ TK�(n)+

�

)∥∥
· ∥∥(TKr(n)+

r ⊗ TKr+(n)+
r+

) ◦ RN∥∥ ∏
j 
=,r,r+,�

mj(n), ()

otherwise.
Here E is a × matrix with entries being ’s, and ◦ means the Hadamard product.

Proof Weaddress the proof of�P
n (Y), where the other cases can be verified in an analogous

method.
Suppose that r = . It is seen from Lemma . that

�P
n (Y) = �P

k+(Y)
�∏
j=

�k(Yj).

At the same time, k ≥ d+ indicates thatKj(n) >  for all j. A straightforward examination
demonstrates that

�P
k+(Y) =

∥∥(TK(n)
 ⊗ T

) ◦ RP∥∥
and �k(Yj) =mj(n) for j = , . . . ,�. Therefore, we have

�P
n (Y) =

∥∥(TK(n)
 ⊗ T

) ◦ RP∥∥∏
j>

mj(n).

http://www.boundaryvalueproblems.com/content/2013/1/249
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If r > , then yn+ = y and

�P
n (Y) = �P

k+(Y,Yr+)
∏

j 
=,r+
�k(Yj),

where �P
k+(Y,Yr+) refers to the number of patterns

y; · · · y;k+yr+; · · · yr+;k+

with yr+;k+ = y;, and y; · · · y;k+ and yr+; · · · yr+;k+ are patterns of length k+ in Y and
Yr+, respectively. It is verified that

�P
k+(Y,Yr+) =

∥∥(TK(n)
 ⊗ TKr+(n)+

r+
) ◦ RP∥∥.

This derives

�P
n (Y) =

∥∥(TK(n)
 ⊗ TKr+(n)+

r+
) ◦ RP∥∥ ∏

j 
=,r+
mj(n)

and completes the proof. �

Next, to study the influence of boundary conditions on the exact number of patterns of
finite length, we consider the effect on the growth rate of the number of patterns; more
specifically, the topological entropy of the output space Y. The topological entropy h(X)
of a space X is defined by

h(X) = lim
n→∞

log�n(X)
n

. ()

The existence of h(Y) comes immediately from the submultiplicativity of {�n(Y)}n∈N,
which can be verified by applying Lemma .. Theorem . declares the formula of the
topological entropies of the constant CNNs, and the relation between the topological en-
tropies of the constant CNNs and the classical CNNs.

Theorem . h(Y) = 
�

∑
j∈� h(Yj). Moreover, hB(Y) = h(Y) for B ∈ {P,N ,D–,D+} pro-

vided Yj is mixing for all j ∈ �.

Proof For n ∈N, there exists a unique n� ∈ Z such that

n� ≤ n
�
< n� + .

Lemma . infers that

�∏
j=

�n�
(Yj) ≤ �n(Y) <

�∏
j

�n�+(Yj).

Applying the squeeze theorem, we have

h(Y) = lim
n→∞

log�n

n
=

�

�∑
j=

h(Yj) =

�

�∑
j=

logρ(Tj).

This completes the first part of the proof.

http://www.boundaryvalueproblems.com/content/2013/1/249
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To evaluate the boundary effect on the topological entropy of Y, we demonstrate that
hP(Y) = h(Y). The other cases can be done analogously. Let τ denote the smallest inte-
ger such that T τ

j >  for j ∈ �, restated, Tτ
j (p,q) >  for  ≤ p,q ≤ d . According to the

definition of RP ,

∥∥(A⊗ B) ◦ RP∥∥ =∑
i=l′

A
(
i, i′
)
B
(
l, l′
)
.

Suppose n = k� + r. Lemma . implements

�P
n+τ�(Y) =

∥∥(TK(n)+τ
 ⊗ T

) ◦ RP∥∥∏
j>

mj(n + τ�)

=
(∑

i=l′
TK(n)+τ


(
i, i′
)
T
(
l, l′
))(∏

j>

mj(n + τ�)
)

≥
∏
j≥

mj(n) = �n(Y),

if r = , and

�P
n+τ�(Y) =

∥∥(TK(n)+τ
 ⊗ TKr+(n)+τ+

r+
) ◦ RP∥∥ ∏

j 
=,r+
mj(n + τ�)

=
(∑

i=l′
TK(n)+τ


(
i, i′
)
TKr+(n)+τ+
r+

(
l, l′
))( ∏

j 
=,r+
mj(n + τ�)

)

≥
∏
j≥

mj(n) = �n(Y),

otherwise. On the other hand, it is easily checked that

�P
n (Y) ≤ �n(Y).

The above observation derives that

�P
n (Y) ≤ �n(Y)≤ �P

n+τ�(Y),

and thus we have hB(Y) = h(Y). �

The following theorem comes immediately from Theorem ., the proof is omitted.

Theorem . The set of topological entropies of the constant CNNs is dense in the closed
interval [, log].More precisely, given ε >  and λ ∈ [, log], there exists a constant CNN
such that |h(Y) – λ| < ε.

3 Arithmetic cellular neural networks
This section elucidates another kind of inhomogeneous CNN-based LDS named arith-
metic-typemultiple cellular neural network (arithmetic CNN). It is seen that the templates
of a constant CNN are periodic; in other words, the number of distinct templates is finite.

http://www.boundaryvalueproblems.com/content/2013/1/249
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This section investigates inhomogeneous CNNs whose number of distinct templates is
infinite. First we consider a one-dimensional LDS with nearest neighborhood to interpret
the idea of our methodology, then the derived results are generalized to general cases in
the rest of this section.

3.1 Arithmetic cellular neural networks with nearest neighborhood
To clarify the study of an inhomogeneous LDS with nearest neighborhood, we consider
the following system,

d
dt

xqi (t) = –xqi (t) + zq + a;qf
(
xqi (t)

)
+ a;qf

(
xqi+ (t)

)
, ()

where i ≥  and q ≥  is odd. The feedback template T = [T,T,T, . . .] consists of
infinitely many subtemplates Tq = [a;q,a;q] for q = k + , k ≥ , and the threshold
z = [z, z, z, . . .] is an infinite vector. An inhomogeneous CNN realized as () is called
the arithmetic CNN.
Similar to the discussion in the previous subsection, we demonstrate that arithmetic

CNNs are completely stable. Let xq = (xq,xq, . . . ,xnq–q) denote the collection of cells re-
lated to initial coordinate q. Express () as

ẋq = –xq +AqF(xq) + βq, ()

where Aq and βq are similar to those defined in the previous subsection. A sufficient con-
dition for the complete stability of () is presented as Theorem ., which is a special case
of Theorem ..

Theorem . An arithmetic CNN is completely stable ifAq(i, i) >  and K–
q (i, j) ≥  for all

q, i, j, where

Kq(i, j) =

{
Aq(i, i) – , i = j;
–|Aq(i, j)|, otherwise.

Following the complete stability of an arithmetic CNN is the spatial complexity of the
output space and the influence of boundary conditions. Note that the output space Y =
{(yi) : yi = f (xi), i ∈ N} is different from the one in the previous subsection. The ordering
matrix is then defined as

X =

( – +
– –– –+
+ +– ++

)
.

After redefining the ordering matrix, we obtain a sequence of transition matrices Tq cor-
responding to Yq = {(yqi– ) : (yi) ∈ Y} for q = k + , k ≥ . The following theorem exhibits
the computation of �n(Y) and h(Y). Furthermore, Theorem . is generalized to Theo-
rem . for general arithmetic CNNs.

Theorem . Suppose that Y is the output space of an arithmetic CNN. Then

�n(Y) =
(∏
q≤n

∥∥T [log n
q ]–

q
∥∥) ·

∏
q>n

,

http://www.boundaryvalueproblems.com/content/2013/1/249
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where q is odd and [·] is the Gauss function. Furthermore, the topological entropy of Y is

h(Y) = lim
n→∞


n

(∑
q≤n

log
∥∥T [log n

q ]–
q

∥∥ +∑
q>n

log
)
.

For the influence of the boundary conditions, we define the boundary matrices as fol-
lows. Let

E(o) =

(
 
 

)
, E(e) =

(
 
 

)
, E(u) =

(
 
 

)
, E(l) =

(
 
 

)
.

The periodic boundary matrix RP is a ×  matrix defined by

RP =

(
E(o) E(o)

E(e) E(e)

)
,

and the left and right Neumann boundary matrices are then defined by

LN =

(
E(u) E(u)

E(l) E(l)

)
and RN =

(
E(o) E(e)

E(o) E(e)

)
,

respectively. Furthermore, the Dirichlet boundary matrices are

LD– = RD– =

(
 
 

)
, LD+ = RD+ =

(
 
 

)
.

To simplify the formulae of �B
n (Y), the following theorem presents the specific case. The

general case is postponed to Lemma . and Theorem ..

Theorem . Suppose n = k –  for some k and Y is the output space of an arithmetic
CNN. Then hB(Y) = h(Y), B = P,N ,D–,D+, if Tq are primitive for all q. Furthermore, the
exact number of patterns of length n with boundary condition B = P,N ,D–,D+ are as fol-
lows:
• The periodic boundary condition:

�P
n (Y) =

∥∥(Tk
 ⊗ T

) ◦ RP∥∥( ∏
q>,q≤n

∥∥T [log n
q ]–

q
∥∥) ·

∏
q>n

. ()

• The Neumann boundary condition:

�N
n (Y) =

∥∥(Tk
 ⊗ T

) ◦ RN∥∥( ∏
q>,q≤n

∥∥T [log n
q ]–

q
∥∥) ·

∏
q>n

. ()

• The Dirichlet boundary condition:

�P
n (Y) =

∥∥Tk+
 RB∥∥( ∏

q>,q≤n

∥∥T [log n
q ]–

q
∥∥) ·

∏
q>n

, ()

where B =D–,D+.

http://www.boundaryvalueproblems.com/content/2013/1/249
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3.2 Stability of arithmetic cellular neural networks
The rest of this section considers the inhomogeneous CNN-based LDSwith the neighbor-
hood N consisting of infinitely many elements. A D-dimensional inhomogeneous CNN-
based LDS is called an arithmetic CNN if the neighborhood N , the template T, and the
threshold z are periodic up to a multiplication. More precisely, there exists a positive in-
teger � ≥  such thatb

N ′
i =N ′

j , T′
i = T′

j, zi = zj whenever
jk
ik

=  (mod �),k = , . . . ,D.

Herein

K′
i =

Ki

i
=
{(

j
i
, . . . ,

jD
iD

)
: j ∈Ki

}
.

The essential description of a one-dimensional arithmetic CNN is that z = [zj]��j andN =
{Nj}��j. More precisely, a one-dimensional arithmetic CNN is realized as the form

d
dt

xi(t) = –xi(t) + zi +
∑
k∈Ni

ak;if
(
xi·�k (t)

)
, i ∈N, ()

where � � i, i≥ i, i
i =  (mod �), andNi = {, , . . . ,di} for some di ∈N.

Let � = {j : � � j} be an infinite index set. The set of positive integers N is then decom-
posed into the disjoint union of infinitely many subsets by

N =
⋃
j∈�

Nj =
⋃
j∈�

{
j�i : i≥ 

}
:=
⋃
j∈�

{ji}i≥,

where ji = j�i for j ∈ �, i ≥ . Equation () can then be represented as

d
dt

xji (t) = –xji (t) + zj +
∑

≤k≤dj

ak;jf
(
xji+k (t)

)
, j ∈ �, i≥ . ()

In this case, the feedback templateT = [Tj]j∈� consists of infinitelymany smaller templates
Tj = [a;j, . . . ,adj ;j], and the threshold is z = [zj]j∈�. Similar to the discussion in the previous
section, Theorem . asserts that an arithmetic CNN is completely stable. The proof is
omitted.

Theorem . Suppose that an arithmetic CNN is presented as

ẋj = –xj +AjF(xj) + βj, j ∈ �.

Then the system is completely stable if Kj ≥  for all j ∈ �, where Kj comes from Aj defined
in ().

Suppose that y is a mosaic pattern; for each j ∈ � and i ≥ , the necessary and sufficient
condition for yji =  is

a;j –  + zj > –
∑

<k≤dj

ak;jyji+k , ()

http://www.boundaryvalueproblems.com/content/2013/1/249
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and the necessary and sufficient condition for yji = – is

a;j –  – zj >
∑

<k≤dj

ak;jyji+k . ()

Set

Bj(+) =
{
y · · · ydj : y, . . . , ydj ∈ {–, } satisfy (), y = 

}
,

Bj(–) =
{
y · · · ydj : y, . . . , ydj ∈ {–, } satisfy (), y = –

}
.

The set of admissible local patterns B of an arithmetic CNN is then

B(T,z) =
(
Bj(+),Bj(–)

)
j∈�

.

The output space Y is then represented as

Y =
{
y = (yji ) : yji · · · yji+dj ∈ (Bj(+),Bj(–)

)
for j ∈ �, i≥ 

}
.

Recall that the output space Y of a constant CNN can be decomposed into finitely many
subspaces Yj such that Yj is a SFT for each j. In other words, the output space of a constant
CNN extends the concept of SFTs. The output space of an arithmetic CNN is decomposed
into countable subspaces; more precisely, Y ∼= ∏j∈� Yj, where Yj is determined by the ba-
sic set of admissible local patterns Bj = (Bj(+),Bj(–)). Theorem . demonstrates that the
output space of an arithmetic CNN is a generalization of the so-calledmultiplicative shifts.
In [], the authors introduced the concept of multiplicative subshifts in the context of

symbolic dynamical systems. Let 	 be a subshift of �m = {, . . . ,m – }N. Define

X	 =
{
ω = (ωk)∞k= : (ωjqi )i≥ ∈ 	 for j � i

}
,

which is invariant under the action of multiplicative integers:

(ωk) ∈ X	 ⇒ (ωrk)k∈N ∈ X	 for r ∈N.

Then X	 is called a multiplicative subshift. We define a semigroup action on �m by the
following. For any r ∈ N and ω = (ω,ω,ω, . . .) ∈ �m, the action r : �m → �m is given
by r(ω) = (ωr ,ωr ,ωr , . . .). It is seen that X	 is invariant under the action. In other words,
(X	,N) defines a multiplicative subshift.
A straightforward examination indicates that the output space Y of an arithmetic CNN

is a multiplicative subshift if the neighborhood and the templates of () are invariant;
restated,Ni =Nj and Ti = Tj for all i, j ∈ �. The proof is omitted.

Theorem . Given a set of templates (T,z). Let Y be the solution space of the arithmetic
CNN with respect to (T,z). Then Y is a multiplicative subshift ifNi =Nj and Ti = Tj for all
i, j ∈ �.More precisely,

Y ∼= X	,

http://www.boundaryvalueproblems.com/content/2013/1/249
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where 	 is the SFT that comes from the output space of the classical CNN with respect to
the template (T, z).

3.3 Boundary effects on arithmetic cellular neural networks
Recall that a set function χ : R → {, }R is defined by χ (E)(x) := χE(x) =  if and only if
x ∈ E for E is a nonempty subset of R. For n ∈ N and j ∈ � such that j < n, define

kj(n) =
[
log�

n
j

]
, ()

Kj(n) =
(
kj(n) – dj + 

)
χN

(
kj(n) – dj + 

)
. ()

It is seen that both kj(n) and Kj(n) are nonnegative integers. To clarify the formulae of the
exact number of patterns of length n of an arithmetic CNN with boundary condition, we
introduce some notations first. Set

mj(n) =

{
‖TKj(n)

j ‖, Kj(n) > ;
kj(n)+, otherwise.

()

Recall that Tj is the transition matrix of Yj.
The exact number of patterns of the arithmetic CNNs with boundary condition is ob-

tained via a small modification of the discussion in the proof of Lemma .. Before pre-
senting the formulae, we assume that dj = d >  for all j and redefine the boundarymatrices
as follows. Suppose that E is a d– × d– matrix with all entries being ’s. The periodic
boundary matrix, left and right Neumann boundary matrices are d– × d– matrices
given by

RP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E(o) · · · E(o)

...
...

E(o) · · · E(o)

E(e) · · · E(e)

...
...

E(e) · · · E(e)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, LN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E(u) · · · E(u)

...
...

E(u) · · · E(u)

E(l) · · · E(l)

...
...

E(l) · · · E(l)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

RN =

⎛
⎜⎜⎝
E(o) E(e) · · · E(o) E(e)

...
...

...
...

E(o) E(e) · · · E(o) E(e)

⎞
⎟⎟⎠ ,

respectively. The left and right Dirichlet boundary matrices are defined as

LD– = I(u), LD+ = I(l), RD– = I(o), RD+ = I(e),

where I is the d– × d– identity matrix. The formulae of �B
n (Y) are addressed as follows

and the demonstration is omitted.
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Lemma . Suppose n = �k – , then

�P
n (Y) =

∥∥(TK(n)
 ⊗ T

) ◦ RP∥∥∏
j≥

mj(n), ()

�B
n (Y) =

∥∥TK(n)+
 RB∥∥∏

j≥

mj(n), B ∈ {D–,D+}, ()

�N
n (Y) =

∥∥(TK(n)
 ⊗ T

) ◦ RN∥∥ ∏
<j<n–

mj(n). ()

Suppose n = q�k – , where � � q, q 
= , and k ≥ . Then:
(i) The periodic boundary condition:

�P
n (Y) =

∥∥(Tk(n)+
 ⊗ Tkq(n)

q
) ◦ RP∥∥ ∏

<j 
=q
mj(n). ()

(ii) The Dirichlet boundary condition:

�B
n (Y) =

∥∥Tkq(n)+
q RB∥∥∏

j 
=q
mj(n), B ∈ {D–,D+}. ()

(iii) The Neumann boundary condition:

�N
n (Y) =mq(n + )

∏
j 
=q

mj(n). ()

Theorem . formulates the topological entropy of the output space of an arithmetic
CNN with/without boundary conditions.

Theorem . Suppose that there exists d ∈ N such that dj ≤ d for j ∈ �. Then

h(Y) = lim
n→∞


n
∑

j≤n,j∈�

logmj(n), ()

where mj(n) is defined in (). Furthermore, hB(Y) = h(Y) for B ∈ {P,N ,D–,D+} provided
Yj is mixing for j ∈ �.

Proof The calculation of h(Y) is presented; the effect of the boundary condition on the
topological entropy can be elucidated via similar discussion, and as with the proof of The-
orem ., thus is omitted.
Observe that

�n(Y) =
∏

j≤n,j∈�

�Kj(n)(Yj) =
∏

j≤n,j∈�

mj(n).

Hence we have

h(Y) = lim
n→∞

log�n(Y)
n

= lim
n→∞


n
∑

j≤n,j∈�

logmj(n).

This completes the proof. �
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The numerical experiment asserts that, similar to Theorem ., the set of topological
entropies of the arithmetic CNNs is dense in the closed interval [, log]. The theoretical
proof of the following conjecture is not complete yet.

Conjecture . Given ε >  and λ ∈ [, log], there exists an arithmetic CNN such that
|h(Y) – λ| < ε.

4 Examples
4.1 One-dimensional cellular neural networks
Example . Consider a constant CNN with templates T = [T,T] and z being given by

T = [–, , ], T = [–, ,–] and z = [–, ].

(Notably, d =  and � =  in this case.) The transition matrices T, T for Y, Y are

T =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ and T =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ ,

respectively. Theorem . infers that

h(Y) =


(
h(Y) + h(Y)

)
=


(log g + logλ) ≈ log .,

where g = ( +
√
)/ is the golden mean and λ = . . . . is the maximal root of x – x–

 = .
To estimate the exact number of the mosaic patterns of length n with boundary condi-

tions, we consider the case where n = . It follows that K() = K() = . Let

E(o) =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ , E(e) =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ ,

E(u) =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ , E(l) =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ .

The periodic and Neumann boundary matrices are then

RP =

⎛
⎜⎜⎜⎝
E(o) E(o) E(o) E(o)

E(o) E(o) E(o) E(o)

E(e) E(e) E(e) E(e)

E(e) E(e) E(e) E(e)

⎞
⎟⎟⎟⎠
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and

LN =

⎛
⎜⎜⎜⎝
E(u) E(u) E(u) E(u)

E(u) E(u) E(u) E(u)

E(l) E(l) E(l) E(l)

E(l) E(l) E(l) E(l)

⎞
⎟⎟⎟⎠ , RN =

⎛
⎜⎜⎜⎝
E(o) E(e) E(o) E(e)

E(o) E(e) E(o) E(e)

E(o) E(e) E(o) E(e)

E(o) E(e) E(o) E(e)

⎞
⎟⎟⎟⎠ ,

respectively. Then the exact number of the mosaic patterns of length  with periodic
boundary condition is

�P
(Y) =

∥∥(T
 ⊗ T

) ◦ RP∥∥ · ∥∥T

∥∥ = ,;

the exact number of the mosaic patterns of length  with Neumann boundary condition
is

�N
(Y) =

∥∥LN ◦ (T
 ⊗ T


) ◦ RN∥∥ = ,.

Furthermore, the Dirichlet boundary matrices are given by

LD– =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ , RD– =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ ,

LD+ =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ , RD+ =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ .

The exact number of the mosaic patterns of length  enclosed by the pattern ‘–’ is

�
D–
 (Y) =

∥∥(LD– · T

)⊗ (

T
 · RD–

)∥∥ = ,;

the exact number of the mosaic patterns of length  enclosed by the pattern ‘+’ is

�
D+
 (Y) =

∥∥(LD+ · T

)⊗ (T

 · RD+
)∥∥ = ,.

Suppose that the template T = [T,T] is given by

T = [–,a, ], T = [–,a, –] and z = [z, z],

where a, a, z, and z are unknown. It is known that (cf. [, ]) there are only finite
possibilities of topological entropies for Y and Y as the parameters vary. More precisely,

h(Y) ∈ {logλ, log g, logλ, log}, h(Y) ∈ {log g, log},

where λ = . . . . is the maximal root of x – x – x –  = . The topological entropies
h(Y) with the parameters varying are seen in Table .
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Table 1 The topological entropy h(Y) of constant CNNs with 2-components and templates
being given by (T1, z1) = ([–4,a1, 2], z1) and (T2, z2) = ([–2,a2, –4], z2)

logλ1 logg logλ2 log2

logg log1.4640 logg log1.7251 log1.7989
log2 log1.6277 log1.7989 log1.9180 log2

The topological entropies h(Y1) and h(Y2), as the parameters a1 , a2 , z1 , and z2 vary, are listed in the column and row,
respectively. A richer choice of topological entropies is observed.

Example . Consider an arithmetic CNN with � =  and an invariant template Tj =
[a,a], zj = z for j ∈ odd. Suppose that the transition matrix of Yj is

Tj ≡ T =

(
 
 

)
for j ∈ odd.

In other words, Yj is a golden mean shift with topological entropy h(Yj) = log g for all j.
We remark that Fan et al. [] investigated the Minkowski dimension of Y. To compute
the topological entropy of Y, for n ∈N, let

I = {, , . . . , n – },
I =

{
 · ,  · , . . . ,  · (n – )

}
,

I =
{
 · ,  · , . . . ,  · (n – )

}
,

...

Ik =
{
k · }

be the sets of integers such that m ∈⋃k
j= Ij if and only if m ≤ n. A straightforward verifi-

cation infers that

nj =
[

n
j+

+



]

for j < k and k = [log n]. In other words, {, , . . . ,n} =⋃k
j= Ij and {nj}kj= is decreasing with

nk = . Suppose that {an} is the Fibonacci sequence defined by

a = , a = , an = an– + an– (n≥ ).

By induction we derive that

�n(Y) = an–n an–n · · ·ank––nk–k– ank––nkk ankk+.

Therefore,

h(Y) = lim
n→∞


n

�n(Y)

= lim
n→∞


n

(
logak+ +

[log n]∑
j=

([
n
j

+



]
–
[

n
j+

+



])
logaj

)

=



∞∑
n=

logan
n

= . . . . .
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4.2 Two-dimensional constant cellular neural networks
Let � = {, } × {, }. For (k,k) ∈ �, set

Z
(k,k) =

{
(m,m) :m = C + k,m = C + k for some C,C ∈ Z

}
.

The two-dimensional lattice Z is written as the union of non-overlapping subspaces Z =⋃
(k,k)∈� Z

(k,k). For each k, k, we index the entries inZ

k,k asZ


(k,k) = {(ki,kj), i, j ∈ Z}.

Consider the two-dimensional constant CNNs of the form

d
dt

xki ,k j = –xki ,k j + zki ,k j +
∑

|k|,|�|≤

ak,�;k,k f (xki+k ,k j+�
), ()

with template T = [T(k,k)](k,k)∈� being given by

T(k,k) =

⎡
⎢⎣

 bk,k 
bk,k ak,k bk,k
 bk,k 

⎤
⎥⎦ . ()

Fix (k,k) ∈ �, Juang and Lin [] studied () systematically and estimated the lower
bound of the topological entropy h(Yk,k ). More precisely, the lower bound of the topo-
logical entropy h(Yk,k ) is

log


,
log


,
log


,
log


,
log 


and log.

Suppose that the template T = [T(k,k)](k,k)∈� and z = [z(k,k)](k,k)∈� are chosen so that

h(Y,) ≥ log


, h(Y,)≥ log


, h(Y,) ≥ log


and h(Y,) = log.

Then

h(Y) ≥ 


(
log


+
log


+
log


+ log
)
=




log.

A detailed and complete investigation is postponed to the upcoming manuscript.

5 Conclusions
The present paper studies two types of one-dimensional inhomogeneous CNN-based
LDS, say, constant- and arithmetic-type multiple CNNs, which are a generalization of the
classical CNNs. Sufficient conditions for the complete stability of constant and arithmetic
CNNs are revealed. Since there is a wide range of parameters making the system com-
pletely stable, it is essential to investigate the complexity of mosaic patterns of the given
system. A systematic methodology is proposed to interpret the exact number of mosaic
patterns of inquired length and the topological entropy of the output space. Furthermore,
the exact number of mosaic patterns and the topological entropy of the output space un-
der the influence of three boundary conditions, say, the periodic, Neumann, and Dirichlet
boundary conditions, are obtained. Remarkably, the boundary condition does not influ-
ence the topological entropy under some presumption.
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The reveal that the set of topological entropies of the output spaces of constant CNNs is
dense in the close interval [, log] indicates how rich phenomena constant CNNs could
exhibit. Although there is a lack of rigorous proof for the density of the set of topological
entropies of arithmetic CNNs, numerical experiments assert an affirmative result.
The methodology we propose in this investigation can be applied to multi-dimensional

cases. A detailed discussion is on-going.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
J-CB and C-HC contributed equally. All authors read and approved the final manuscript.

Author details
1Department of Applied Mathematics, National Dong Hwa University, Hualien, 970003, Taiwan, R.O.C.. 2Department of
Applied Mathematics, Feng Chia University, Taichung, 40724, Taiwan, R.O.C..

Acknowledgements
We thank the anonymous referees for their valuable comments that helped improve the quality and readability of the
paper. Ban is partially supported by the National Science Council, ROC (Contract No. NSC 102-2628-M-259-001-MY3).
Chang is grateful for the partial support of the National Science Council, ROC (Contract No. NSC 102-2115-M-035-004-).

Endnotes
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b An arithmetic CNN is a classical CNN for the case that � = 1, this makes the requirement essential.
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