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Abstract
The existence of global weak solutions to the Cauchy problem for a weakly dissipative
Camassa-Holm equation is established in the space C([0,∞)× R)∩ L∞([0,∞);H1(R))
under the assumption that the initial value u0(x) only belongs to the space H1(R). The
limit of viscous approximations, a one-sided super bound estimate and a space-time
higher-norm estimate for the equation are established to prove the existence of the
global weak solution.
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1 Introduction
In this work, we investigate the Cauchy problem for the nonlinear model

ut – utxx + ∂xf (u) = uxuxx + uuxxx – λuN+ + βumuxx, ()

where λ ≥ , β ≥ , f (u) is a polynomial with order n, N andm are nonnegative integers.
When f (u) = ku+ 

u
, λ = , β = , Eq. () is the standard Camassa-Holm equation [–].

In fact, the nonlinear term –λuN+ +βumuxx can be regarded as a weakly dissipative term
for the Camassa-Holm model (see [, ]). Here we coin () a weakly dissipative Camassa-
Holm equation.
To link with previous works, we review several works on global weak solutions for the

Camassa-Holm and Degasperis-Procesi equations. The existence and uniqueness results
for global weak solutions of the standard Camassa-Holm equation have been proved by
Constantin and Escher [], Constantin and Molinet [] and Danchin [, ] under the sign
condition imposing on the initial value. Xin and Zhang [] established the global exis-
tence of a weak solution for the Camassa-Holm equation in the energy space H(R) with-
out imposing the sign conditions on the initial value, and the uniqueness of the weak solu-
tion was obtained under certain conditions on the solution []. Under the sign condition
for the initial value, Yin and Lai [] proved the existence and uniqueness results of a
global weak solution for a nonlinear shallow water equation, which includes the famous
Camassa-Holm and Degasperis-Procesi equations as special cases. Lai and Wu [] ob-
tained the existence of a local weak solution for Eq. () in the lower-order Sobolev space
Hs(R) with  ≤ s ≤ 

 . For othermeaningfulmethods to handle the problems relating to dy-
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namic properties of the Camassa-Holm equation and other partial differential equations,
the reader is referred to [–]. Coclite et al. [] used the analysis presented in [, ]
and investigated global weak solutions for a generalized hyperelastic-rod wave equation
(or a generalizedCamassa-Holm equation), namely, λ = , β =  in Eq. (). The existence of
a strongly continuous semigroup of global weak solutions for the generalized hyperelastic-
rod equation with any initial value in the space H(R) was established in []. Up to now,
the existence result of the global weak solution for the weakly dissipative Camassa-Holm
equation () has not been found in the literature. This constitutes the motivation of this
work.
The objective of this work is to study the existence of global weak solutions for the Eq. ()

in the space C([,∞)× R) ∩ L∞([,∞);H(R)) under the assumption u(x) ∈ H(R). The
key elements in our analysis include some new a priori one-sided upper bound and space-
time higher-norm estimates on the first-order derivatives of the solution. Also, the limit
of viscous approximations for the equation is used to establish the existence of the global
weak solution. Here we should mention that the approaches used in this work come from
Xin and Zhang [] and Coclite et al. [].
The rest of this paper is as follows. Themain result is given in Section . In Section , we

present a viscous problem of Eq. () and give a corresponding well-posedness result. An
upper bound, a higher integrability estimate and some basic compactness properties for
the viscous approximations are also established in Section . Strong compactness of the
derivative of the viscous approximations is obtained in Section , where the main result
for the existence of Eq. () is proved.

2 Main result
Consider the Cauchy problem for Eq. ()

⎧⎨
⎩
ut – utxx + ∂xf (u) = uxuxx + uuxxx – λuN+ + βumuxx,

u(,x) = u(x),
()

which is equivalent to
⎧⎪⎪⎨
⎪⎪⎩
ut + uux + ∂P

∂x = ,
∂P
∂x = �–∂x[f (u) + 

 (u

x – u) – βumux] +�–[λuN+ + mβum–ux],

u(,x) = u(x),

()

where the operator � =  – ∂

∂x . For a fixed  ≤ p <∞, one has

�–g(x) =



∫
R
e–|x–y|g(y)dy for g(x) ∈ Lp (R),  < p <∞.

In fact, as proved in [], problem () satisfies the following conservation law:
∫
R

(
u + ux

)
dx + λ

∫ t



∫
R
uN+ dxdt + β(m + )

∫ t



∫
R
umux dxdt

=
∫
R

(
u + ux

)
dx. ()

Now we introduce the definition of a weak solution to Cauchy problem () or ().
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Definition  A continuous function u : [,∞)×R → R is said to be a global weak solution
to Cauchy problem () if

(i) u ∈ C([,∞)× R)∩ L∞([,∞);H(R));
(ii) ‖u(t, ·)‖H(R) ≤ ‖u‖H(R);
(iii) u = u(t,x) satisfies () in the sense of distributions and takes on the initial value

pointwise.

The main result of this paper is stated as follows.

Theorem  Assume u(x) ∈ H(R). Then Cauchy problem () or () has a global weak
solution u(t,x) in the sense of Definition . Furthermore, the weak solution satisfies the
following properties.
(a) There exists a positive constant c depending on ‖u‖H(R) and the coefficients of

Eq. () such that the following one-sided L∞ norm estimate on the first-order spatial
derivative holds:

∂u(t,x)
∂x

≤ 
t
+ c, for (t,x) ∈ [,∞)× R. ()

(b) Let  < γ < , T >  and a,b ∈ R, a < b. Then there exists a positive constant c de-
pending only on ‖u‖H(R), γ , T , a, b and the coefficients of Eq. () such that the following
space higher integrability estimate holds:

∫ t



∫ b

a

∣∣∣∣∂u(t,x)∂x

∣∣∣∣
+γ

dx ≤ c. ()

3 Viscous approximations
Defining

φ(x) =

⎧⎨
⎩
e


x– , |x| < ,

, |x| ≥ ,
()

and setting the mollifier φε(x) = ε–

 φ(ε– 

 x) with  < ε < 
 and uε, = φε 	 u, we know

that uε, ∈ C∞ for any u ∈ Hs, s >  (see Lai and Wu []). In fact, choosing the mollifier
properly, we have

‖uε,‖H(R) ≤ ‖u‖H(R) and uε, → u in H(R). ()

The existence of a weak solution to Cauchy problem () will be established by proving
the compactness of a sequence of smooth functions {uε}ε> solving the following viscous
problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂uε

∂t + uε
∂uε

∂x + ∂Pε

∂x = ε ∂uε

∂x ,
∂Pε

∂x = �–∂x[f (uε) – 
u


ε +


 (

∂uε

∂x )
 – βumε

∂uε

∂x ]

+ λ�–(uε)N+ + mβ�–[um–
ε ( ∂uε

∂x )
],

uε(,x) = uε,(x).

()
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Now we start our analysis by establishing the following well-posedness result for prob-
lem ().

Lemma . Provided that u ∈ H(R), for any σ ≥ , there exists a unique solution uε ∈
C([,∞);Hσ (R)) to Cauchy problem ().Moreover, for any t > , it holds that

∫
R

(
uε +

(
∂uε

∂x

))
dx +

∫ t



∫
R

(
λuN+

ε + β(m + )umε

(
∂uε

∂x

))
dxdt

+ ε
∫ t



∫
R

((
∂uε

∂x

)

+
(

∂uε

∂x

))
(s,x)dxds = ‖uε,‖H(R), ()

or

∥∥uε(t, ·)
∥∥
H(R) + ε

∫ t



∥∥∥∥∂uε

∂x
(s, ·)

∥∥∥∥


H(R)
ds

+
∫ t



∫
R

(
λuN+ + β(m + )umε

(
∂uε

∂x

))
dxdt = ‖uε,‖H(R). ()

Proof For any σ ≥  and u ∈ H(R), we have uε, ∈ C([,∞);Hσ (R)). From Theorem .
in [], we conclude that problem () has a unique solution uε ∈ C([,∞);Hσ (R)) for an
arbitrary σ > .
We know that the first equation in system () is equivalent to the form

∂uε

∂t
–

∂uε

∂tx
+

∂f (uε)
∂x

= 
∂uε

∂x
∂uε

∂x
+ uε

∂uε

∂x
– λuN+

ε + βumε
∂uε

∂x

+ ε

(
∂uε

∂x
–

∂uε

∂x

)
, ()

from which we derive that



d
dt

∫
R

(
uε +

(
∂uε

∂x

))
dx + λ

∫
R
uN+

ε dx + β(m + )
∫
R
umε

(
∂uε

∂x

)

dx

+ ε

∫
R

((
∂uε

∂x

)

+
(

∂uε

∂x

))
dx = , ()

which completes the proof. �

From Lemma . and (), we have

‖uε‖L∞(R) ≤ ‖uε‖H(R) ≤ ‖uε,‖H(R) ≤ ‖u‖H(R). ()

Differentiating the first equation of problem () with respect to x and writing ∂uε

∂x = qε , we
obtain

∂qε

∂t
+ uε

∂qε

∂x
– ε

∂qε

∂x
+


qε + β(uε)mqε

= f (uε) –


uε –�–

[
f (uε) –



(
uε – q

)
– β(uε)mqε

http://www.boundaryvalueproblems.com/content/2013/1/26
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+ λ
(
uN+

ε

)
x + mβ∂x

[
(uε)m–qε

]]

=Qε(t,x). ()

Lemma . Let  < γ < , T >  and a,b ∈ R, a < b. Then there exists a positive constant c
depending only on ‖u‖H(R), γ , T , a, b and the coefficients of Eq. (), but independent of ε,
such that the space higher integrability estimate holds

∫ T



∫ b

a

∣∣∣∣∂uε(t,x)
∂x

∣∣∣∣
+γ

dx ≤ c, ()

where uε = uε(t,x) is the unique solution of problem ().

The proof is similar to that of Proposition . presented in Xin and Zhang [] (also see
Coclite et al. []). Here we omit it.

Lemma . There exists a positive constant C depending only on ‖u‖H(R) and the coeffi-
cients of Eq. () such that

∥∥Qε(t, ·)
∥∥
L∞(R) ≤ C,

∥∥Qε(t, ·)
∥∥
L(R) ≤ C,

∥∥Qε(t, ·)
∥∥
L(R) ≤ C, ()

∥∥∥∥∂Pε(t, ·)
∂x

∥∥∥∥
L∞(R)

≤ C,
∥∥∥∥∂Pε(t, ·)

∂x

∥∥∥∥
L(R)

≤ C,
∥∥∥∥∂Pε(t, ·)

∂x

∥∥∥∥
L(R)

≤ C, ()

where uε = uε(t,x) is the unique solution of system ().

Due to strong similarities with the proof of Lemma . presented in Coclite et al. [],
we do not prove Lemma . here.

Lemma . Assume that uε = uε(t,x) is the unique solution of (). For an arbitrary T > ,
there exists a positive constant C depending only on ‖u‖H(R) and the coefficients of Eq. ()
such that the following one-sided L∞ norm estimate on the first-order spatial derivative
holds:

∂uε(t,x)
∂x

≤ 
t
+C for (t,x) ∈ [,∞)× R. ()

Proof From () and Lemma ., we know that there exists a positive constant C depend-
ing only on ‖u‖H(R) and the coefficients of Eq. () such that ‖Qε(t,x)‖L∞(R) ≤ C. There-
fore,

∂qε

∂t
+ uε

∂qε

∂x
+


qε + β(uε)mqε =Qε(t,x)≤ C. ()

Let f = f (t) be the solution of

df
dt

+


f  + β

(
u∗)mf = C, t > , f () =

∥∥∥∥∂uε,

∂x

∥∥∥∥
L∞(R)

, ()

where u∗
ε is the value of uε(t,x) when supx∈R qε(t,x) = f (t). From the comparison principle

for parabolic equations, we get

qε(t,x)≤ f (t). ()

http://www.boundaryvalueproblems.com/content/2013/1/26
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Using () and –β(u∗)mf ≤ ρf  + 
ρ

β(u∗)m, we derive that

df
dt

= C –


f  – β

(
u∗)mf ≤ C –



f  + ρf  +


ρ β(u∗)m

≤ C –


f  +C, ()

where ‖ 
ρ

β(u∗)m‖ ≤ C and ρ = 
 . SettingM = C +C, we obtain

df
dt

+


f  ≤ M. ()

Letting F(t) = 
t + 

√
M, we have dF(t)

dt + 
F

(t) –M = 
√
M
t > . From the comparison

principle for ordinary differential equations, we get f (t) ≤ F(t) for all t > . Therefore, by
this and (), the estimate () is proved. �

Lemma . For u ∈ H(R), there exists a sequence {εj}j∈N tending to zero and a function
u ∈ L∞([,∞);H(R))∩H([,T]× R) such that, for each T ≥ , it holds that

uεj ⇀ u in H([,T]× R
)
, for each T ≥ , ()

uεj → u in L∞
loc

(
[,∞)× R

)
, ()

where uε = uε(t,x) is the unique solution of ().

Lemma. There exists a sequence {εj}j∈N tending to zero and a functionQ ∈ L∞([,∞)×
R) such that for each  < p < ∞,

Qεj →Q strongly in Lploc
(
[,∞)× R

)
. ()

The proofs of Lemmas . and . are similar to those of Lemmas . and . in [].
Here we omit their proofs.
Throughout this paper, we use overbars to denote weak limits (the space in which these

weak limits are taken is Lrloc([,∞)× R) with  < r < 
 ).

Lemma . There exists a sequence {εj}j∈N tending to zero and two functions q ∈
Lploc([,∞)× R), q ∈ Lrloc([,∞)× R) such that

qεj ⇀ q in Lploc
(
[,∞)× R

)
, qεj

	
⇀ q in L∞

loc
(
[,∞);L(R)

)
, ()

qεj ⇀ q in Lrloc
(
[,∞)× R

)
, ()

for each  < p <  and  < r < 
 .Moreover,

q(t,x)≤ q(t,x) for almost every (t,x) ∈ [,∞)× R ()

and

∂u
∂x

= q in the sense of distributions on [,∞)× R. ()

http://www.boundaryvalueproblems.com/content/2013/1/26
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Proof () and () are a direct consequence of Lemmas . and .. Inequality () is valid
because of the weak convergence in (). Finally, () is a consequence of the definition
of qε , Lemma . and (). �

In the following, for notational convenience, we replace the sequence {uεj}j∈N , {qεj}j∈N
and {Qεj}j∈N by {uε}ε>, {qε}ε> and {Qε}ε>, respectively.
Using (), we conclude that for any convex function η ∈ C(R) with η′ being bounded

and Lipschitz continuous on R and for any  < p < , we get

η(qε) ⇀ η(q) in Lploc
(
[,∞)× R

)
, ()

η(qε)
	

⇀ η(q) in L∞
loc

(
[,∞);L(R)

)
. ()

Multiplying Eq. () by η′(qε) yields

∂

∂t
η(qε) +

∂

∂x
(
uεη(qε)

)
– ε

∂

∂x
η(qε) + εη′′(qε)

(
∂qε

∂x

)

= qεη(qε) –


η′(qε)qε – β(uε)mqεη

′(qε) +Qε(t,x)η′(qε). ()

Lemma . For any convex η ∈ C(R) with η′ being bounded and Lipschitz continuous
on R, it holds that

∂η(q)
∂t

+
∂

∂x
(
uη(q)

) ≤ qη(q) –


η′(q)q – βumqη′(q) +Q(t,x)η′(q) ()

in the sense of distributions on [,∞) × R. Here qη(q) and η′(q)q denote the weak limits
of qεη(qε) and qεη′(qε) in Lrloc([,∞)× R),  < r < 

 , respectively.

Proof In (), by the convexity of η, (), Lemmas ., . and ., taking limit for ε → 
gives rise to the desired result. �

Remark . From () and (), we know that

q = q+ + q– = q+ + q–, q = (q+) + (q–), q = (q+) + (q–) ()

almost everywhere in [,∞)× R, where ξ+ := ξχ [,+∞)(ξ ), ξ– := ξχ (–∞,](ξ ) for ξ ∈ R. From
Lemma . and (), we have

qε(t,x), q(t,x)≤ 
t
+C for t > ,x ∈ R, ()

where C is a constant depending only on ‖u‖H(R) and the coefficients of Eq. ().

Lemma . In the sense of distributions on [,∞)× R, it holds that

∂q
∂t

+
∂

∂x
(uq) =



q – βumq +Q(t,x). ()

http://www.boundaryvalueproblems.com/content/2013/1/26
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Proof Using (), Lemmas . and ., (), () and (), the conclusion () holds by
taking limit for ε →  in (). �

The next lemma contains a generalized formulation of ().

Lemma . For any η ∈ C(R) with η′ ∈ L∞(R), it holds that

∂η(q)
∂t

+
∂

∂x
(
uη(q)

)
= qη(q) +

(


q – q

)
η′(q) – βumqη′(q) +Q(t,x)η′(q) ()

in the sense of distributions on [,∞)× R.

Proof Let {ωδ}δ be a family of mollifiers defined on R. Denote qδ(t,x) := (q(t, ·) 	 ωδ)(x),
where the 	 is the convolution with respect to x variable. Multiplying () by η′(qδ) yields

∂η(qδ)
∂t

= η′(qδ)
∂qδ

∂t

= η′(qδ)
[


q 	 ωδ – βumqδ +Q(t,x) 	 ωδ – q 	 ωδ – u

∂q
∂x

	 ωδ

]
()

and

∂

∂x
(
uη(qδ)

)
= qη(qδ) + uη′(qδ)

(
∂qδ

∂x

)
. ()

Using the boundedness of η, η′ and letting δ →  in the above two equations, we ob-
tain (). �

4 Strong convergence of qε

Now, we will prove the strong convergence result, i.e.,

∂xuε → ∂xu as ε →  in Lloc
(
[,∞)× R

)
, ()

which is one of key statements to derive that u(t,x) is a global weak solution required in
Theorem .

Lemma . Assume u ∈ H(R). It holds that

lim
t→

∫
R
q(t,x)dx = lim

t→

∫
R
q(t,x)dx =

∫
R

(
∂u
∂x

)

dx. ()

Lemma . If u ∈H(R), for each M > , it holds that

lim
t→

∫
R

(
η±
M(q)(t,x) – η±

M
(
q(t,x)

))
dx = , ()

where

ηM(ξ ) :=

⎧⎨
⎩


ξ

 if |ξ | ≤ M,

M|ξ | – 
M

 if |ξ | >M,
()

and η+
M(ξ ) := ηM(ξ )χ[,+∞)(ξ ), η–

M(ξ ) := ηM(ξ )χ(–∞,](ξ ), ξ ∈ R.

http://www.boundaryvalueproblems.com/content/2013/1/26
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Lemma . Let M > . Then for each ξ ∈ R,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηM(ξ ) = 
ξ

 – 
 (M – |ξ |)χ(–∞,–M)∩(M,∞)(ξ ),

η′
M(ξ )ξ = ξ + (M – |ξ |) sign(ξ )χ(–∞,–M)∩(M,∞)(ξ ),

η+
M(ξ ) =


 (ξ+)

 – 
 (M – ξ )χ(M,∞)(ξ ),

(η+
M)′(ξ ) = ξ+ + (M – ξ )χ(M,∞)(ξ ),

η–
M(ξ ) =


 (ξ–)

 – 
 (M + ξ )χ(–∞,–M)(ξ ),

(η–
M)′(ξ ) = ξ– – (M + ξ )χ(–∞,–M)(ξ ).

()

The proofs of Lemmas ., . and . can be found in [] or [].

Lemma . Assume u ∈H(R). Then for almost all t > ,




∫
R

(
(q+) – q+

)
(t,x)dx≤

∫ t



∫
R
Q(s,x)

[
q+(s,x) – q+(s,x)

]
dsdx. ()

Lemma . For any t > ,M >  and u ∈ H(R), it holds that

∫
R

(
η–
M(q) – η–

M(q)
)
(t,x)dx

≤ M



∫ t



∫
R
u(M + q)χ(–∞,–M)(q)dsdx

–
M



∫ t



∫
R
u(M + q)χ(–∞,–M)(q)dsdx +M

∫ t



∫
R
u
[
η–
M(q) – η–

M(q)
]
dsdx

+
M


∫ t



∫
R
u
(
q+ – q+

)
dsdx +

∫ t



∫
R
Q(t,x)

((
η–
M

)′(q) –
(
η–
M

)′(q)
)
dsdx. ()

We do not provide the proofs of Lemmas . and . since they are similar to those of
Lemmas . and . in Coclite et al. [].

Lemma . Assume u ∈H(R). Then it has

q = q almost everywhere in [,∞)× (–∞,∞). ()

Proof Applying Lemmas . and . gives rise to

∫
R

(


[
(q+) – (q+)

]
+

[
η–
M – η–

M
])

(t,x)dx

≤ M



(∫ t



∫
R
(M + q)χ(–∞,–M)(q)dsdx

–
M



∫ t



∫
R
(M + q)χ(–∞,–M)(q) dsdx

)

+M
∫ t



∫
R

[
η–
M – η–

M
]
dsdx +

M


∫ t



∫
R

[
(q+) – (q+)

]
dsdx

+
∫ t



∫
R
Q(s,x)

(
[q+ – q+] +

[(
η–
M

)′(q) –
(
η–
M

)′(q)
])
dsdx. ()

http://www.boundaryvalueproblems.com/content/2013/1/26
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From Lemma ., we know that there exists a constant L > , depending only on ‖u‖H(R),
such that

∥∥Q(t,x)∥∥L∞([,∞)×R) ≤ L. ()

By Remark . and Lemma ., one has

q+ +
(
η–
M

)′(q) = q – (M + q)χ(–∞,–M),

q+ +
(
η–
M

)′(q) = q – (M + q)χ(–∞,–M)(q).
()

Thus, by the convexity of the map ξ → ξ+ + (η–
M)′(ξ ), we get

 ≤ [q+ – q+] +
[(

η–
M

)′(q) –
(
η–
M

)′(q)
]

= (M + q)χ(–∞,–M) – (M + q)χ(–∞,–M)(q). ()

Using () derives

Q(s,x)
(
[q+ – q+] +

[(
η–
M

)′(q) –
(
η–
M

)′(q)
])

≤ –L
(
(M + q)χ(–∞,–M)(q) – (M + q)χ(–∞,–M)

)
. ()

Since ξ → (M + ξ )χ(–∞,–M) is concave, choosingM large enough, we have

M


(
(M + q)χ(–∞,–M)(q) – (M + q)χ(–∞,–M)

)

+Q(s,x)
(
[q+ – q+] +

[(
η–
M

)′(q) –
(
η–
M

)′(q)
])

≤
(
M


– L

)(
(M + q)χ(–∞,–M)(q) – (M + q)χ(–∞,–M)

) ≤ . ()

Then, from () and (), we have

 ≤
∫
R

(


[
(q+) – (q+)

]
+

[
η–
M – η–

M
])

(t,x)dx

≤ cM
∫ t



∫
R

(


[
(q+) – (q+)

]
+

[
η–
M – η–

M
])

(t,x)dsdx. ()

By using the Gronwall inequality, for each t > , we have

 ≤
∫
R

(


[
(q+) – (q+)

]
+

[
η–
M – η–

M
])

(t,x)dx = .

By the Fatou lemma, Remark . and (), lettingM → ∞, we obtain

 ≤
∫
R

(
q – q

)
(t,x)dx =  for t > , ()

which completes the proof. �
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Proof of the main result Using (), () and Lemma ., we know that the conditions (i)
and (ii) in Definition  are satisfied. We have to verify (iii). Due to Lemma . and
Lemma ., we have

qε → q in Lloc
(
[,∞)× R

)
. ()

From Lemma ., () and (), we know that u is a distributional solution to problem ().
In addition, inequalities () and () are deduced from Lemmas . and .. The proof of
Theorem  is completed. �
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