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Abstract
In this paper, we shall discuss the existence of positive solutions for the system of
fractional integral boundary value problem{

Dα
0+ui(t) + fi(t,u1(t),u2(t)) = 0, 0 < t < 1, i = 1, 2,

ui(0) = u′
i (0) = 0, ui(1) =

∫ 1
0 ui(t)dη(t),

where α ∈ (2, 3] is a real number,Dα
0+ is the standard Riemann-Liouville fractional

derivative of order α and fi ∈ C([0, 1]×R+ ×R+,R), i = 1, 2.
∫ 1
0 ui(t)dη(t) denotes the

Riemann-Stieltjes integral, i.e., η(t) has bounded variation. By virtue of some
inequalities associated with Green’s function, without the assumption of the
nonnegativity of fi , we utilize the fixed point index theory to establish our main
results. In addition, a square function and its inverse function are used to characterize
coupling behaviors of fi , so that fi are allowed to grow superlinearly and sublinearly.
MSC: 34B10; 34B18; 34A34; 45G15; 45M20

Keywords: fractional integral boundary value problem; positive solution; fixed point
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1 Introduction
In this paper, we study the existence of positive solutions for the system of fractional inte-
gral boundary value problem⎧⎨⎩Dα

+ui(t) + fi(t,u(t),u(t)) = ,  < t < , i = , ,

ui() = u′
i() = , ui() =

∫ 
 ui(t) dη(t),

(.)

where α ∈ (, ] is a real number,Dα
+ is the standard Riemann-Liouville fractional deriva-

tive of order α and fi ∈ C([, ]×R+ ×R+,R), i = , .
∫ 
 ui(t) dη(t) denotes the Riemann-

Stieltjes integral, η is right continuous on [, ), left continuous at t = , and nondecreasing
on [, ], with η() = .
The subject ofmulti-point nonlocal boundary value problems, initiated by Il’in andMoi-

seev [], has been addressed by many authors. The multi-point boundary conditions ap-
pear in certain problems of thermodynamics, elasticity, and wave propagation; see [] and
the references therein. For example, the vibrations of a guy wire of a uniform cross-section
and composed of N parts of different densities can be set up as a multi-point boundary
value problem (see []); many problems in the theory of elastic stability can be handled
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by the method of multi-point problems (see []). On the other hand, we all know that the
Riemann-Stieltjes integral, as in the form of

∫ 
 u(s) dη(s), where η is of bounded variation,

that is, dη can be a signed measure, includes as special cases the multi-point boundary
value problems and integral boundary value problems. That is why many authors are par-
ticularly interested in Riemann-Stieltjes integral boundary value problems.
Meanwhile, we also note that fractional differential equation’s modeling capabilities in

engineering, science, economy, and other fields, have resulted in a rapid development of
the theory of fractional differential equations in the last few decades; see the recent books
[–]. This may explain the reason why the last few decades have witnessed an overgrow-
ing interest in the research of such problems, withmany papers in this direction published.
Recently, there are some papers dealing with the existence of solutions (or positive solu-
tions) of nonlinear fractional differential equation by the use of techniques of nonlinear
analysis (fixed-point theorems, Leray-Schauder theory, upper and lower solutionmethod,
etc.); for example, see [–] and the references therein.
However, to the best our knowledge, there are only a few papers dealing with systems

with fractional boundary value problems. In [] and [], Bai and Su considered respec-
tively the existence of solutions for systems of fractional differential equations, and ob-
tained some excellent results. Motivated by the works mentioned above, in this paper, we
shall discuss the existence of positive solutions for the system of fractional integral bound-
ary value problem (.). It is interesting that a square function and its inverse function are
used to characterize coupling behaviors of fi, so that fi are allowed to grow superlinearly
and sublinearly.

2 Preliminaries
We first offer some definitions and fundamental facts of fractional calculus theory, which
can be found in [–].

Definition . (see [, ], [, pp.-]) The Riemann-Liouville fractional derivative of
order α >  of a continuous function f : (, +∞)→ R is given by

Dα
+f (t) =


�(n – α)

(
d
dt

)n ∫ t



f (s)
(t – s)α–n+

ds,

where n = [α] + , [α] denotes the integer part of number α, provided that the right-hand
side is pointwise defined on (,+∞).

Definition . (see [, Definition .]) The Riemann-Liouville fractional integral of order
α >  of a function f : (, +∞)→ R is given by

Iα+f (t) =


�(α)

∫ t


(t – s)α–f (s) ds,

provided that the right-hand side is pointwise defined on (,+∞).

From the definition of the Riemann-Liouville derivative, we can obtain the following
statement.

http://www.boundaryvalueproblems.com/content/2013/1/256
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Lemma . (see []) Let α > . If we assume u ∈ C(, ) ∩ L(, ), then the fractional dif-
ferential equation Dα

+u(t) =  has a unique solution

u(t) = ctα– + ctα– + · · · + cNtα–N , ci ∈R, i = , , . . . ,N ,

where N is the smallest integer greater than or equal to α.

Lemma . (see []) Assume that u ∈ C(, )∩L(, )with a fractional derivative of order
α >  that belongs to C(, )∩ L(, ). Then

Iα+D
α
+u(t) = u(t) + ctα– + ctα– + · · · + cNtα–N , for some ci ∈R, i = , , . . . ,N ,

where N is the smallest integer greater than or equal to α.

In what follows, we need to consider the following fractional integral boundary value
problem:⎧⎨⎩Dα

+u(t) + h(t,u) = ,  < t < ,

u() = u′() = , u() =
∫ 
 u(t) dη(t),

(.)

then we present Green’s function for (.), and study the properties of Green’s function.
In our paper, we always assume that the following two conditions are satisfied:
(H) κ :=  –

∫ 
 t

α– dη(t) > .
(H) h ∈ C([, ]×R+,R) is bounded from below, i.e., there is a positive constantM

such that h(t,u) ≥ –M, ∀(t,u) ∈ [, ]×R+.

Lemma . Let (H), (H) hold. Then problem (.) is equivalent to

u(t) =
∫ 


G(t, s)h

(
s,u(s)

)
ds,

where

G(t, s) =H(t, s) + κ–
 tα–

∫ 


H(t, s) dη(t), (.)

and

H(t, s) :=


�(α)

⎧⎨⎩tα–( – s)α– – (t – s)α–, ≤ s≤ t ≤ ,

tα–( – s)α–,  ≤ t ≤ s≤ .
(.)

Proof By Lemmas . and ., we can reduce the equation of problem (.) to an equivalent
integral equation

u(t) = –Iα+h(t) + ctα– + ctα– + ctα–

= –


�(α)

∫ t


(t – s)α–h(s) ds + ctα– + ctα– + ctα–, (.)

http://www.boundaryvalueproblems.com/content/2013/1/256
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where ci (i = , , ) are fixed constants. By u() = , there is c = . Thus,

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + ctα– + ctα–. (.)

Differentiating (.), we have

u′(t) = –
α – 
�(α)

∫ t


(t – s)α–h(s) ds + c(α – )tα– + c(α – )tα–. (.)

By (.) and u′() = , we have c = . Then

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds + ctα–. (.)

From u() =
∫ 
 u(t) dη(t), we arrive at

u() = –


�(α)

∫ 


( – s)α–h(s) ds + c =

∫ 


u(t) dη(t),

and thus

c =


�(α)

∫ 


( – s)α–h(s) ds +

∫ 


u(t) dη(t).

Therefore, we obtain by (.)

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds +

tα–

�(α)

∫ 


( – s)α–h(s) ds + tα–

∫ 


u(t) dη(t)

=
∫ 


H(t, s)h(s) ds + tα–

∫ 


u(t) dη(t), (.)

where H(t, s) is defined by (.). From (.), we have

∫ 


u(t) dη(t) =

∫ 


dη(t)

∫ 


H(t, s)h(s) ds +

∫ 


tα– dη(t)

∫ 


u(t) dη(t), (.)

and by (H) we find

∫ 


u(t) dη(t) = κ–



∫ 


dη(t)

∫ 


H(t, s)h(s) ds. (.)

Combining (.) and (.), we see

u(t) =
∫ 


H(t, s)h(s) ds + tα–κ–



∫ 


dη(t)

∫ 


H(t, s)h(s) ds

=
∫ 


G(t, s)h(s) ds, (.)

where G(t, s) is determined by (.). This completes the proof. �

http://www.boundaryvalueproblems.com/content/2013/1/256
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Lemma . (see [, Lemma .]) For any (t, s) ∈ [, ] × [, ], let k(t) := tα–( – t) +
κ–
 tα–

∫ 
 t

α–( – t) dη(t), ϕ(t) := t(–t)α–
�(α) , μ = (α – )( + η()κ–

 ) > . Then the following
two inequalities are satisfied:

(i) k(t)ϕ(s)≤G(t, s)≤ μϕ(s),
(ii) H(t, s)≤ �–(α)(α – )tα–( – t).

Proof (i) For s ≤ t, we have  – s ≥  – t, then

�(α)H(t, s) = tα–( – s)α– – (t – s)α– = (α – )
∫ t–ts

t–s
xα– dx

≤ (α – )(t – ts)α–
(
(t – ts) – (t – s)

)
= (α – )tα–( – s)α–s( – t)

≤ (α – )tα–( – s)α–s( – s) ≤ (α – )s( – s)α–. (.)

On the other hand, for t ≤ s, since α > , we have

�(α)H(t, s) = tα–( – s)α– ≤ (α – )tα–( – s)α–

= (α – )tα–t( – s)α– ≤ (α – )tα–s( – s)α– ≤ (α – )s( – s)α–.

Consequently,

�(α)G(t, s) = �(α)H(t, s) + κ–
 tα–

∫ 


�(α)H(t, s) dη(t)

≤ (α – )s( – s)α– + κ–
 tα–

∫ 


(α – )s( – s)α– dη(t)

≤ (α – )
(
 + η()κ–


)
s( – s)α– = μϕ(s).

Moreover, for s≤ t, note that (t – s)α– ≤ (t – ts)α–, ( – s)α– ≥ ( – s)α–, and tα– ≥ tα–,
then we find

�(α)H(t, s) = tα–( – s)α– – (t – s)α– = (t – ts)α–(t – ts) – (t – s)α–(t – s)

≥ (t – ts)α–(t – ts) – (t – ts)α–(t – s) = tα–( – s)α–s( – t)

≥ tα–( – t)s( – s)α–.

On the other hand, for t ≤ s, we have

�(α)H(t, s) = tα–( – s)α– ≥ tα–( – t)s( – s)α–.

Therefore, we get

�(α)G(t, s) = �(α)H(t, s) + κ–
 tα–

∫ 


�(α)H(t, s) dη(t)

≥ tα–( – t)s( – s)α– + κ–
 tα–

∫ 


tα–( – t)s( – s)α– dη(t)

≥ s( – s)α–
[
tα–( – t) + κ–

 tα–
∫ 


tα–( – t) dη(t)

]
= k(t)ϕ(s).

http://www.boundaryvalueproblems.com/content/2013/1/256
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(ii) If t ≤ s, since α > , we have ( – s)α– ≤ ( – t)α– ≤ ( – t) and

H(t, s)≤ �–(α)(α – )tα–( – s)α– ≤ �–(α)(α – )tα–( – t).

For s ≤ t, we have  – s ≥  – t, then by (.) we get

H(t, s) ≤ �–(α)(α – )tα–( – s)α–s( – t)

≤ �–(α)(α – )tα–( – s)α–t( – t)≤ �–(α)(α – )tα–( – t).

This completes the proof. �

Lemma . Let κ := α�(α+)
�(α+) +

κ– �(α+)
∫ 
 tα–(–t) dη(t)

�(α+) and κ :=
(α–)(+η()κ– )

�(α+) . Then the fol-
lowing inequality holds:

κϕ(s)≤
∫ 


G(t, s)ϕ(t) dt ≤ κϕ(s), ∀s ∈ [, ]. (.)

Proof By (i) of Lemma ., we have

[
α�(α + )
�(α + )

+
κ–
 �(α + )

∫ 
 t

α–( – t) dη(t)
�(α + )

]
ϕ(s)

=
∫ 



[
tα–( – t) + κ–

 tα–
∫ 


tα–( – t) dη(t)

]
ϕ(s)ϕ(t) dt

≤
∫ 


G(t, s)ϕ(t) dt ≤

∫ 


(α – )

(
 + η()κ–


)
ϕ(s)ϕ(t) dt

=
(α – )( + η()κ–

 )
�(α + )

ϕ(s),

and we easily obtain (.), as claimed. This completes the proof. �

Let

E := C[, ], ‖u‖ := max
t∈[,]

∣∣u(t)∣∣, P :=
{
u ∈ E : u(t) ≥ ,∀t ∈ [, ]

}
.

Then (E,‖ · ‖) is a real Banach space and P is a cone on E.
The norm on E × E is defined by ‖(u, v)‖ := ‖u‖ + ‖v‖, (u, v) ∈ E × E. Note that E × E is

a real Banach space under the above norm, and P × P is a positive cone on E × E.
By Lemma ., we can obtain that system (.) is equivalent to the system of nonlinear

Hammerstein integral equations

ui(t) =
∫ 


G(t, s)fi

(
s,u(s),u(s)

)
ds, i = , , (.)

where G(t, s) is defined by (.).

http://www.boundaryvalueproblems.com/content/2013/1/256
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Lemma . (i) If u∗(t) is a positive solution of (.), then u∗(t) +w(t) is a positive solution
of the following differential equation:

⎧⎨⎩Dα
+u = –F(t,u(t) –w(t)),

u() = u′() = , u() =
∫ 
 u(t) dη(t),

(.)

where

F(t,x) :=

⎧⎨⎩h̃(t,x), t ∈ [, ],x≥ ,

h̃(t, ), t ∈ [, ],x < ,

the function h̃(t,x) = h(t,x) +M, h̃ : [, ]×R+ → R+ is continuous,

w(t) :=M
∫ 


G(t, s) ds, t ∈ [, ]. (.)

(ii) If u(t) is a solution of (.) and u(t) ≥ w(t), t ∈ [, ], then u∗(t) = u(t) – w(t) is a
positive solution of (.).

Proof If u∗(t) is a positive solution of (.), then we obtain

⎧⎨⎩Dα
+u∗ = –h(t,u∗(t)),

u∗() = u′∗() = , u∗() =
∫ 
 u∗(t) dη(t).

By a simple computation, we easily get u∗() + w() = u′∗() + w′() = , u∗() + w() =∫ 
 (u∗(t) +w(t)) dη(t) and

Dα
+

(
u∗(t) +w(t)

)
+ F

(
t,u∗(t)

)
=Dα

+u∗(t) +Dα
+w(t) + h

(
t,u∗(t)

)
+M

=Dα
+w(t) +M =Dα

+M
∫ 


G(t, s) ds +M = –M +M = ,

i.e., u∗(t) +w(t) satisfies (.). Therefore, (i) holds, as claimed. Similarly, it is easy to prove
that (ii) is also satisfied. This completes the proof. �

By Lemma ., we obtain that (.) is equivalent to the integral equation

u(t) =
∫ 


G(t, s)F

(
s,u(s) –w(s)

)
ds := (Tu)(t), (.)

where G(t, s) is determined by (.). Clearly, the continuity and nonnegativity of G and F
imply that T : P → P is a completely continuous operator.

Lemma . Put P := {u ∈ P : u(t) ≥ μ–k(t)‖u‖ for t ∈ [, ]}. Then T(P) ⊂ P, where μ

and T are defined by Lemma . and (.), respectively.

http://www.boundaryvalueproblems.com/content/2013/1/256
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Proof By (i) of Lemma ., we easily find∫ 


k(t)ϕ(s)F

(
s,u(s) –w(s)

)
ds ≤ (Tu)(t) =

∫ 


G(t, s)F

(
s,u(s) –w(s)

)
ds

≤
∫ 


(α – )

(
 + η()κ–


)
ϕ(s)F

(
s,u(s) –w(s)

)
ds,

and thus

(Tu)(t) ≥ k(t)
(α – )( + η()κ–

 )

∫ 


(α – )

(
 + η()κ–


)
ϕ(s)F

(
s,u(s) –w(s)

)
ds

≥ k(t)
(α – )( + η()κ–

 )
‖Tu‖.

This completes the proof. �

In this paper, we assume that fi (i = , ) satisfy the following condition:
(H) fi(t,x, y) ∈ C([, ]×R+ ×R+,R) and there is a positive constantM such that

fi(t,x, y)≥ –M, ∀(t,x, y) ∈ [, ]×R+ ×R+.
By (H) and Lemma ., (.) is turned into the following integral equation:

ui(t) =
∫ 


G(t, s)Fi

(
s,u(s) –w(s),u(s) –w(s)

)
ds, (.)

where

Fi(t,x, y) :=

⎧⎨⎩̃fi(t,x, y), t ∈ [, ],x, y≥ ,

f̃i(t, , ), t ∈ [, ],x, y < ,

the function f̃i(t,x, y) = fi(t,x, y) +M, f̃i ∈ C([, ] × R+ × R+,R+) and w(t) is denoted by
(.). By Lemma ., we know if (u,u) is a solution of (.) and ui(t) ≥ w(t), t ∈ [, ],
then (u∗

 = u –w, u∗
 = u –w) is a positive solution of (.).

Define the operator A as follows:

A(u,u)(t) :=
(
A(u,u),A(u,u)

)
(t), (.)

where

Ai(u,u)(t) =
∫ 


G(t, s)Fi

(
s,u(s) –w(s),u(s) –w(s)

)
ds.

It is obvious that Ai (i = , ) : P × P → P, A : P × P → P × P are completely continu-
ous operators. Clearly, (u – w,u – w) ∈ P × P is a positive solution of (.) if and only if
(u,u) ∈ (P × P) \ {} is a fixed point of A and ui ≥ w, i = , .
The following two lemmas play some important roles in our proofs involving fixed point

index.

Lemma . ([]) Let � ⊂ E be a bounded open set, and let A : �∩P → P be a completely
continuous operator. If there exists v ∈ P \ {} such that v–Av = λv for all v ∈ ∂�∩P and
λ ≥ , then i(A,� ∩ P,P) = .

http://www.boundaryvalueproblems.com/content/2013/1/256
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Lemma . ([]) Let � ⊂ E be a bounded open set with  ∈ �. Suppose that A : � ∩P →
P is a completely continuous operator. If v = λAv for all v ∈ ∂� ∩ P and  ≤ λ ≤ , then
i(A,� ∩ P,P) = .

3 The existence of positive solutions for (1.1)
We list the assumptions on Fi (i = , ) in this section.
(H) There are c >  and ξi > , i = , , satisfying ξξ



 μ– 

 �

 (α)κ

 >  such that

F(t,x, y) ≥ ξ
√
y – c, F(t,x, y)≥ ξx – c, ∀(t,x, y) ∈ [, ]×R+ ×R+.

(H) There exists Q(t) : [, ] → (–∞, +∞) such that

Fi(t,x, y) ≤Q(t), t ∈ [, ], i = , ,x, y ∈ [
,Mμ�–(α)(α – )

]
,∫ 


ϕ(s)Q(s) ds <M�–(α)(α – ).

(H) There are c >  and ξi > , i = ,, satisfying μ�–(α)ξξ 
κ

 <  such that

F(t,x, y) ≤ ξy + c, F(t,x, y)≤ ξ
√
x + c, ∀(t,x, y) ∈ [, ]×R+ ×R+.

(H) There exist Q : [, ] → (–∞, +∞), θ ∈ (,  ), and t ∈ [θ ,  – θ ] such that

Fi(t,x, y) ≥Q(t), t ∈ [θ ,  – θ ], i = , ,x, y ∈ [
,Mμ�–(α)(α – )

]
,∫ –θ

θ

k(t)ϕ(s)Q(s) ds≥Mμ�–(α)(α – ).

We adopt the convention in the sequel that c, c, . . . stand for different positive con-
stants. We denote Bρ := {u ∈ E : ‖u‖ < ρ} for ρ >  in the sequel.

Theorem . Suppose that (H)-(H) hold, (.) has at least a positive solution.

Proof By Lemma ., it suffices to find a fixed point (u,u) of A satisfying ui(t) ≥ w(t),
t ∈ [, ]. By Lemma ., for any ui ∈ P and t ∈ [, ], noting (ii) of Lemma ., together
with ∫ 


G(t, s) ds =

∫ 



(
H(t, s) + κ–

 tα–
∫ 


H(t, s) dη(t)

)
ds

≤ �–(α)(α – )
∫ 



(
tα–( – t) + κ–

 tα–
∫ 


tα–( – t) dη(t)

)
ds

= �–(α)(α – )k(t),

we have

ui(t) –w(t) = ui(t) –M
∫ 


G(t, s) ds ≥ ui(t) –M�–(α)(α – )k(t)

≥ ui(t) –Mμ�–(α)(α – )ui(t)‖ui‖–, i = , . (.)

Therefore, ‖ui‖ ≥Mμ�–(α)(α – ) leads to ui(t) ≥ w(t), t ∈ [, ].

http://www.boundaryvalueproblems.com/content/2013/1/256
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In what follows, we first show that there exists an adequately big positive number R >
Mμ�–(α)(α – ) such that the following claim holds:

(u,u) = A(u,u) + λ(ψ ,ψ), ∀(u,u) ∈ ∂BR ∩ (P × P),λ ≥ , (.)

whereψ ∈ P is a given function. Indeed, if the claim is false, there exist (u, v) ∈ ∂BR∩(P×P)
and λ ≥  such that (u, v) = A(u, v) + λ(ψ ,ψ), then u≥ A(u, v) and v≥ A(u, v). In view of
(H) and the definition of Ai (i = , ), we get

u(t) ≥
∫ 


G(t, s)ξ

√
v(s) –w(s) ds – c

≥
∫ 


G(t, s)ξ

√
v(s) ds –

∫ 


G(t, s)ξ

√
w(s) ds – c

≥
∫ 


G(t, s)ξ

√
v(s) ds – c, (.)

and

v(s)≥
∫ 


G(s, τ )ξ

(
u(τ ) –w(τ )

) dτ – c. (.)

By the concavity of
√·, we have by (.)√

v(s)≥ √
v(s) + c –

√
c

≥
√∫ 


G(s, τ )ξ

(
u(τ ) –w(τ )

) dτ –
√
c

≥
∫ 



√
G(s, τ )ξ

(
u(τ ) –w(τ )

) dτ –
√
c

=
∫ 



√
μ�–(α)ξμ–�(α)G(s, τ )

(
u(τ ) –w(τ )

)
dτ –

√
c

≥
∫ 



√
μ�–(α)ξμ–�(α)G(s, τ )

(
u(τ ) –w(τ )

)
dτ –

√
c

≥ μ– 
 �


 (α)ξ





∫ 


G(s, τ )u(τ ) dτ – c. (.)

Combining (.) and (.), we easily find

u(t) ≥
∫ 


G(t, s)ξ

[
μ– 

 �

 (α)ξ





∫ 


G(s, τ )u(τ ) dτ – c

]
ds – c

≥ ξξ


 μ– 

 �

 (α)

∫ 



∫ 


G(t, s)G(s, τ )u(τ ) dτ ds – c. (.)

Multiply the both sides of the above by ϕ(t) and integrate over [, ] and use Lemma .
to obtain∫ 


u(t)ϕ(t) dt ≥ ξξ



 μ– 

 �

 (α)κ



∫ 


u(t)ϕ(t) dt – c, (.)
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and thus∫ 


u(t)ϕ(t) dt ≤ c

ξξ


 μ– 

 �

 (α)κ

 – 
. (.)

Noting Lemma ., we obtain

μ–κ‖u‖ =
∫ 


μ–k(t)‖u‖ϕ(t) dt ≤

∫ 


u(t)ϕ(t) dt ≤ c

ξξ


 μ– 

 �

 (α)κ

 – 
. (.)

Hence,

‖u‖ ≤ μc

ξξ


 μ– 

 �

 (α)κ

 – κ

:=N. (.)

On the other hand, noting (.), together with the concavity of
√·, we arrive at

‖u‖ + c ≥ u(t) + c ≥
∫ 


G(t, s)ξ

√
v(s) ds ≥ ξ√‖v‖

∫ 


G(t, s)v(s) ds. (.)

Multiply the both sides of the above by ϕ(t) and integrate over [, ] and use Lemma .,
Lemma . to obtain

�–(α + )
(‖u‖ + c

)
=

∫ 



(‖u‖ + c
)
ϕ(t) dt ≥ ξκ√‖v‖

∫ 


v(t)ϕ(t) dt

≥ ξκ√‖v‖
∫ 


μ–k(t)‖v‖ϕ(t) dt = μ–ξκ



√‖v‖. (.)

Consequently,

‖v‖ ≤
[

�–(α + )(N + c)
μ–ξκ




]

. (.)

Taking R > max{N,Mμ�–(α)(α – ), [�–(α+)(N+c)
μ–ξκ

]}, which contradicts (u, v) ∈ ∂BR ∩
(P × P). As a result, (.) is true. Lemma . implies

i
(
A,BR ∩ (P × P),P × P

)
= . (.)

On the other hand, by (H), we have, for i = , ,

Ai(u,u)(t) =
∫ 


G(t, s)Fi

(
s,u(s) –w(s),u(s) –w(s)

)
ds

≤
∫ 


μϕ(s)Q(s) ds <Mμ�–(α)(α – ) = ‖ui‖

for any (t,u,u) ∈ [, ]× ∂BN × ∂BN (N =Mμ�–(α)(α – )), from which we obtain

∥∥A(u,u)∥∥ <
∥∥(u,u)∥∥, ∀(u,u) ∈ ∂BN ∩ (P × P).
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This leads to

(u,u) = λA(u,u), ∀(u,u) ∈ ∂BN ∩ (P × P),λ ∈ [, ]. (.)

Now Lemma . implies

i
(
A,BN ∩ (P × P),P × P

)
= . (.)

Combining (.) and (.) gives

i
(
A, (BR\BN )∩ (P × P),P × P

)
=  –  = –.

Therefore the operator A has at least one fixed point in (BR\BN ) ∩ (P × P). Equivalently,
(.) has at least one positive solution. This completes the proof. �

Theorem. Suppose that (H), (H), and (H) hold, (.) has at least a positive solution.

Proof We first find that there exists an adequately big positive number R >Mμ�–(α)×
(α – ) such that the following claim holds:

(u,u) = λA(u,u), ∀(u,u) ∈ ∂BR ∩ (P × P),λ ∈ [, ]. (.)

If the claim is false, there exist (u, v) ∈ ∂BR∩ (P×P) and λ ∈ [, ] such that (u, v) = λA(u, v).
Therefore, u ≤ A(u, v) and v ≤ A(u, v). In view of (H), we have

u(t) ≤
∫ 


G(t, s)

[
ξ

(
v(s) –w(s)

) + c
]
ds

≤
∫ 


G(t, s)ξv(s) ds –

∫ 


G(t, s)ξw(s) ds + c

≤
∫ 


G(t, s)ξv(s) ds + c, (.)

and

v(s)≤
∫ 


G(s, τ )

[
ξ

√
u(τ ) –w(τ ) + c

]
dτ . (.)

By (.), the convexity of a square function enables us to obtain

v(s)≤
(∫ 


μ–�(α)G(s, τ )μ�–(α)

[
ξ

√
u(τ ) –w(τ ) + c

]
dτ

)

≤
∫ 


μ–�(α)G(s, τ )

(
μ�–(α)

[
ξ

√
u(τ ) –w(τ ) + c

]) dτ
≤ μ�–(α)

∫ 


G(s, τ )

[
ξ 


(
u(τ ) –w(τ )

)
+ c

]
dτ

≤ μ�–(α)ξ 


∫ 


G(s, τ )u(τ ) dτ + c. (.)

http://www.boundaryvalueproblems.com/content/2013/1/256


Wang Boundary Value Problems 2013, 2013:256 Page 13 of 14
http://www.boundaryvalueproblems.com/content/2013/1/256

We find from (.) and (.) that

u(t) ≤
∫ 


G(t, s)ξ

[
μ�–(α)ξ 



∫ 


G(s, τ )u(τ ) dτ + c

]
ds + c

≤ μ�–(α)ξξ 


∫ 



∫ 


G(t, s)G(s, τ )u(τ ) dτ ds + c. (.)

Multiply the both sides of the above by ϕ(t) and integrate over [, ] and use Lemma .
to obtain∫ 


u(t)ϕ(t) dt ≤ μ�–(α)ξξ 

κ


∫ 


u(t)ϕ(t) dt + c. (.)

Noting Lemma ., we obtain∫ 


μ–k(t)‖u‖ϕ(t) dt ≤

∫ 


u(t)ϕ(t) dt ≤ c

 – μ�–(α)ξξ 
κ


, (.)

and hence

‖u‖ ≤ μc
κ – μ�–(α)ξξ 

κκ


:=N. (.)

Multiply the both sides of (.) by ϕ(t) and integrate over [, ] and use Lemma .,
Lemma ., note (.), to obtain

μ–κ‖v‖ ≤
∫ 


v(t)ϕ(t) dt ≤ κ

∫ 


ϕ(t)

[
ξ

√
u(t) –w(t) + c

]
dt

≤ κ

∫ 


ϕ(t)[ξ

√
N + c] dt = �–(α + )κ(ξ

√
N + c). (.)

Consequently,

‖v‖ ≤ μ�–(α + )κ–
 κ(ξ

√
N + c). (.)

Take R > max{N,Mμ�–(α)(α – ),μ�–(α + )κ–
 κ(ξ

√
N + c)}, which contradicts

(u, v) ∈ ∂BR ∩ (P × P). As a result, (.) is true. So, we have from Lemma . that

i
(
A,BR ∩ (P × P),P × P

)
= . (.)

On the other hand, by (H), we have, for i = , ,

Ai(u,u)(t) =
∫ 


G(t, s)Fi

(
s,u(s) –w(s),u(s) –w(s)

)
ds

≥
∫ –θ

θ

k(t)ϕ(s)Q(s) ds≥Mμ�–(α)(α – ) = ‖ui‖,

and thus ‖Ai‖ ≥ Ai(u,u)(t) ≥ ‖ui‖ for any (t,u,u) ∈ [, ] × ∂BN × ∂BN (N =
Mμ�–(α)(α – )). This yields

(u,u) = A(u,u) + λ(ψ ,ψ), ∀(u,u) ∈ ∂BN ∩ (P × P),λ ≥ .
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Lemma . gives

i
(
A,BN ∩ (P × P),P × P

)
= . (.)

Combining (.) and (.) gives

i
(
A, (BR\BN )∩ (P × P),P × P

)
=  –  = .

Therefore the operator A has at least one fixed point in (BR\BN ) ∩ (P × P). Equivalently,
(.) has at least one positive solution. This completes the proof. �
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