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1 Introduction
The Dirichlet problem and its special case with homogeneous boundary conditions, usu-
ally called the Picard problem, belong to themost frequently studied boundary value prob-
lems. A lot of results concerning the standard problem for scalar second-order ordinary
differential equations were generalized in various directions.
In Euclidean spaces, besidesmany extensions to vector equations, vector inclusionswere

under consideration, e.g., in [–]. In abstract spaces, usually in Banach andHilbert spaces,
equations, e.g., in [–] and inclusions, e.g., in [, , ] were treated.
Sadovskii’s or Darbo’s fixed point theorems, jointly with the usage of a measure of non-

compactness, were applied in [, , , ]. Kakutani’s or Ky Fan’s fixed point theorems
were applied with the upper and lower solutions technique in [] and with a measure of
noncompactness in []. On the other hand, continuation principles were employed in
[, , ].
The main aim of our present paper is an extension of the finite-dimensional results in

[, ] into infinite-dimensional ones.We were also stimulated by the work of JeanMawhin
in [], where degree arguments were applied to the Dirichlet problem in a Hilbert space
probably for the first time, and in [], where a bound sets approach was systematically
developed. Hence, besides these two approaches, our extension consists in the considera-
tion of differential inclusions in rather general Banach spaces and the usage of ameasure of
noncompactness. Similar results were already obtained in an analogous way by ourselves
for Floquet problems in [–].
Besides the existence, the localization of solutions will be obtained in our main theo-

rems (see Theorem . and Theorem .). Unlike in [], where the solutions belong to
a positively invariant set, in our paper, some trajectories can escape from the prescribed
set of candidate solutions. Moreover, the associated bound set need not be compact as in
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[]. Similarly, the main difference between our results and those in [, ] consists in the
application of a continuation principle jointly with a bound sets approach, which allows us
to check fixed point free boundaries of given bound sets. This, in particular, means that,
unlike in [, ], some trajectories can again escape from the prescribed set of candidate
solutions in a transversal way.
Let E be a Banach space (with the norm ‖ · ‖) satisfying the Radon-Nikodym property

(e.g., reflexivity) and let us consider the Dirichlet boundary value problem (b.v.p.)

ẍ(t) ∈ F(t,x(t), ẋ(t)) for a.a. t ∈ [,T],

x() = x(T) = ,

}
()

where F : [,T]×E×E� E is an upper-Carathéodorymapping or a globally upper semi-
continuous mapping with compact, convex values (for the related definitions, see Sec-
tion ).
The main purpose of the present paper is to prove the existence of a Carathéodory so-

lution x ∈ AC([,T],E) to problem () in a given set Q. This will be achieved by means
of a suitable continuation principle. The crucial condition of the continuation principle
described in Section  consists in guaranteeing the fixed point free boundary of Q w.r.t.
an admissible homotopical bridge starting from () (see condition (v) in Proposition .
below). This requirement will be verified by means of Lyapunov-like bounding functions,
i.e., via a bound sets technique. That is also why the whole Section  is devoted to this
technique applied to Dirichlet problem (). We will distinguish two cases, namely when F
is an upper-Carathéodory mapping and when F is globally upper semicontinuous (i.e., a
Marchaud mapping). Unlike in the first case, the second one allows us to apply bounding
functions which can be strictly localized at the boundaries of given bound sets.

2 Preliminaries
Let E be a Banach space having the Radon-Nikodym property (see, e.g., [, pp.-]),
i.e., if for every finite measure space (M,�,μ) and every vector measure m : � → E of
bounded variation, which is absolutely continuous w.r.t. μ, we can find a Bochner inte-
grable function f : M→ E such that

m(C) =
∫
C
f (ν)dμ

for each C ∈ �. Let [,T] ⊂ R be a closed interval. By the symbol L([,T],E), we will
mean the set of all Bochner integrable functions x : [,T] → E. For the definition and
properties, see, e.g., [, pp.-].
The symbol AC([,T],E) will denote the set of functions x : [,T] → E whose first

derivative ẋ(·) is absolutely continuous. Then ẍ ∈ L([,T],E) and the fundamental the-
orem of calculus (the Newton-Leibniz formula) holds (see, e.g., [, pp.-], [,
pp.-]). In the sequel, we will always consider AC([,T],E) as a subspace of the
Banach space C([,T],E).
Given C ⊂ E and ε > , the symbol B(C, ε) will denote, as usually, the set C + εB, where

B is the open unit ball in E, i.e., B = {x ∈ E | ‖x‖ < }.
We will also need the following definitions and notions from multivalued analysis. Let

X, Y be two metric spaces. We say that F is amultivalued mapping from X to Y (written
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F : X � Y ) if for every x ∈ X, a nonempty subset F(x) of Y is given. We associate with F
its graph �F , the subset of X × Y , defined by

�F :=
{
(x, y) ∈ X × Y | y ∈ F(x)

}
.

A multivalued mapping F : X � Y is called upper semicontinuous (shortly, u.s.c.) if for
each open subset U ⊂ Y , the set {x ∈ X | F(x)⊂ U} is open in X.
A multivalued mapping F : X � Y is called compact if the set F(X) =

⋃
x∈X F(x) is con-

tained in a compact subset of Y ; it is called quasi-compact if it maps compact sets onto
relatively compact sets; and completely continuous if it maps bounded sets onto relatively
compact sets.
We say that a multivalued mapping F : [,T] � Y with closed values is a step multi-

valued mapping if there exists a finite family of disjoint measurable subsets Ik , k = , . . . ,n
such that [,T] =

⋃
Ik and F is constant on every Ik . Amultivaluedmapping F : [,T]� Y

with closed values is called strongly measurable if there exists a sequence of step multi-
valued mappings {Fn} such that dH (Fn(t),F(t))→  as n→ ∞ for a.a. t ∈ [,T], where dH
stands for the Hausdorff distance.
It is well known that if Y is a Banach space, then a strongly measurable mapping

F : [,T]� Y with compact values possesses a single-valued strongly measurable selec-
tion (see, e.g., [, ]).
A multivalued mapping F : [,T]×X � Y is called an upper-Carathéodory mapping if

the map F(·,x) : [,T]� Y is strongly measurable for all x ∈ X, the map F(t, ·) : X � Y
is u.s.c. for almost all t ∈ [,T] and the set F(t,x) is compact and convex for all (t,x) ∈
[,T]×X.
Let us note that if X,Y are Banach spaces, then an upper-Carathéodory mapping

F : [,T] × X � Y is weakly superpositionally measurable, i.e., that for each continuous
g : [,T] → X, the composition F(·, g(·)) : [,T] � Y possesses a single-valued measur-
able selection (see, e.g., [, ]).
A multivalued mapping F : [,T]×X ×X � Y is called Lipschitzian in (x, y) ∈ X ×X if

there exists a constant L >  such that

dH
(
F(t,x, y),F(t,x, y)

) ≤ L
(‖x – x‖ + ‖y – y‖

)
for a.a. t ∈ [,T] and for all x,x, y, y ∈ X.
For more details concerning multivalued analysis, see, e.g., [, , , ].
In the sequel, the measure of noncompactness will also be employed.

Definition . Let N be a partially ordered set, E be a Banach space and let P(E) denote
the family of all nonempty subsets of E. A function β : P(E) → N is called a measure of
noncompactness (m.n.c.) in E if β(co�) = β(�) for all � ∈ P(E), where co� denotes the
closed convex hull of �.
An m.n.c. β is called:
(i) monotone if β(�) ≤ β(�) for all � ⊂ � ⊂ E,
(ii) nonsingular if β({x} ∪ �) = β(�) for all x ∈ E and � ⊂ E,
(iii) invariant with respect to the union with compact sets if β(K ∪ �) = β(�) for every

relatively compact K ⊂ E and every � ⊂ E,

http://www.boundaryvalueproblems.com/content/2013/1/25
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(iv) regular when β(�) =  if and only if � is relatively compact,
(v) algebraically semi-additive if β(� +�) ≤ β(�) + β(�) for all �,� ⊂ E.

Definition . An m.n.c. β with values in a cone of a Banach space has the semi-
homogeneity property if β(t�) = |t|β(�) for all t ∈R and all � ⊂ E.

It is obvious that an m.n.c. which is invariant with respect to the union with compact
sets is also nonsingular.
The typical example of anm.n.c. is theHausdorffmeasure of noncompactness γ defined,

for all � ⊂ E, by

γ (�) := inf

{
ε > 

∣∣∣ ∃x, . . . ,xn ∈ E : � ⊂
n⋃
i=

B
({xi}, ε)

}
.

The Hausdorffmeasure of noncompactness is monotone, nonsingular, algebraically semi-
additive and has the semi-homogeneity property.
Let {fn} ⊂ L([,T],E) be such that ‖fn(t)‖ ≤ α(t), γ ({fn(t)}) ≤ c(t) for a.a. t ∈ [,T], all

n ∈N and suitable α, c ∈ L([,T],R), then (cf. [])

γ

({∫ T


fn(t)dt

})
≤ 

∫ T


c(t)dt for a.a. t ∈ [,T]. ()

Moreover, for all subsets � of E (see, e.g., []),

γ

( ⋃
λ∈[,]

λ�

)
≤ γ (�). ()

Let us now introduce the function

μ(�) := max
{wn}n⊂�

(
sup

t∈[,T]

[
γ
({
wn(t)

}
n

)
+ γ

({
ẇn(t)

}
n

)]
,

modC
({wn}n

)
+modC

({ẇn}n
))
, ()

defined on the bounded set � ⊂ C([,T],E), where the ordering is induced by the pos-
itive cone in R

 and where modC(�) denotes the modulus of continuity of a subset
� ⊂ C([,T],E).a Such a μ is an m.n.c. in C([,T],E), as shown in the following lemma
(proven in []), where the properties of μ will be also discussed.

Lemma . The function μ given by () defines an m.n.c. in C([,T],E); such an m.n.c. μ
is monotone, invariant with respect to the union with compact sets and regular.

The m.n.c. μ defined by () will be used in order to solve problem () (cf. Theorem .).

Definition . Let E be a Banach space and X ⊂ E. A multivalued mapping F : X � E
with compact values is called condensingwith respect to anm.n.c. β (shortly, β-condensing)
if for every � ⊂ X such that β(F(�))≥ β(�), it holds that � is relatively compact.
A family of mappings G : X × [, ]� E with compact values is called β-condensing if

for every � ⊂ X such that β(G(� × [, ]))≥ β(�), it holds that � is relatively compact.

http://www.boundaryvalueproblems.com/content/2013/1/25


Andres et al. Boundary Value Problems 2013, 2013:25 Page 5 of 21
http://www.boundaryvalueproblems.com/content/2013/1/25

The following convergence result will be also employed.

Lemma . (cf. [, Lemma III..]) Let E be a Banach space and assume that the se-
quence of absolutely continuous functions xk : [,T]→ E satisfies the following conditions:

(i) the set {xk(t)|k ∈N} is relatively compact for every t ∈ [,T],
(ii) there exists α ∈ L([,T], [,∞)) such that ‖ẋk(t)‖ ≤ α(t) for a.a. t ∈ [,T] and for

all k ∈N,
(iii) the set {ẋk(t)|k ∈N} is weakly relatively compact for a.a. t ∈ [,T].

Then there exists a subsequence of {xk} (for the sake of simplicity denoted in the sameway as
the sequence) converging to an absolutely continuous function x : [,T] → E in the following
way:
. {xk} converges uniformly to x in C([,T],E),
. {ẋk} converges weakly in L([,T],E) to ẋ.

The following lemma is well known when the Banach spaces E and E coincide (see,
e.g., [, p.]). The present slight modification for E �= E was proved in [].

Lemma . Let [,T] ⊂ R be a compact interval, let E, E be Banach spaces and let
F : [,T]× E � E be a multivalued mapping satisfying the following conditions:

(i) F(·,x) has a strongly measurable selection for every x ∈ E,
(ii) F(t, ·) is u.s.c. for a.a. t ∈ [,T],
(iii) the set F(t,x) is compact and convex for all (t,x) ∈ [,T]× E.

Assume in addition that for every nonempty, bounded set � ⊂ E, there exists ν = ν(�) ∈
L([,T], (,∞)) such that

∥∥F(t,x)∥∥ ≤ ν(t)

for a.a. t ∈ [,T] and every x ∈ �. Let us define the Nemytskiǐ operator NF : C([,T],E)�
L([,T],E) in the following way: NF (x) := {f ∈ L([,T],E) | f (t) ∈ F(t,x(t)), a.e. on
[,T]} for every x ∈ C([,T],E). Then, if sequences {xk} ⊂ C([,T],E) and {fk} ⊂
L([,T],E), fk ∈NF (xk), k ∈N, are such that xk → x in C([,T],E) and fk → f weakly in
L([,T],E), then f ∈ NF (x).

3 Continuation principle
The proof of the main result (cf. Theorem . below) will be based on the combination
of a bound sets technique together with the following continuation principle developed
in [].

Proposition . Let us consider the general multivalued b.v.p.

ẍ(t) ∈ ϕ(t,x(t), ẋ(t)) for a.a. t ∈ [,T],

x ∈ S,

}
()

where ϕ : [,T] × E × E � E is an upper-Carathéodory mapping and S ⊂ AC([,T],E).
Let H : [,T]× E × E × E × E × [, ]� E be an upper-Carathéodory mapping such that

H(t, c,d, c,d, ) ⊂ ϕ(t, c,d) ()

http://www.boundaryvalueproblems.com/content/2013/1/25
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for all (t, c,d) ∈ [,T]× E × E.Moreover, assume that the following conditions hold:
(i) There exist a closed set S ⊂ S and a closed, convex set Q ⊂ C([,T],E) with a

nonempty interior IntQ such that each associated problem

ẍ(t) ∈H(t,x(t), ẋ(t),q(t), q̇(t),λ), for a.a. t ∈ [,T],

x ∈ S,

}
P(q,λ)

where q ∈Q and λ ∈ [, ], has a nonempty, convex set of solutions (denoted by
T(q,λ)).

(ii) For every nonempty, bounded set � ⊂ E × E, there exists ν� ∈ L([,T], [,∞)) such
that

∥∥H(
t,x, y,q(t), q̇(t),λ

)∥∥ ≤ ν�(t)

for a.a. t ∈ [,T] and all (x, y) ∈ �, q ∈ Q and λ ∈ [, ].
(iii) The solution mapping T is quasi-compact and μ-condensing with respect to a

monotone and nonsingular m.n.c. μ defined on C([,T],E).
(iv) For each q ∈Q, the set of solutions of the problem P(q, ) is a subset of IntQ, i.e.,

T(q, ) ⊂ IntQ for all q ∈Q.
(v) For each λ ∈ (, ), the solution mapping T(·,λ) has no fixed points on the boundary

∂Q of Q.
Then the b.v.p. () has a solution in Q.

The proof of the continuation principle is based on the fact that the family P(q,λ) of
problems depending on two parameters q ∈ Q and λ ∈ [, ] is associated to the original
b.v.p. (). This family is defined in such a way that if T : Q × [, ]� AC([,T],E) is its
corresponding solution mapping, then all fixed points of the map T(·, ) are solutions of
() (see condition ()).

4 Bound sets technique
The continuation principle formulated in Proposition . requires, in particular, the exis-
tence of a suitable set Q ⊂ AC([,T],E) of candidate solutions. The set Q should satisfy
the transversality condition (v), i.e., it should have a fixed-point free boundarywith respect
to the solution mapping T. Since the direct verification of the transversality condition is
usually a difficult task, we will devote this section to a bound sets technique which can
be used for guaranteeing such a condition. For this purpose, we will define the set Q as
Q := C([,T],K), where K is nonempty and open in E and K denotes its closure.
Hence, let us consider the Dirichlet boundary value problem () and let V : E → R be a

C-function satisfying
(H) V |∂K = ,
(H) V (x) ≤  for all x ∈ K .

Definition . A nonempty open set K ⊂ E is called a bound set for the b.v.p. () if every
solution x of () such that x(t) ∈ K for each t ∈ [,T] does not satisfy x(t*) ∈ ∂K for any
t* ∈ [,T].

http://www.boundaryvalueproblems.com/content/2013/1/25
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Let E′ be the Banach space dual to E and let us denote by 〈·, ·〉 the pairing (the duality
relation) between E and E′, i.e., for all  ∈ E′ and x ∈ E, we put (x) := 〈,x〉. The proof
of the following proposition is quite analogous to the finite-dimensional case considered
in []. Nevertheless, for the sake of completeness, we present it here, too.

Proposition . Let K ⊂ E be an open set such that  ∈ K and F : [,T]× E × E� E be
an upper-Carathéodory mapping.Assume that the function V ∈ C(E,R) has a locally Lip-
schitzian Fréchet derivative V̇x and satisfies conditions (H) and (H). Suppose,moreover,
that there exists ε >  such that, for all x ∈ K ∩ B(∂K , ε), t ∈ (,T) and y ∈ E, at least one
of the following conditions:

lim sup
h→–

〈V̇x+hy – V̇x, y〉
h

+ 〈V̇x,w〉 > , ()

lim sup
h→+

〈V̇x+hy – V̇x, y〉
h

+ 〈V̇x,w〉 >  ()

holds for all w ∈ F(t,x, y). Then K is a bound set for the Dirichlet problem ().

Proof Let x : [,T] → K be a solution of problem (). We assume, by a contradiction, that
there exists t* ∈ [,T] such that x(t*) ∈ ∂K . The point t* must lie in (,T) according to the
Dirichlet boundary conditions and the fact that  ∈ K .
Since V̇x is locally Lipschitzian, there exist a neighborhoodU of x(t*) and a constant L > 

such that V̇ |U is Lipschitzian with a constant L. Let δ >  be such that x(t) ∈U ∩ B(∂K , ε)
for each t ∈ [t* – δ, t* + δ].
In order to get the desired contradiction, let us define the function g : [,T] → R as

the composition g(t) := (V ◦ x)(t). According to the regularity properties of x and V , g ∈
C([,T],R). Since g(t*) =  and g(t) ≤  for all t ∈ [,T], t* is a local maximumpoint for g .
Therefore, ġ(t*) = . Moreover, there exist points t** ∈ (t* – δ, t*), t*** ∈ (t*, t* + δ) such that
ġ(t**)≥  and ġ(t***) ≤ .
Since ġ(t) = 〈V̇x(t), ẋ(t)〉, where V̇x(t) is locally Lipschitzian and ẋ(t) is absolutely contin-

uous on [t* – δ, t*], g̈(t) exists for a.a. t ∈ [t* – δ, t* + δ]. Consequently,

 ≥ –ġ
(
t**

)
= ġ

(
t*

)
– ġ

(
t**

)
=

∫ t*

t**
g̈(s)ds ()

and

 ≥ ġ
(
t***

)
= ġ

(
t***

)
– ġ

(
t*

)
=

∫ t***

t*
g̈(s)ds. ()

At first, let us assume that condition () holds and let t ∈ (t**, t*) be such that g̈(t) and
ẍ(t) exist. Then

lim
h→

ẋ(t + h) – ẋ(t)
h

= ẍ(t),

and so there exists a function a(h),a(h)→  as h→ , such that for each h,

ẋ(t + h) = ẋ(t) + h
[
ẍ(t) + a(h)

]
.

http://www.boundaryvalueproblems.com/content/2013/1/25
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Moreover, since x ∈ C([,T],E), there exists a function b(h),b(h)→  as h→ , such that
for each h,

x(t + h) = x(t) + h
[
ẋ(t) + b(h)

]
.

Consequently, we obtain

g̈(t) = lim
h→

ġ(t + h) – ġ(t)
h

= lim sup
h→–

ġ(t + h) – ġ(t)
h

= lim sup
h→–

〈V̇x(t+h), ẋ(t + h)〉 – 〈V̇x(t), ẋ(t)〉
h

= lim sup
h→–

〈V̇x(t)+h[ẋ(t)+b(h)], ẋ(t) + h[ẍ(t) + a(h)]〉 – 〈V̇x(t), ẋ(t)〉
h

≥ lim sup
h→–

〈V̇x(t)+hẋ(t), ẋ(t) + h[ẍ(t) + a(h)]〉 – 〈V̇x(t), ẋ(t)〉
h

– L · ∣∣b(h)∣∣ · ∥∥ẋ(t) + h
[
ẍ(t) + a(h)

]∥∥
= lim sup

h→–

〈V̇x(t)+hẋ(t), ẋ(t) + hẍ(t)〉 – 〈V̇x(t), ẋ(t)〉
h

– L · ∣∣b(h)∣∣ · ∥∥ẋ(t) + h
[
ẍ(t) + a(h)

]∥∥ +
〈
V̇x(t)+hẋ(t),a(h)

〉
.

Since 〈V̇x(t)+hẋ(t),a(h)〉 – L · |b(h)| · ‖ẋ(t) + h[ẍ(t) + a(h)]‖ →  as h→ ,

g̈(t) ≥ lim sup
h→–

〈V̇x(t)+hẋ(t), ẋ(t) + hẍ(t)〉 – 〈V̇x(t), ẋ(t)〉
h

= lim sup
h→–

〈V̇x(t)+hẋ(t) – V̇x(t), ẋ(t)〉
h

+
〈
V̇x(t)+hẋ(t), ẍ(t)

〉
.

Moreover, for every x,w ∈ E and h ∈R, we have that

〈V̇x+hy,w〉 = 〈V̇x,w〉 + [〈V̇x+hy,w〉 – 〈V̇x,w〉].
According to the Lipschitzianity of V̇ , when |h| is sufficiently small, we have that

∣∣〈V̇x+hy,w〉 – 〈V̇x,w〉∣∣ = ∣∣〈V̇x+hy – V̇x,w〉∣∣
≤ ‖Vx+hy – V̇x‖ · ‖w‖ ≤ L|h| · ‖y‖ · ‖w‖,

where L denotes the local Lipschitz constant of V̇ in a neighborhood of x. It implies that

lim
h→

〈V̇x+hy,w〉 – 〈V̇x,w〉 = 

and then

lim
h→

〈V̇x+hy,w〉 = 〈V̇x,w〉.

http://www.boundaryvalueproblems.com/content/2013/1/25
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Therefore,

g̈(t) ≥ lim sup
h→–

〈V̇x(t)+hẋ(t) – V̇x(t), ẋ(t)〉
h

+
〈
V̇x(t), ẍ(t)

〉
> ,

according to assumption (), it leads to a contradiction with inequality ().
Secondly, let us assume that condition () holds and let s ∈ (t*, t***) be such that g̈(s) and

ẍ(s) exist. Then it is possible to show, using the same procedure as before, that according
to assumption (),

g̈(s) ≥ lim sup
h→+

〈V̇x(s)+hẋ(s) – V̇x(s), ẋ(s)〉
h

+
〈
V̇x(s), ẍ(s)

〉
> ,

which leads to a contradiction with inequality ().
Therefore, we get the contradiction in case that at least one of conditions (), () holds

which completes the proof. �

If the mapping F(t,x, y) is globally u.s.c. in (t,x, y), then the transversality conditions can
be localized directly on the boundary of K , as will be shown in the following proposition,
whose proof is again quite analogous to the finite-dimensional case considered in [].

Proposition . Let K ⊂ E be a nonempty open set such that  ∈ K and F : [,T] × E ×
E� E be an upper semicontinuousmultivaluedmapping with compact, convex values.As-
sume that there exists a function V ∈ C(E,R) with a locally Lipschitzian Fréchet deriva-
tive V̇x which satisfies conditions (H) and (H). Suppose, moreover, that for all x ∈ ∂K ,
t ∈ (,T) and y ∈ E with

〈V̇x, y〉 = , ()

the following condition holds:

lim inf
h→

〈V̇x+hy, y〉
h

+ 〈V̇x,w〉 >  ()

for all w ∈ F(t,x, y). Then K is a bound set for problem ().

Proof Let x : [,T] → K be a solution of problem (). We assume, by a contradiction, that
there exists t ∈ [,T] such that x(t) ∈ ∂K . Since  ∈ K and x satisfies Dirichlet boundary
conditions, t ∈ (,T).
Let us define the function g : [–t,T – t] → (–∞, ] as the composition g(h) := (V ◦

x)(t + h). Then g() =  and g(h) ≤  for all h ∈ [–t,T – t], i.e., there is a local maxi-
mum for g at the point , and so ġ() = 〈V̇x(t), ẋ(t)〉 = . Consequently, v := ẋ(t) satisfies
condition ().
Since V̇x is locally Lipschitzian, there exist a neighborhood U of x(t) and a constant

L >  such that V̇ |U is Lipschitzian with a constant L.
Let {hk}∞k= be an arbitrary decreasing sequence of positive numbers such that hk → +

as k → ∞, x(t + h) ∈U for all h ∈ (,h).

http://www.boundaryvalueproblems.com/content/2013/1/25
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Since g() =  and g(h) ≤  for all h ∈ (,hk], there exists, for each k ∈ N, h*k ∈ (,hk)
such that ġ(h*k) ≤ .
Since x ∈ C([,T],E), for each k ∈ N,

x
(
t + h*k

)
= x(t) + h*k

[
ẋ(t) + b*k

]
, ()

where b*k →  as k → ∞.
Let

ζ :=
{
ẋ(t + h*k) – ẋ(t)

h*k
,k ∈N

}

and let ε >  be given. As a consequence of the regularity assumptions imposed on F and
of the continuity of both x and ẋ, there exists δ = δ(ε) >  such that for each t ∈ (,T),
|t – t| ≤ δ, it follows that

F
(
t,x(t), ẋ(t)

) ⊂ F
(
t,x(t), ẋ(t)

)
+ εB.

Subsequently, according to the mean-value theorem (see, e.g., [, Theorem ..]), there
exists kε ∈N such that for each k > kε ,

ẋ(t + h*k) – ẋ(t)
h*k

=

h*k

∫ t+h*k

t
ẍ(s)ds ∈ F

(
t,x(t), ẋ(t)

)
+ εB.

Therefore,

ζ ⊂
{
ẋ(t + h*k) – ẋ(t)

h*k
,k = , , . . . ,k(ε)

}
∪ F

(
t,x(t), ẋ(t)

)
+ εB.

Since F has compact values and ε is arbitrary, we obtain that ζ is a relatively compact
set. Thus, there exist a subsequence, for the sake of simplicity denoted as the sequence, of
{ ẋ(t+h*k )–ẋ(t)h*k

} and w ∈ E such that

ẋ(t + h*k) – ẋ(t)
h*k

→ w ()

as k → ∞ implying, for the arbitrariness of ε > ,

w ∈ F
(
t,x(t), ẋ(t)

)
.

As a consequence of the property (), there exists a sequence {a*k}∞k=, a*k →  as k → ∞,
such that

ẋ
(
t + h*k

)
= ẋ(t) + h*k

[
w + a*k

]
()

for each k ∈N. Since h*k >  and ġ(h*k) ≤ , in view of () and (),

 ≥ ġ(h*k)
h*k

=
〈V̇x(t+h*k )

, ẋ(t + h*k)〉
h*k

=
〈V̇x(t)+h*k [ẋ(t)+b

*
k ]
, ẋ(t) + h*k[w + a*k]〉
h*k

.

http://www.boundaryvalueproblems.com/content/2013/1/25
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Since h*k ∈ (,hk) ⊂ (,h) for all k ∈N, we have, according to (), that x(t) + h*k[ẋ(t) +
b*k] ∈ U for each k ∈ N. Since b*k →  as k → ∞, it is possible to find k ∈ N such that for
all k ≥ k, it holds that x(t) + ẋ(t)h*k ∈ U . By means of the local Lipschitzianity of V̇ , for
all k ≥ k,

 ≥ ġ(h*k)
h*k

=
〈V̇x(t)+h*k [ẋ(t)+b

*
k ]
– V̇x(t)+h*k ẋ(t)

+ V̇x(t)+h*k ẋ(t)
, ẋ(t) + h*k[w + a*k]〉

h*k

≥
〈V̇x(t)+h*k ẋ(t)

, ẋ(t) + h*k[w + a*k]〉
h*k

– L · ∣∣b*k∣∣ · ∥∥ẋ(t) + h*k
[
w + a*k

]∥∥

=
〈V̇x(t)+h*k ẋ(t)

, ẋ(t) + h*kw〉
h*k

– L · ∣∣b*k∣∣ · ∥∥ẋ(t) + h*k
[
w + a*k

]∥∥ +
〈
V̇x(t)+h*k ẋ(t)

,a*k
〉

=
〈V̇x(t)+h*k ẋ(t)

, ẋ(t)〉
h*k

+ 〈V̇x(t),w〉 – L · ∣∣b*k∣∣ · ∥∥ẋ(t) + h*k
[
w + a*k

]∥∥
+

〈
V̇x(t)+h*k ẋ(t)

,a*k
〉
.

Since 〈V̇x(t)+h*k ẋ(t)
,a*k〉 – L · |b*k| · ‖ẋ(t) + h*k[w + a*k]‖ →  as k → ∞,

lim inf
h→+

〈V̇x(t)+h*k ẋ(t)
, ẋ(t)〉

h*k
+ 〈V̇x(t),w〉 ≤ . ()

If we consider, instead of the sequence {hk}∞k=, an increasing sequence {h̄k}∞k= of negative
numbers such that h̄k → – as k → ∞, x(t + h) ∈U for all h ∈ (h̄, ), we are able to find,
for each k ∈N, h̄*k ∈ (h̄k , ) such that ġ(h̄*k)≥ . Therefore, using the same procedure as in
the first part of the proof, we obtain, for k ∈N sufficiently large, that

 ≥ ġ(h̄*k)
h̄*k

≥
〈V̇x(t)+h̄*k ẋ(t)

, ẋ(t)〉
h̄*k

+ 〈V̇x(t),w〉 – L · ∣∣b̄*k∣∣ · ∥∥ẋ(t) + h̄*k
[
w + ā*k

]∥∥ +
〈
V̇x(t)+h̄*k ẋ(t)

, ā*k
〉
,

where ā*k → , b̄*k →  as k → ∞ and w ∈ F(t,x(t), ẋ(t)).
This means that 〈V̇x(t)+h̄*k ẋ(t)

, ā*k〉 – L · |b̄*k| · ‖ẋ(t) + h̄*k[w + ā*k]‖ →  as k → ∞, which
implies

lim inf
h→–

〈V̇x(t)+hẋ(t), ẋ(t)〉
h

+ 〈V̇x(t),w〉 ≤ . ()

Inequalities () and () are in a contradiction with condition (), because x(t) ∈ ∂K ,
ẋ(t) satisfies condition () and w,w ∈ F(t,x(t), ẋ(t)). �

Remark . One can readily check that for V ∈ C(E,R), inequalities () and (), as well
as (), become

〈
V̈x(y), y

〉
+ 〈V̇x,w〉 > ,

with t, x, y, w as in Proposition . or in Proposition ..
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The typical case occurs when E = H is a Hilbert space, 〈 , 〉 denotes the scalar product
and

V (x) :=


(‖x‖ – R) = 


(〈x,x〉 – R)

for some R > . In this case, V ∈ C(H ,R) and it is not difficult to see that conditions ()
and (), as well as (), become

〈y, y〉 + 〈x,w〉 > 

with t, x, y and w as in Proposition . or in Proposition ., where K := {x ∈ H | ‖x‖ < R}.

Definition . A C-function V : E → R with a locally Lipschitzian Fréchet derivative V̇
which satisfies conditions (H), (H) and all assumptions in Proposition . or Proposi-
tion . is called a bounding function for problem ().

5 Existence and localization results
Combining the continuation principle with the bound sets technique, we are ready to state
the main result of the paper concerning the solvability and localization of a solution of the
multivalued Dirichlet problem ().

Theorem . Consider the Dirichlet b.v.p. (), where F : [,T] × E × E � E is an upper-
Carathéodory multivalued mapping. Assume that K ⊂ E is an open, convex set contain-
ing . Furthermore, let the following conditions be satisfied:

(i) γ (F(t,� × �)) ≤ g(t)(γ (�) + γ (�)) for a.a. t ∈ [,T] and each bounded �,� ⊂
E,where g ∈ L([,T], [,∞)) and γ is the Hausdorffmeasure of noncompactness in E.

(ii) For every nonempty, bounded set � ⊂ E × E, there exists ν� ∈ L([,T], [,∞)) such
that

∥∥F(t,x, y)∥∥ ≤ ν�(t) ()

for a.a. t ∈ [,T] and all (x, y) ∈ �,
(iii) (T + )‖g‖L([,T],[,∞)) < .

Finally, let there exist a function V ∈ C(E,R)with a locally Lipschitzian Fréchet derivative
V̇ satisfying conditions (H), (H), and at least one of conditions (), () for a suitable ε > ,
all x ∈ K ∩ B(∂K , ε), t ∈ (,T), y ∈ E, λ ∈ (, ) and w ∈ λF(t,x, y). Then the Dirichlet b.v.p.
() admits a solution whose values are located in K .

Proof Let us define the closed set S = S by

S :=
{
x ∈ AC([,T],E)

: x(T) = x() = 
}

and let the set Q of candidate solutions be defined as Q := C([,T],K). Because of the
convexity of K , the set Q is closed and convex.

http://www.boundaryvalueproblems.com/content/2013/1/25
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For all q ∈Q and λ ∈ [, ], consider still the associated fully linearized problem

ẍ(t) ∈ λF(t,q(t), q̇(t)) for a.a. t ∈ [,T],

x(T) = x() = ,

}
P(q,λ)

and denote by T a solution mapping which assigns to each (q,λ) ∈ Q × [, ] the set of
solutions of P(q,λ). We will show that the family of the above b.v.p.s P(q,λ) satisfies all
assumptions of Proposition ..
In this case, ϕ(t,x, ẋ) = F(t,x, ẋ) which, together with the definition of P(q,λ), ensures

the validity of ().
ad (i) In order to verify condition (i) in Proposition ., we need to show that for

each (q,λ) ∈ Q × [, ], the problem P(q,λ) is solvable with a convex set of solutions.
So, let (q,λ) ∈ Q × [, ] be arbitrary and let fq(·) be a strongly measurable selection of
F(·,q(·), q̇(·)). The homogeneous problem corresponding to b.v.p. P(q,λ),

ẍ(t) =  for a.a. t ∈ [,T],

x(T) = x() = ,

}
()

has only the trivial solution, and therefore the single-valued Dirichlet problem

ẍ(t) = λfq(t) for a.a. t ∈ [,T],
x(T) = x() = 

}

admits a unique solution xq,λ(·) which is one of solutions of P(q,λ). This is given, for a.a.
t ∈ [,T], by xq,λ(t) =

∫ T
 G(t, s)λfq(s)ds, where G is the Green function associated to the

homogeneous problem (). The Green function G and its partial derivative ∂
∂t G are de-

fined by (cf., e.g., [, pp.-])

G(t, s) =

⎧⎨
⎩

(s–T)t
T for all  ≤ t ≤ s ≤ T ,

(t–T)s
T for all  ≤ s ≤ t ≤ T ,

∂

∂t
G(t, s) =

⎧⎨
⎩

(s–T)
T for all ≤ t ≤ s ≤ T ,

s
T for all ≤ s ≤ t ≤ T .

Thus, the set of solutions of P(q,λ) is nonempty. The convexity of the solution sets fol-
lows immediately from the properties of a mapping F and the fact that problems P(q,λ)
are fully linearized.
ad (ii) Assuming that H : [,T] × E × E × E × E × [, ] � E is defined by H(t,x, y,

q, r,λ) := λF(t,q, r), condition (ii) in Proposition . is ensured directly by assumption (ii).
ad (iii) Since the verification of condition (iii) in Proposition . is technically the most

complicated, it will be subdivided into two parts: (iii) the quasi-compactness of the so-
lution operator T, (iii) the condensity of T w.r.t. the monotone and nonsingular (cf.
Lemma .) m.n.c. μ defined by ().
ad (iii) Let us firstly prove that the solution mapping T is quasi-compact. Since

C([,T],E) is a metric space, it is sufficient to prove the sequential quasi-compactness
of T. Hence, let us consider the sequences {qn}, {λn},qn ∈ Q, λn ∈ [, ] for all n ∈ N such

http://www.boundaryvalueproblems.com/content/2013/1/25
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that qn → q in C([,T],E) and λn → λ. Moreover, let xn ∈ T(qn,λn) for all n ∈ N. Then
there exists, for all n ∈N, fn(·) ∈ F(·,qn(·), q̇n(·)) such that

ẍn(t) = λnfn(t) for a.a. t ∈ [,T], ()

and that xn(T) = xn() = .
Since qn → q and q̇n → q̇ in C([,T],E), there exists a bounded � ⊂ E × E such that

(qn(t), q̇n(t)) ∈ � for all t ∈ [,T] and n ∈N. Therefore, there exists, according to condition
(ii), ν� ∈ L([,T], [,∞)) such that ‖fn(t)‖ ≤ ν�(t) for every n ∈N and a.a. t ∈ [,T].
Moreover, for every n ∈N and a.a. t ∈ [,T],

xn(t) = λn

∫ T


G(t, s)fn(s)ds

and

ẋn(t) = λn

∫ T



∂

∂t
G(t, s)fn(s)ds.

Thus, xn satisfies, for every n ∈N and a.a. t ∈ [,T], ‖xn(t)‖ ≤ a and ‖ẋn(t)‖ ≤ b, where

a :=
T


∫ T


ν�(s)ds

and

b :=
∫ T


ν�(s)ds.

Furthermore, for every n ∈N and a.a. t ∈ [,T], we have

∥∥ẍn(t)∥∥ ≤ ν�(t).

Hence, the sequences {xn} and {ẋn} are bounded and {ẍn} is uniformly integrable.
Since the sequences {qn}, {q̇n} are converging, we obtain, in view of (i),

γ
({
fn(t)

}) ≤ g(t)
(
γ
({
qn(t)

})
+ γ

({
q̇n(t)

}))
= 

for a.a. t ∈ [,T], which implies that {fn(t)} is relatively compact.
For all (t, s) ∈ [,T]× [,T], the sequence {G(t, s)fn(s)} is relatively compact as well since,

according to the semi-homogeneity of the Hausdorff m.n.c.,

γ
({
G(t, s)fn(s)

}) ≤ ∣∣G(t, s)∣∣γ ({
fn(s)

})
=  for all (t, s) ∈ [,T]× [,T]. ()

Moreover, by means of (), (), () and the semi-homogeneity of the Hausdorff m.n.c.,

γ
({
xn(t)

}) ≤ γ

( ⋃
λ∈[,]

λ

{∫ T


G(t, s)fn(s)ds

})
≤ γ

({∫ T


G(t, s)fn(s)ds

})
= .
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By similar reasonings, we can also get

γ
({
ẋn(t)

})
= ,

by which {xn(t)}, {ẋn(t)} are relatively compact for a.a. t ∈ [,T]. Moreover, since xn sat-
isfies for all n ∈ N equation (), {ẍn(t)} is relatively compact for a.a. t ∈ [,T]. Thus, ac-
cording to Lemma ., there exist a subsequence of {ẋn}, for the sake of simplicity denoted
in the same way as the sequence, and x ∈ C([,T],E) such that {ẋn} converges to ẋ in
C([,T],E) and {ẍn} converges weakly to ẍ in L([,T],E). Therefore, the mapping T is
quasi-compact.
ad (iii) In order to show thatT isμ-condensing, whereμ is defined by (), we will prove

that any bounded subset � ⊂ Q such that μ(T(� × [, ])) ≥ μ(�) is relatively compact.
Let {xn}n ⊂ T(� × [, ]) be a sequence such that

μ
(
T

(
� × [, ]

))
=

(
sup

t∈[,T]

[
γ
({
xn(t)

}
n

)
+ γ

({
ẋn(t)

}
n

)]
,modC

({xn}n) +modC
({ẋn}n)).

Then we can find {qn}n ⊂ �, {fn}n satisfying fn(t) ∈ F(t,qn(t), q̇n(t)) for a.a. t ∈ [,T] and
{λn}n ⊂ [, ] such that for all t ∈ [,T],

xn(t) = λn

∫ T


G(t, s)fn(s)ds ()

and

ẋn(t) = λn

∫ T



∂

∂t
G(t, s)fn(s)ds. ()

In view of (i), we have, for all t ∈ [,T],

γ
({
fn(t),n ∈N

})
≤ g(t)

(
γ
({
qn(t),n ∈N

})
+ γ

({
q̇n(t),n ∈N

}))
≤ g(t) sup

t∈[,T]

(
γ
({
qn(t),n ∈N

})
+ γ

({
q̇n(t),n ∈N

}))
.

Since {qn}n ⊂ � and� is bounded inC([,T],E), bymeans of (ii), we get the existence of
ν� ∈ L([,T], [,∞)) such that ‖fn(t)‖ ≤ ν�(t) for a.a. t ∈ [,T] and all n ∈N. This implies
‖G(t, s)fn(t)‖ ≤ |G(t, s)|ν�(t) for a.a. t, s ∈ [,T] and all n ∈N.
Moreover, by virtue of the semi-homogeneity of the Hausdorff m.n.c., for all (t, s) ∈

[,T]× [,T], we have

γ
({
G(t, s)fn(s),n ∈N

})
≤ ∣∣G(t, s)∣∣γ ({

fn(s),n ∈N
}) ≤ T


γ
({
fn(s),n ∈N

})
≤ T


g(t) sup

t∈[,T]

(
γ
({
qn(t),n ∈N

})
+ γ

({
q̇n(t),n ∈N

}))
.
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According to (), () and (), we so obtain for each t ∈ [,T],

γ
({
xn(t),n ∈N

}) ≤ γ

({∫ T


G(t, s)fn(s)ds,n ∈ N

})

≤ 
T


‖g‖L sup
t∈[,T]

(
γ
({
qn(t),n ∈ N

})
+ γ

({
q̇n(t),n ∈N

}))

=
T


‖g‖LS ,

where

S := sup
t∈[,T]

(
γ
({
qn(t),n ∈ N

})
+ γ

({
q̇n(t),n ∈N

}))
.

By the similar reasonings, we can obtain that for each t ∈ [,T],

γ
({
ẋn(t),n ∈N

}) ≤ ‖g‖LS ,

when starting from condition (). Subsequently,

γ
({
xn(t),n ∈N

})
+ γ

({
ẋn(t),n ∈N

}) ≤ T + 


‖g‖LS ,

yielding

sup
t∈[,T]

(
γ
({
xn(t),n ∈N

})
+ γ

({
ẋn(t),n ∈N

})) ≤ T + 


‖g‖LS . ()

Since μ(T(� × [, ]))≥ μ(�) and {qn}n ⊂ �, we so get

sup
t∈[,T]

(
γ
({
qn(t),n ∈N

})
+ γ

({
q̇n(t),n ∈N

}))
≤ sup

t∈[,T]

(
γ
({
xn(t),n ∈N

})
+ γ

({
ẋn(t),n ∈N

}))

and, in view of () and (iii), we have that

sup
t∈[,T]

(
γ
({
qn(t),n ∈N

})
+ γ

({
q̇n(t),n ∈N

}))
= .

Inequality () implies that

sup
t∈[,T]

(
γ
({
xn(t),n ∈N

})
+ γ

({
ẋn(t),n ∈N

}))
= . ()

Now, we show that both the sequences {xn} and {ẋn} are equi-continuous. Let �̃ ⊂ E be
such that qn(t) ∈ �̃ and q̇n(t) ∈ �̃ for all n ∈ N and t ∈ [,T]. Thus, we get that ‖ẍn(t)‖ =
λn‖fn(t)‖ ≤ ν�̃(t), where ν�̃ ∈ L([,T], [,∞)) comes from (ii), and so {ẍn}n is uniformly
integrable. This implies that {ẋn}n is equi-continuous. Moreover, according to (), we
obtain that

∥∥ẋn(t)∥∥ ≤
∫ T


ν�̃(s)ds
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for all n ∈ N and t ∈ [,T], implying that {ẋn}n is bounded; consequently, also {xn}n is
equi-continuous. Therefore,

modC
({xn}) =modC

({ẋn}) = .

In view of (), we have so obtained that

μ
(
T

(
� × [, ]

))
= (, ).

Hence, also μ(�) = (, ) and since μ is regular, we have that � is relatively compact.
Therefore, condition (iii) in Proposition . holds.
ad (iv) For all q ∈ Q, the problem P(q, ) has only the trivial solution. Since  ∈ K , con-

dition (iv) in Proposition . is satisfied.
ad (v) Let q* ∈ Q be a solution of the b.v.p. P(q*,λ) for some λ ∈ (, ), i.e., a fixed point

of the solution mapping T. In view of conditions (), () (see Proposition .), K is, for all
λ ∈ (, ), a bound set for the problem

q̈*(t) ∈ λF(t,q*(t), q̇*(t)), for a.a. t ∈ [,T],

x(T) = x() = .

}

This implies that q* /∈ ∂Q, which ensures condition (v) in Proposition ..
�

If the mapping F(t,x, y) is globally u.s.c. in (t,x, y) (i.e., a Marchaud map), then we are
able to improve Theorem . in the following way.

Theorem . Consider the Dirichlet b.v.p. (), where F : [,T] × E × E � E is an upper
semicontinuous mapping with compact, convex values.Assume that K ⊂ E is an open, con-
vex set containing .Moreover, let conditions (i), (ii), (iii) from Theorem . be satisfied.
Furthermore, let there exist a function V ∈ C(E,R) with a locally Lipschitz Frechét

derivative V̇ satisfying (H) and (H). Moreover, let, for all x ∈ ∂K , t ∈ (,T), λ ∈ (, )
and y ∈ E satisfying (), condition () hold for all w ∈ λF(t,x, y). Then the Dirichlet b.v.p.
() admits a solution whose values are located in K .

Proof The verification is quite analogous as in Theorem . when just replacing the usage
of Proposition . by Proposition .. �

6 Illustrative example
Example . Let E =H be a Hilbert space and let us consider the Dirichlet b.v.p.

ẍ(t) ∈ F(t,x(t), ẋ(t)) + F(t,x(t), ẋ(t)), for a.a. t ∈ [,T],

x() = x(T) = ,

}
()

where
(i) F : [,T]×H ×H �H is an upper-Carathéodory multivalued mapping and

F(t, ·, ·) : H ×H �H is completely continuous for a.a. t ∈ [,T] such that

∥∥F(t,x, y)∥∥ ≤ ν(t,D,D) ∈ L
(
[,T], [,∞)

)

http://www.boundaryvalueproblems.com/content/2013/1/25
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for a.a. t ∈ [,T] and all x, y ∈H with ‖x‖ ≤ D, ‖y‖ ≤ D,
(ii) F : [,T]×H ×H �H is a Carathéodory multivalued mapping such that

∥∥F(t, , )∥∥ ≤ ν(t) ∈ L
(
[,T], [,∞)

)
for a.a. t ∈ [,T],

and F(t, ·, ·) : H ×H �H is Lipschitzian for a.a. t ∈ [,T] with the Lipschitz
constant

L <


T(T + )
.

Moreover, suppose that
(iii) there exist R >  and ε >  such that, for all x ∈H with R – ε < ‖x‖ ≤ R, t ∈ (,T),

y ∈H , λ ∈ (, ) and w ∈ λ(F(t,x, y) + F(t,x, y)), we have

〈y, y〉 + 〈x,w〉 > .

Then the Dirichlet problem () admits, according to Theorem ., a solution x(·) such
that ‖x(t)‖ ≤ R for all t ∈ [,T].
Indeed. The properties of F guarantee that F satisfies the inequality (cf., e.g., [])

γ
(
F(t,� × �)

) ≤ L
(
γ (�) + γ (�)

)
()

for a.a. t ∈ [,T] and every bounded �,� ⊂ H , where γ stands for the Hausdorff mea-
sure of noncompactness in H .
Since F(t, ·, ·) is completely continuous and thanks to the algebraic semi-additivity of γ ,

inequality () can be rewritten into

γ
(
F(t,� × �) + F(t,� × �)

) ≤ L
(
γ (�) + γ (�)

)
for a.a. t ∈ [,T] and every bounded �,� ⊂H , i.e., (i), for g := L < 

T(T+) (cf. (iii)).
Moreover, according to the Lipschitzianity of F, the following inequalities take place:

dH
(
F(t,x, y), 

) ≤ dH
(
F(t,x, y),F(t, , )

)
+ dH

(
F(t, , ), 

) ≤ L
(‖x‖ + ‖y‖) + ν(t)

for a.a. t ∈ [,T] and all x, y ∈H .
Thus, for ‖x‖ ≤ D, ‖y‖ ≤ D, we arrive at

∥∥F(t,x, y) + F(t,x, y)
∥∥ ≤ L(D +D) + ν(t,D,D) + ν(t) := ν�(t) ∈ L

(
[,T], [,∞)

)
,

i.e., () in (ii).
Finally, in view of Remark ., we can define the bounding function V ∈ C(H ,R) by the

formula

V (x) :=


(〈x,x〉 – R)

and the bound set K as K := {x ∈H | ‖x‖ < R} in order to get a claim.
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Remark . Consider again () in a Hilbert space H , but let this time F, F be globally
u.s.c. mappings with compact, convex values (⇒ F([,T], , ) is compact (cf., e.g., [,
Proposition I..]) and, in particular, bounded) such that

(i) F(t, ·, ·) : H × H � H is a completely continuous mapping for a.a. t ∈ [,T] such
that

∥∥F(t,x, y)∥∥ ≤ ν(t,D,D) ∈ L
(
[,T], [,∞)

)
for a.a. t ∈ [,T] and all x, y ∈H with ‖x‖ ≤ D, ‖y‖ ≤ D.

(ii) F(t, ·, ·) :H ×H �H is a Lipschitzian mapping for a.a. t ∈ [,T] with the Lipschitz
constant

L <


T(T + )
.

(iiiusc) There exists R >  such that, for all x ∈ H with ‖x‖ = R, t ∈ (,T), y ∈ H satisfying
〈x, y〉 = , λ ∈ (, ) and w ∈ λ(F(t,x, y) + F(t,x, y)), we have

〈y, y〉 + 〈x,w〉 > .

Applying now Theorem ., by the analogous arguments as in Example ., the Dirichlet
problem () admits a solution x(·) such that ‖x(t)‖ ≤ R for all t ∈ [,T].

Remark . Since the solution derivative ẋ(·) takes the form

ẋ(t) ∈
∫ T



∂

∂t
G(t, s)

[
F

(
s,x(s), ẋ(s)

)
+ F

(
s,x(s), ẋ(s)

)]
ds,

where

∂

∂t
G(t, s) =

⎧⎨
⎩

(s–T)
T for all ≤ t ≤ s ≤ T ,

s
T for all ≤ s ≤ t ≤ T ,

and so | ∂
∂t G(t, s)| ≤  for all t, s ∈ [,T], we obtain (under the above assumptions) the im-

plicit inequality

D ≤ 
 – LT

[∫ T


ν(t,R,D)dt +

∫ T


ν(t)dt + LRT

]
for all t ∈ [,T],

for D :=maxt∈[,T] ‖ẋ(t)‖.
Thus, for F(t,x, y)≡ F(t,x), we have ν(t,R,D) ≡ ν(t,R), and subsequently

∥∥ẋ(t)∥∥ ≤ 
 – LT

[∫ T


ν(t,R)dt +

∫ T


ν(t)dt + LRT

]
for all t ∈ [,T].

Similarly, if F : [,T]×H ×H �→ H is compact, then

∫ T


ν(t,R,D)dt ≤ CT

http://www.boundaryvalueproblems.com/content/2013/1/25
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holds with a suitable constant C ≥ ‖F(t,x, y)‖, and the following estimate holds:

∥∥ẋ(t)∥∥ ≤ 
 – LT

[
CT + LRT +

∫ T


ν(t)dt

]
for all t ∈ [,T].

Because of the Dirichlet boundary conditions x() = x(T) =  for H = R, there exists a
zero point t ∈ [,T] of ẋ(·), i.e., ẋ(t) = , bywhich the same estimates can be also obtained
without an explicit usage of theGreen function above.Otherwise, it is not so easy to obtain
such estimates, because Rolle’s theorem fails in general.
For obtaining the estimation of the solution derivative ẋ(·) in a Hilbert spaceH , one can

also apply, under natural assumptions, the p-Nagumo condition derived in [].
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