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Abstract
In this paper we study a system of delay dynamic equations on the time scale T of
the form

y�(t) = f (t, yτ (t)),

where f : T×R
n → R

n, yτ (t) = (y1(τ1(t)), . . . , yn(τn(t))) and τi : T → T, i = 1, . . . ,n, are
the delay functions. We are interested in the asymptotic behavior of solutions of the
mentioned system. More precisely, we formulate conditions on a function f , which
guarantee that the graph of at least one solution of the above-mentioned system
stays in the prescribed domain. This result generalizes some previous results
concerning the asymptotic behavior of solutions of non-delay systems of dynamic
equations or of delay dynamic equations. A relevant example is considered.
MSC: 34N05; 39A10

Keywords: time scale; dynamic system; delay; asymptotic behavior of solution;
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1 Introduction
1.1 Time scale calculus
Time scale calculus, first introduced by Stefan Hilger in his PhD thesis in  (see []) is
nowadays well-known calculus and often studied in applications. Recall that a time scale
T is an arbitrary nonempty closed subset of reals. Note that [a,b]T := [a,b] ∩ T (resp.
(a,b)T := (a,b) ∩ T etc., we define any combination of right and left open or closed in-
tervals), [a,∞)T := [a,∞) ∩ T, σ , ρ , μ and f � stand for the finite time scale interval, in-
finite time scale interval, forward jump operator, backward jump operator, graininess and
�-derivative of f . Further, we use the symbols Crd(T) and C

rd(T) to stand for the class of
rd-continuous and rd-continuous �-differentiable functions defined on the time scale T.
Finally, we work with all types of points on the time scale T, i.e., with right-dense points
or right-scattered points, respectively with left-dense points or left-scattered points. See
[], which is the initiating paper of the time scale theory, and [] containing a lot of infor-
mation on time scale calculus.
Now we remind further aspects of time scales calculus, which will be needed later (see,

e.g., []). We use the standard symbol ‖ · ‖ for an arbitrary vector norm. Note that (in this
paper) a type of a norm is not important.
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Definition  Let T be a time scale. A function f : T×R
n →R

n is called
(i) rd-continuous if g defined by g(t) := f (t, y(t)) is rd-continuous for any rd-continuous

function y : T→R
n;

(ii) bounded on a set S ⊂ T×R
n if there exists a constantM >  such that

∥∥f (t, y)∥∥ ≤M for all (t, y) ∈ S;

(iii) Lipschitz continuous on a set S ⊂ T×R
n if there exists a constant L >  such that

∥∥f (t, y) – f (t, y)
∥∥ ≤ L‖y – y‖ for all (t, y), (t, y) ∈ S.

1.2 System of delay dynamic equations on time scales
Let τi : T→ T, i = , . . . ,n, n ∈N, be increasing rd-continuous functions satisfying τi(t) ≤ t
for all t ∈ T, and let yτ (t) = (y(τ(t)), . . . , yn(τn(t))) be a vector, where its every component
yi is with an own delay τi. Let the function f : T×R

n →R
n be rd-continuous.We consider

the system of n delay dynamic equations

y�(t) = f
(
t, yτ (t)

)
, ()

i.e.,

y�
 (t) = f

(
t, y

(
τ(t)

)
, y

(
τ(t)

)
, . . . , yn

(
τn(t)

))
,

y�
 (t) = f

(
t, y

(
τ(t)

)
, y

(
τ(t)

)
, . . . , yn

(
τn(t)

))
,

...

y�
n (t) = fn

(
t, y

(
τ(t)

)
, y

(
τ(t)

)
, . . . , yn

(
τn(t)

))
on the time scale T.
For given t ∈ T and α := min{τi(t)}ni=, a function y : [α,∞)T → R

n is said to be a
solution of () on [α,∞)T provided y ∈ Crd( [α,∞)T), y ∈ C

rd( [t,∞)T) and y satisfies
() for all t ∈ [t,∞)T. If, moreover, we are given an initial function ϕ : [α, t]T → R

n,
ϕ ∈ Crd([α, t]T) such that

y(t) = ϕ(t), t ∈ [α, t]T, ()

then we say that y is a solution of initial problem (IP) (), ().

1.3 Existence and uniqueness of solutions of delay dynamic equations
For the next study, it is important to known whether a solution of IP () and () exists and
if it is uniquely defined. However, the following theorem (in a more general form) can be
found in [, Theorem .].

Theorem  (Picard-Lindelöf theorem) Let t ∈ T, t > t,m > . Let

Ym :=
{
y ∈R

n :
∥∥y – ϕ(t)

∥∥ ≤m for some t ∈ [α, t]T
}
,
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where the properties of ϕ and the definition of α are described in previous Section ..
Assume that f ∈ Crd([t, t]T × Ym) is on [t, t]T × Ym bounded with bound M >  and
Lipschitz continuous. Then initial problem () and () has a unique solution y on the inter-
val [α,σ (ξ )]T ⊂ [α, t]T, where

ξ :=max[t, t + δ]T

and

δ :=min{t – t,m/M}.

Carefully tracing the proof of Theorem  in [], it is easy to verify that if Theorem 
holds, then the solution of IP (), () depends continuously on the initial data.

2 Problem under consideration
Throughout this paper, we assume that the time scale T is unbounded above with t ∈ T.
Furthermore (throughout this paper), α ∈ T has the same meaning as in the previous
section. Let

bi, ci : T→R, i = , . . . ,n,

be �-differentiable functions such that bi(t) < ci(t) for each t ∈ [α,∞)T, i = , . . . ,n, and

bi(t) < ϕi(t) < ci(t) for all t ∈ [α, t]T, i = , . . . ,n, ()

where ϕi(t) are coordinates of an initial function ϕ(t) used in (). We define a set 
 ⊂
T×R

n as


 :=
{
(t, y) : t ∈ [α,∞)T, y ∈ ω(t)

}
,

where

ω(t) :=
{
y ∈R

n : bi(t) < yi < ci(t), i = , . . . ,n
}
.

Then the closure 
 equals


 :=
{
(t, y) : t ∈ [α,∞)T, y ∈ ω(t)

}
with

ω(t) =
{
y ∈R

n : bi(t)≤ yi ≤ ci(t), i = , . . . ,n
}
.

Moreover, we define the y-boundary ∂y
 of 
 as

∂y
 :=
{
(t, y) : t ∈ [α,∞)T, y ∈ ∂ω(t)

}
with

∂ω(t) := ω(t) \ ω(t) =

{
y ∈R

n : y ∈ ω(t) and
n∏
i=

(
yi – bi(t)

)(
yi – ci(t)

)
= 

}
.
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Consider delay system () and initial problem (). Let t ∈ T, where t > t. Let a function
f be bounded and Lipschitz continuous on an open set S = S(t, y)⊂ T×R

n and

{
(t, y) : t ∈ [α, t]T, y ∈R

n} ∩ 
 ⊂ S.

This condition says that, by Theorem , every initial problem () and () with ϕ satisfying
() has exactly one solution on an interval [α,σ (ξ )]T where σ (ξ ) > t. It is also easy to
show that this solution depends continuously on the initial function ϕ.
Throughout the paper, we assume that the function f is bounded and Lipschitz contin-

uous on an open set S and 
 ⊂ S, which implies that every initial problem () and () has
exactly one solution on an interval [α,∞)T.
The aim of this paper is to establish sufficient conditions on the function f of equation

() such that there exists at least one solution y(t) of () defined on [α,∞)T such that
(t, y(t)) ∈ 
 for each t ∈ [α,∞)T. The main result generalizes some previous results of
the first author (and his co-authors) concerning the asymptotic behavior of solutions of
discrete and dynamic equations (see, e.g., [–]).
In papers [, ], to our best knowledge, the retract principle is for the first time extended

to discrete equations. In [] delayed discrete equations are considered by retract tech-
nique, and in [] the retract principle is given for discrete time scales. Paper [] is devoted
to extension of the retract principle to dynamic equations. In [] the retract principle is
extended (under different conditions) to a system of dynamic equations in the plane. In
[] we extended the retract principle to scalar delayed dynamic equations. In the present
paper we give an attempt to enlarge the retract principle to systems of delayed dynamic
equations.

2.1 Points of strict egress
We define auxiliary sets which are subsets of y-boundary ∂y
:


i
B :=

{
(t, y) ∈ 
 : yi(t) = bi(t)

}
,


i
C :=

{
(t, y) ∈ 
 : yi(t) = ci(t)

}
,

where i = , , . . . ,n. Obviously, ∂y
 =
⋃n

i=(
i
B ∪ 
i

C).

Definition  Let αt :=min{τi(t)}ni=. A point

MiB =
(
t, y, . . . , yi–,bi(t), yi+, . . . , yn

) ∈ 
i
B, i ∈ {, , . . . ,n}, t ≥ t

is called the point of strict egress for the set 
 with respect to system () if

fi
(
t,u

(
τ(t)

)
,u

(
τ(t)

)
, . . . ,un

(
τn(t)

))
< b�

i (t), ()

where u = (u, . . . ,un) : [αt , t]T → R
n is an arbitrary rd-continuous function such that for

every j = , . . . ,n,

bj(s) < uj(s) < cj(s), s ∈ [αt , t)T,

bj(t) ≤ uj(t) ≤ cj(t) for j �= i
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and ui(t) = bi(t).
A point

MiC =
(
t, y, . . . , yi–, ci(t), yi+, . . . , yn

) ∈ 
i
C , i ∈ {, , . . . ,n}, t ≥ t

is called the point of strict egress for the set 
 with respect to system () if

fi
(
t,u

(
τ(t)

)
,u

(
τ(t)

)
, . . . ,un

(
τn(t)

))
> c�i (t), ()

where u = (u, . . . ,un) : [αt , t]T → R
n is an arbitrary rd-continuous function such that for

every j = , . . . ,n,

bj(s) < uj(s) < cj(s), s ∈ [αt , t)T,

bj(t) ≤ uj(t) ≤ cj(t) for j �= i

and ui(t) = ci(t).

Remark  Wewill explain the geometrical meaning of the point of strict egress. If a point

M∗
iB =

(
t∗, y, . . . , yi–,bi

(
t∗

)
, yi+, . . . , yn

) ∈ 
i
B, i ∈ {, , . . . ,n}

is a point of strict egress for the set 
 with respect to () and y(t) = (y(t), . . . , yn(t)) is a
(unique) solution of () satisfying (t∗, y(t∗)) =M∗

iB, then, due to (),

(
yi

(
t∗

)
– bi

(
t∗

))� = fi
(
t∗,u

(
τ

(
t∗

))
,u

(
τ

(
t∗

))
, . . . ,un

(
τn

(
t∗

)))
– b�

i
(
t∗

)
< .

From the definition of�-derivative and the property yi(t∗)–bi(t∗) = , we get yi(t)–bi(t) <
 (or (t, y(t)) /∈ 
) for t ∈ (t∗, t∗ + δ)T with a small positive δ if t∗ is a right-dense point and
for t = σ (t∗) if t∗ is right-scattered.
By analogy, if

M∗
iC =

(
t∗, y, . . . , yi–, ci

(
t∗

)
, yi+, . . . , yn

) ∈ 
i
C , i ∈ {, , . . . ,n}

is a point of strict egress for the set 
 with respect to () and y(t) = (y(t), . . . , yn(t)) is
a (unique) solution of () satisfying (t∗, y(t∗)) = M∗

iC , then, due to (), yi(t) – ci(t) >  (or
(t, y(t)) /∈ 
) for t ∈ (t∗, t∗ + δ)T with a small positive δ if t∗ is a right-dense point and for
t = σ (t∗) if t∗ is right-scattered.
We see that in all the cases considered, the solution y = y(t) of () with the initial con-

dition y(t) = ϕ(t), t ∈ [αt∗ , t∗]T, and (t∗, y(t∗)) ∈ ∂y
 satisfies (t, y(t)) /∈ 
 for t ∈ (t∗, t∗ + δ)T
with a small positive δ if t∗ is a right-dense point and for t = σ (t∗) if t∗ is right-scattered.

Definition  [] IfA⊂ B are subsets of a topological space and π : B → A is a continuous
mapping from B onto A such that π (p) = p for every p ∈ A, then π is said to be a retraction
of B onto A. When a retraction of B onto A exists, A is called a retract of B.

3 Existence theorem
The following theorem is proved by utilizing the idea of a retract method, which is well
known for ordinary differential equations and goes back to Ważewski []. In the next

http://www.boundaryvalueproblems.com/content/2013/1/260
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theorem, we assume that the function f , except for the indicated conditions, satisfies all
the assumptions given in Section . Namely, we assume that the function f is bounded
and Lipschitz continuous on an open set S and 
 ⊂ S.

Theorem  Let f : T×R
n →R

n. Let bi, ci : T →R, i ∈ {, . . . ,n} be �-differentiable func-
tions on T such that bi(t) < ci(t) for each t ∈ [α,∞)T. If, moreover, every point M ∈ ∂y


is the point of strict egress for the set 
 with respect to system (), then there exists an rd-
continuous initial function ϕ∗ : [α, t]T → R

n satisfying

bi(t) < ϕ∗
i (t) < ci(t) for all t ∈ [α, t]T, i = , . . . ,n ()

such that the initial problem

y(t) = ϕ∗(t), t ∈ [α, t]T ()

defines a solution y of () on the interval [α,∞)T satisfying

(
t, y(t)

) ∈ 
 for every t ∈ [α,∞)T. ()

Proof The idea of the proof is the following. By contrary, we assume that a solution y
satisfying () does not exist. Then we are able to prove (by a construction of a chain of
auxiliarymappings) an existence of a retraction of an n-dimensional ball into its boundary.
However, it is well known that the boundary of an n-dimensional ball cannot be its retract
(see, e.g., []) and we get a contradiction.
Without any special comment, throughout the proof, we use the fact that the initial value

problem has a unique solution and this solution depends continuously on the initial data
(this is guaranteed by Theorem ). Suppose now that the initial function ϕ∗ satisfying ()
generates the solution y = y(t) which does not satisfy () for at least one t ∈ (t,∞)T. This
means, in general, that for any rd-continuous initial function ϕ satisfying the inequality

bi(t) < ϕi(t) < ci(t) for all t ∈ [α, t]T, i = , . . . ,n, ()

there exists t ∈ T, t > t such that, for a corresponding solution y = y(t) of the initial
problem

y(t) = ϕ(t), t ∈ [α, t]T,

we have

(
t, y

(
t

))
/∈ 


and

(
t, y(t)

) ∈ 
 for all t ∈ [t, t)T.

Let us define auxiliary mappings P, P and P. Note that in this part of the proof, without
loss of generality, we admit the eventuality that the function ϕ(t) instead of () satisfies

http://www.boundaryvalueproblems.com/content/2013/1/260
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weaker restrictions

bi(t) < ϕi(t) < ci(t) for all t ∈ [α, t)T, i = , . . . ,n,

and ϕ(t) ∈ ω(t).
First, define a mapping P. For (t,ϕ(t)) with ϕ(t) ∈ ω(t),

P
(
t,ϕ(t)

)
:=

{
(t, y(t)) if ϕ(t) ∈ ω(t),
(t, y(t)) ≡ (t, y(t)) if ϕ(t) ∈ ∂ω(t)

with t having the value defined above except for the case ϕ(t) ∈ ∂ω(t). In the latter
case, we put t = t.
Second, we define a mapping P for every (t, y(t)). For this we will need a set


R :=
{
(t, y) : t ∈ [α,∞), y ∈ ωR(t)

}

with ωR(t)≡ ω(t) if t ∈ T and

ωR(t) :=
{
y ∈R

n : bi(ta) +
[
bi(tb) – bi(ta)

] · t – ta
tb – ta

< yi < ci(ta) +
[
ci(tb) – ci(ta)

] · t – ta
tb – ta

, i = , . . . ,n
}

if t /∈ T and ta ∈ T, tb ∈ T are such that ta < tb, t ∈ (ta, tb) and (ta, tb)∩T = ∅. It is clear that

 ⊆ 
R. Further,

V (ta, tb) :=
{
(t, y) : ta ≤ t ≤ tb, y ∈ ωR(t)

}

is obviously convex. We define, moreover, the y-part of the boundary of 
R as

∂y
R :=
{
(t, y) : t ∈ [α,∞), y ∈ ∂ωR(t)

}
,

where ∂ωR(t)≡ ∂ω(t) if t ∈ T and

∂ωR(t) :=

{
y ∈ ωR(t) :

n∏
i=

(
bi(ta) +

[
bi(tb) – bi(ta)

] · t – ta
tb – ta

– yi
)

×
(
yi – ci(ta) –

[
ci(tb) – ci(ta)

] · t – ta
tb – ta

)
= 

}

if t /∈ T, where ta ∈ T and tb ∈ T are as above.
Now we are ready to consider an auxiliary mapping P. Let (t, y(t)) /∈ 
. Then, due to

the convexity of V (ta, tb), there exists a unique intersection of the segment connecting the
points (ρ(t), y(ρ(t))) and (t, y(t)) with ∂y
R. We denote this point asM and define

P
(
t, y

(
t

))
:=M.

http://www.boundaryvalueproblems.com/content/2013/1/260
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Note that if (t, y(t)) ∈ ∂y
, we get the particular caseM = (t, y(t)) and P(t, y(t)) =
(t, y(t)).
Third, we define a mapping P. For this we need a subset of the y-boundary ∂y
. For

s ∈ T, let

∂y
|t=s := ∂y
 ∩ {
(s, y) : y ∈R

n}.
Now we are ready to consider an auxiliary continuous mapping P,

P : ∂y
R → ∂y
|t=t ,

defined forM = (t, y) ∈ ∂y
R as a pointM∗ = (t, y∗), where y∗ ∈ ∂ω(t) with

y∗
i = bi(t) +

ci(t) – bi(t)
ci(t) – bi(t)

· (yi – bi(t)
)
, i = , . . . ,n. ()

It is easy to see that the ∂y
|t=t is a retract of ∂y
R and satisfies all the assumptions from
Definition  (with A := ∂y
|t=t and B := ∂y
R).
We show that the composite mapping

P ◦ P ◦ P :
{
(t, y) : y ∈ ω(t)

} → ∂y
|t=t

is continuous due to the continuous dependence of the solutions on the initial data, the
convexity of sets of the type V (ta, tb) defined above and the continuity of the mapping P.
Let δ >  be sufficiently small and ϕ,ϕ,δ : [α, t]T → R

n be the initial functions such
that

∥∥ϕ(t) – ϕ,δ(t)
∥∥ < δ for all t ∈ [α, t]T

and

lim
δ→

ϕ,δ = ϕ. ()

Further, let

P
(
t,ϕ(t)

)
=

(
t, y

(
t

))
, ()

P
(
t,ϕ,δ(t)

)
=

(
t,δ , y,δ

(
t,δ

))
. ()

Suppose now that ϕ(t),ϕ,δ(t) ∈ ω(t) (which is equivalent to t > t). We consider all
the possible settings of (t, y(t)) and characters of t.
(I) Point (t, y(t)) ∈ ∂y
.
First, assume that the point t is dense, i.e., ρ(t) = t = σ (t). Then, due to the solutions

depending continuously on initial data, we have limδ→ t,δ = t and, consequently,

lim
δ→

P
(
t,ϕ,δ(t)

)
= P

(
t,ϕ(t)

)
=

(
t, y

(
t

))
.

http://www.boundaryvalueproblems.com/content/2013/1/260
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In this case themapping P is continuous and the compositemapping P ◦P is continuous
as well because

(P ◦ P)
(
t,ϕ(t)

)
=

(
t, y

(
t

))
and

lim
δ→

(P ◦ P)
(
t,ϕ,δ(t)

)
= lim

δ→
P

(
t,δ , y,δ

(
t,δ

))
=

(
t, y

(
t

))
.

Further, P ◦P ◦P is also continuous because of the continuity ofmappings P and P ◦P.
Second, if the point t is left-scattered and right-dense, i.e., ρ(t) < t = σ (t), we can

proceed analogously as in the case before. In this case, for fixed δ, either t,δ = t (if
y,δ(t) /∈ ω(t)) or t,δ > t (if y,δ(t) ∈ ω(t)). In the alternative t,δ = t, it is obvious that

lim
δ→

y,δ
(
t,δ

)
= y

(
t

)

and thus

lim
δ→

(P ◦ P)
(
t,ϕ,δ(t)

)
= lim

δ→
P

(
t,δ , y,δ

(
t,δ

))
=

(
t, y

(
t

))
.

Hence the composite mapping P ◦ P is continuous. Further, P ◦ P ◦ P is also contin-
uous because of the continuity of mappings P and P ◦ P. The alternative t,δ > t with
limδ→ t,δ = t can be proved by the same limit process as in the first case, where the point
t is dense.
Third, let the point t be left-dense and right-scattered, i.e., ρ(t) = t < σ (t). Then the

approach used in previous cases can be modified as follows. Let, as before, (), () and
() hold. Then, for fixed δ, either t,δ ≤ t (if y,δ(t) /∈ ω(t)) or t,δ = σ (t) (if y,δ(t) ∈
ω(t)). The alternative t,δ ≤ t with limδ→ t,δ = t can be proved by the same limit pro-
cess as in the first case, where the point t is dense. However, the alternative t,δ = σ (t)
takes into account a possibility that the mapping P cannot be continuous. If t,δ = σ (t) is
valid for δ → , then, due to the convexity ofV (t,σ (t)), there exists a unique intersection
of the segment connecting the points (t, y,δ(t)) and (σ (t), y,δ(σ (t))) with ∂y
R.We de-
note this point asM,δ and, in accordance with the above definition, P(σ (t), y,δ(σ (t))) =
M,δ . We wish to show thatM,δ →M = (t, y(t)) if δ → . However, in view of the def-
inition of the mapping P and its geometric meaning,

lim
δ→

P
(
σ
(
t

)
, y,δ

(
σ
(
t

)))
= lim

δ→
M,δ =

(
t, y

(
t

))

and

lim
δ→

(P ◦ P)
(
t,ϕ,δ(t)

)
=

(
t, y

(
t

))
.

Hence the continuity of P ◦ P is proved. Further, P ◦ P ◦ P is also continuous (for the
same reason as before).
Fourth, suppose now that t is an isolated point, i.e., ρ(t) < t < σ (t). Let, as before, (),

() and () hold. Then, for sufficiently small δ, we have either t,δ = t (if y,δ(t) /∈ ω(t))

http://www.boundaryvalueproblems.com/content/2013/1/260
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or t,δ = σ (t) (if y,δ(t) ∈ ω(t)).Without any special comment, in the alternative t,δ = t,
we proceed in the same way as in the second case, where t is left-scattered and right-
dense. Furthermore, in the alternative t,δ = σ (t), we proceed in the same way as in the
third case, where t is left-dense and right-scattered.
(II) Point (t, y(t)) /∈ ∂y
. Then the point t is left-scattered and only two cases are

possible (either t is left-scattered and right-dense or t is isolated). In both mentioned
cases, we can proceed in the same way. Let, as before, ϕ(t),ϕ,δ(t) ∈ ω(t) and (), ()
and () hold. Then, for sufficiently small δ, we have only t,δ = t and, of course, y,δ(t) /∈
ω(t). Further,

lim
δ→

P
(
t,ϕ,δ(t)

)
= lim

δ→

(
t,δ , y,δ

(
t,δ

))
=

(
t, y

(
t

))
/∈ 
.

Due to the convexity of V (ρ(t), t), there exists a unique intersection of the segment con-
necting the points (ρ(t), y,δ(ρ(t))) and (t, y,δ(t)) with ∂y
R. We denote this point by
M,δ . In view of the definition of the mapping P and its geometric meaning, we can ob-
serve that

lim
δ→

(P ◦ P)
(
t,ϕ,δ(t)

)
= lim

δ→
P

(
t, y,δ

(
t

))
= lim

δ→
M,δ =M.

Hence the composite mapping P ◦P is continuous. Moreover, P ◦P ◦P is also contin-
uous because of the continuity of mappings P and P ◦ P.
We proved that the composite mapping P ◦P ◦P is continuous. Note that we omitted

the special case ϕ(t) ∈ ∂ω(t) (which is equivalent to t = t). However, this part can be
shown in an analogous and simpler way to the one used above.
Now we are able to finish the proof. We proved that

P := P ◦ P ◦ P : B → A,

where A := ∂y
|t=t , B := {(t, y) : y ∈ ω(t)} is continuous. Moreover,

P : A→ A

is an identity mapping. In this situation, we have proved that there exists a retraction of
the set B onto the set A (see Definition ). In view of the above-mentioned fact, this is
impossible. Our assumption is false and there exists initial problem () such that the cor-
responding solution y = y∗(t) satisfies () for every t ∈ [α,∞)T. The theorem is proved.

�

4 Example
Let us consider a dynamic system of type ()

y�
 (t) = f

(
t, y

(
τ(t)

)
, y

(
τ(t)

))
= y

(
τ(t)

)
+
cos(ty(τ(t)))

t
+
y(τ(t))
t + 

, ()

y�
 (t) = f

(
t, y

(
τ(t)

)
, y

(
τ(t)

))
=
y(τ(t))

t
+ y

(
τ(t)

)
+
sin(y(τ(t)))

t + 
()

http://www.boundaryvalueproblems.com/content/2013/1/260
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defined for each t ∈ [,∞)T with T = {n}∞n=. Note that in this case μ(t) = t. Let delays be
defined as follows:

τ(t) =
t

, τ(t) =

t

.

Let, moreover, t ≥ , t ∈ T and α =min{τ(t), τ(t)} = τ(t) = t/.
With the aid of Theorem , we will show that there exists an initial function ϕ∗,

ϕ∗
i (t) ∈

(
–t–, t–

)
, t ∈ [α, t]T, i = , , ()

which defines a solution y for all t ∈ [α,∞)T of dynamic system (), () satisfying

∣∣yi(t)∣∣ < t–, i = , . ()

Wedefine�-differentiable functions bi, ci : T →R, i = , , satisfying bi(t) < ci(t) for each
t ∈ [α,∞)T as

bi(t) := –t–, ci(t) := t–

and


 :=
{
(t, y) : t ∈ [α,∞)T, –t– < yi < t–, i = , 

}
.

We will verify that every pointM ∈ ⋃
i=(
i

B ∪ 
i
C), where


i
B :=

{
(t, y) ∈ ∂y
 : yi = –t–, i = , 

}
,


i
C :=

{
(t, y) ∈ ∂y
 : yi = t–, i = , 

}
,

is a point of strict egress for the set 
 with respect to the dynamic system (), ().
(a) Let (t,b(t), y) ∈ 


B. For arbitrary functions u,u : [αt , t]T → R, t ∈ [t,∞)T such
that (for j = , ) bj(s) < uj(s) < cj(s), s ∈ [αt , t)T and u(t) = b(t), b(t) ≤ u(t) ≤ c(t), we
need (see ())

u
(
τ(t)

)
+
cos(tu(τ(t)))

t
+
u(τ(t))
t + 

<
(
–

t

)�

. ()

(b) Let (t, c(t), y) ∈ 

C . For arbitrary functions u,u : [αt , t]T → R, t ∈ [t,∞)T such

that (for j = , ) bj(s) < uj(s) < cj(s), s ∈ [αt , t)T and u(t) = c(t), b(t) ≤ u(t) ≤ c(t), we
need (see ())

u
(
τ(t)

)
+
cos(tu(τ(t)))

t
+
u(τ(t))
t + 

>
(

t

)�

. ()

Inequalities () and () are valid if the inequality

∣∣∣∣u (τ(t)) + cos(tu(τ(t)))
t

+
u(τ(t))
t + 

∣∣∣∣ <
(
–

t

)�
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holds for arbitrary uj such that –t– ≤ uj(t) ≤ t–, t ∈ [t,∞)T, j = ,  (t ≥ ). Indeed,

∣∣∣∣u (τ(t)) + cos(tu(τ(t)))
t

+
u(τ(t))
t + 

∣∣∣∣ ≤ 
(t/)

+

t

+


(t/)(t + )

<

t

=


t(t +μ(t))
=

(
–

t

)�

.

(a) Let (t, y(t),b(t)) ∈ 

B. For arbitrary functions u,u : [αt , t]T → R, t ∈ [t,∞)T

such that (for j = , ) bj(s) < uj(s) < cj(s), s ∈ [αt , t)T and u(t) = b(t), b(t) ≤ u(t) ≤ c(t),
we need (see ())

u(τ(t))
t

+ u
(
τ(t)

)
+
sin(u(τ(t)))

t + 
<

(
–

t

)�

. ()

(b) Let (t, y(t), c(t)) ∈ 

C . For arbitrary functions u,u : [αt , t]T → R, t ∈ [t,∞)T

such that (for j = , ) bj(s) < uj(s) < cj(s), s ∈ [αt , t)T and u(t) = c(t), b(t) ≤ u(t) ≤ c(t),
we need (see ())

u(τ(t))
t

+ u
(
τ(t)

)
+
sin(u(τ(t)))

t + 
>

(

t

)�

. ()

Inequalities () and () are valid if the inequality

∣∣∣∣u(τ(t))t
+ u

(
τ(t)

)
+
sin(u(τ(t)))

t + 

∣∣∣∣ <
(
–

t

)�

holds for arbitrary uj such that –t– ≤ uj(t) ≤ t–, t ∈ [t,∞)T, j = ,  (t ≥ ). Indeed,

∣∣∣∣u(τ(t))t
+ u

(
τ(t)

)
+
sin(u(τ(t)))

t + 

∣∣∣∣ ≤ 
t(t/)

+


(t/)
+


t + 

<

t

=


t(t +μ(t))
=

(
–

t

)�

.

In view of Definition , every pointM ∈ ⋃
i=(
i

B ∪ 
i
C) is a point of strict egress for the

set 
. Therefore, all the assumptions of Theorem  hold and there exists an initial value
function ϕ∗ with property () such that the initial problem y(t) = ϕ∗(t) defines a solution
y on the interval [α,∞)T of dynamic system (), () satisfying inequalities () for every
t ∈ [α,∞)T. This solution (due to ()) tends to zero as t → ∞.

Remark  Note that the choice T = {n}∞n= in the previous example is not important,
and system (), () can be considered on an arbitrary time scale T with μ(t) = O(t) (it
means that there exists q >  such that μ(t) ≤ (q–)t for each t ∈ T). Indeed, let us slightly
modify the previous example. Consider system (), () on an arbitrary time scale with
μ(t) = O(t). (For example, T = {qn}∞n= with q >  satisfies this condition.) Let, moreover,
τ = t/q, τ = t/qk with q > , k ∈ N. Then one can show that all calculations used in the
previous example are true for sufficiently large t ∈ T.
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5 Concluding remarks
The difference between delay dynamic equations and non-delay dynamic equations (resp.
a system of delay dynamic equations and a system of non-delay dynamic equations) with
respect to controlling their solutions is as follows. The conditions on the function f to
get a bounded solution in a ‘delay’ case are a little bit harder than in a ‘non-delay’ case.
More precisely, the bigger the delays τi are, the harder it is to construct a set 
 of con-
sidered equations to get a bounded solution y ∈ 
. The reason is that in a delay case the
history of solutions plays an important role and influences conditions for points, which
are strict egress with respect to the investigated equation. It corresponds to the form of
Definition , where functions ui(t) have to satisfy some conditions before they touch or
pass the boundary of the set 
.
A further possible complication in dynamic equations (resp. a system of dynamic equa-

tions) - the graininess of the time scale T - was discussed in []. Moreover, it is obvious
that the bigger the graininess is, the bigger the delays are. This fact also implies a problem
to control the solution to stay in domain 
.
Finally, let us consider initial problem (), () with τi(t) = t for every i = , . . . ,n. In this

case, we get a non-delay dynamic system and the initial function ϕ defined in () can be
replaced by the initial condition y(t) = y. Moreover, in this case, carefully tracing the
proof of Theorem , we can observe that it does not need any change. Hence we can say
that Theorem  generalizes a result given in [] as well.
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