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Abstract
This paper studies the existence and uniqueness of solutions for a nonlocal singular
boundary value problem of second-order integro-differential equations in weighted
spaces. The method of quasilinearization is applied to obtain monotone sequences of
approximate solutions converging uniformly and quadratically to a unique solution of
the problem at hand. An illustrative example is presented.
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1 Introduction
Boundary value problems (BVPs) for nonlinear differential equations arise in a variety
of areas of applied mathematics, physics and in variational problems of control theory.
A point of central importance in the study of nonlinear boundary value problems is to
understand how the properties of nonlinearity in a problem influence the nature of the
solutions to the boundary value problems. During the last two decades, the theory of sin-
gular boundary value problems has also been extensively developed. This is largely due to
the fact that themathematicalmodels in the study of nonlinear phenomena give rise to sin-
gular boundary value problems. Examples include energy analysis problems [, ], plasma
and electric potential theory [], circular membrane theory [], membrane response of
a spherical cap [, ], deformation of membrane cap [], theory of colloids [], flow and
heat transfer [], draining flow [, ], flow of a gas through porous media [], Homann
flow [], boundary layer problems [], pseudoplastic fluids [], etc. For the theoretical
background of singular boundary value problems, we refer the reader to the references
[, ].
Integro-differential equations arise in many engineering and scientific disciplines, often

as an approximation to partial differential equations, which represent much of the contin-
uumphenomena.Many forms of these equations are possible. Some of the applications are
unsteady aerodynamics and aero-elastic phenomena, visco-elasticity, visco-elastic panel
in super sonic gas flow, fluid dynamics, electro-dynamics of complexmedium,manymod-
els of population growth, polymer rheology, neural network modeling, sandwich system
identification, materials with fading memory, mathematical modeling of the diffusion of
discrete particles in a turbulent fluid, heat conduction inmaterials withmemory, theory of
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lossless transmission lines, theory of population dynamics, compartmental systems, nu-
clear reactors and mathematical modeling of hereditary phenomena. Also, the governing
equations in the problems of biological sciences, such as spreading of disease by the dis-
persal of infectious individuals, the reaction-diffusion models in ecology to estimate the
speed of invasion etc., are integro-differential equations. Thus, it is important to study
singular boundary value problems for nonlinear integro-differential equations. It is worth
mentioning that most of the results on singular boundary value problems deal with the
existence and uniqueness of the solution of the problems under certain conditions. There
are only a few papers which develop some constructive methods for the solution of the
nonlinear singular problems.
The study of singular nonlocal boundary value problems for nonlinear differential equa-

tions was initiated by Kiguradze and Lomtatidze [] and Lomtatidze [, ]. Since then,
more general nonlinear singular nonlocal boundary value problems have been studied ex-
tensively. Some results concerning the positive solutions of singular boundary value prob-
lems can be found in [–] and references therein. A great deal of the work on singu-
lar boundary value problems is mainly concerned with the existence of the solution. It is
equally important to construct the solution of the problem once its existence is proved.
The monotone iterative technique is one of the efficient analytic methods for solving

nonlinear boundary value problems. This technique coupled with the method of upper
and lower solutions [] manifests itself as an effective and flexible mechanism that offers
theoretical as well as constructive existence results in a closed set, generated by the lower
and upper solutions. In general, the convergence of the sequence of approximate solu-
tions given by the monotone iterative technique is at most linear. To obtain a sequence
of approximate solutions converging quadratically, we use the method of quasilineariza-
tion (QSL). The origin of the quasilinearization lies in the theory of dynamic program-
ming []. In fact, the quasilinearization technique is a variant of Newton’s method. This
method applies to semilinear equations with convex (concave) nonlinearities and gener-
ates amonotone schemewhose iterates converge quadratically to the solution of the prob-
lem at hand. In view of its diverse applications, the quasilinearization approach is quite
elegant and easier for application algorithms. A detailed description of the QSL method
can be found in the monograph [] and a series of papers [–].
Devi and Vatsala [] discussed the QSL method for second-order singular boundary

value problems with solutions in weighted spaces. Eloe [] developed the QSL method
for singular boundary value problems on an unbounded domain. Ramos [] discussed
piecewise quasilinearization techniques for singular boundary value problems. El-Gebeily
and O’Regan [] studied the QSL method for second-order singular nonlinear differen-
tial equations with nonlinear boundary conditions. For some existence results on singular
initial and boundary value problems, see [, ]. The theoretical background of integro-
differential equations can be found in the text by Lakshmikantham and Rao []. To the
best of our knowledge, the QSL method has not been discussed for singular nonlocal
second-order boundary value problems involving nonlinear integro-differential equations
on a bounded domain.
In this paper, we consider the following singular boundary value problem (SBVP):

{
–(tnu′)′ = f (t, tn–u) +

∫ t
 K (t, s, sn–u(s))ds,  < t < ,n > ,

limt→+ tn–u(t) = u, u() = g(u(σ )),  < σ < ,
(.)
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where f : [, ] × R → R, K : [, ] × [, ] × R → R, and g : R → R. In the forthcoming
analysis, g(u(σ )) will be written as g(u) for the sake of convenience.
Here we remark that a solution to a singular problemmay not lie in the spaceC[, ], but

it should depend on the singularity in some sense. For example, the solution u = (–u +
u) + u/t to the singular problem

(
tu′)′ = ,  < t < ; lim

t→+
tu(t) = u, u() = u

(u, u are constants) is not continuous at t =  but tu ∈ C[, ]. Such a situation provides
motivation to consider the singular boundary value problems in a weighted Banach space.

2 Preliminaries and some existence results
In this section, we follow the terminology introduced in [].

Definition . A function u ∈ C(, ) with tn–u ∈ C[, ], tnu′ ∈ C[, ] and (tn–u)′ ∈
L[, ] is a solution of (.) if it satisfies singular boundary value problem (.).

Remark . Whenever we say u(t) is a solution of (.), it means that tn–u(t) is a solution
of (.). Similar terminology will be used for lower and upper solutions.

Throughout the forthcoming analysis, we work in a Banach space of functions defined
by

E =
{
u ∈ C(, ) : tn–u ∈ C[, ], tnu′ ∈ C[, ], t ∈ [, ]

}
with the norm

‖u‖ =max
{
sup
t∈[,]

∣∣tn–u(t)∣∣, sup
t∈[,]

∣∣tnu′(t)
∣∣}.

Lemma . Singular boundary value problem (.) is equivalent to the singular integral
equation

u(t) = g(u) – u
(
 –


tn–

)

+
 – tn–

(n – )tn–

∫ t



(
f
(
s, sn–u(s)

)
+

∫ s


K

(
s,p,pn–u(p)

)
dp

)
ds

+


(n – )

∫ 

t

 – sn–

sn–

(
f
(
s, sn–u(s)

)
+

∫ s


K

(
s,p,pn–u(p)

)
dp

)
ds. (.)

Proof Differentiating (.) and rearranging the terms, we have

tnu′(t) = –(n – )u –
∫ t



(
f
(
s, sn–u(s)

)
+

∫ s


K

(
s,p,pn–u(p)

)
dp

)
ds.

Again differentiating, it follows that

–
(
tnu′)′ = f

(
t, tn–u

)
+

∫ t


K

(
t, s, sn–u(s)

)
ds.
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Multiplying (.) by tn– and taking the limit t → +, we get limt→+ tn–u(t) = u, and
t =  in (.) yields u() = g(u). Thus, u(t) defined by (.) satisfies (.). A straightforward
computation shows that (.) implies (.). This completes the proof. �

Now we prove a general existence principle for singular boundary value problem (.).
The proof of this principle is based on the Schauder fixed point theorem.

Lemma . Assume that f : [, ]×R →R, K : [, ]× [, ]×R→R and g :R →R are
continuous functions. Furthermore, there exist positive constants Mf , MK , Mg such that
|f (t,u)| ≤ Mf for (t,u) ∈ [, ] × R, |K (t, s,u)| ≤ MK for (t, s,u) ∈ [, ] × [, ] × R, and
|g(u)| ≤ Mg for u ∈R. Then problem (.) has a solution.

Proof We reduce the problem of finding a solution u ∈ E of (.) to a fixed point problem
u =Fu, where F : E → E is given by

Fu(t) = g(u) – u
(
 –


tn–

)

+
 – tn–

(n – )tn–

∫ t



(
f
(
s, sn–u(s)

)
+

∫ s


K

(
s,p,pn–u(p)

)
dp

)
ds

+


(n – )

∫ 

t

 – sn–

sn–

(
f
(
s, sn–u(s)

)
+

∫ s


K

(
s,p,pn–u(p)

)
dp

)
ds.

If um → u in E , then

∣∣tn–Fum(t) – tn–Fu(t)
∣∣

≤ tn–
∣∣g(um) – g(u)

∣∣ + ( – tn–)
(n – )

∫ t



(∣∣f (s, sn–um(s)) – f
(
s, sn–u(s)

)∣∣
+

∫ s



∣∣K(
s,p,pn–um(p)

)
–K

(
s,p,pn–u(p)

)∣∣dp)ds

+
tn–

(n – )

∫ 

t

(∣∣f (s, sn–um(s)) – f
(
s, sn–u(s)

)∣∣
+

∫ s



∣∣K(
s,p,pn–um(p)

)
–K

(
s,p,pn–u(p)

)∣∣dp)ds,

and

∣∣tn(Fum)′(t) – tn(Fu)′(t)
∣∣

≤
∫ t



(∣∣f (s, sn–um(s)) – f
(
s, sn–u(s)

)∣∣
+

∫ s



∣∣K(
s,p,pn–um(p)

)
–K

(
s,p,pn–u(p)

)∣∣dp)ds.

In view of the continuity of f , K , g , it follows that Fum → Fu in E and so F : E → E is
continuous.
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Now, for r, t ∈ [, ] with r < t, we have

∣∣tn–Fu(t) – rn–Fu(r)
∣∣

≤ ∣∣tn– – rn–
∣∣(Mg + |u|

)
+


(n – )

∣∣tn– – rn–
∣∣ ∫ r



(
Mf +

∫ s


MK dp

)
ds

+
( – tn–)
(n – )

∫ t

r

(
Mf +

∫ s


MK dp

)
ds

+


(n – )
∣∣tn– – rn–

∣∣ ∫ 

t

 – sn–

sn–

(
Mf +

∫ s


MK dp

)
ds

+
( – tn–)
(n – )

∫ t

r

(
Mf +

∫ s


MK dp

)
ds

+
rn–

(n – )

∫ t

r

 – sn–

sn–

(
Mf +

∫ s


MK dp

)
ds

and

∣∣rn(Fu)′(r) – tn(Fu)′(t)
∣∣ ≤

∫ t

r

(
Mf +

∫ s


MK dp

)
ds,

which are independent of u. So F : E → E is relatively compact. Hence, by the Arzela-
Ascoli theorem, F is compact on E . Thus, by Schauder’s fixed point theorem, F has a
fixed point in E . This completes the proof. �

Definition . A function β ∈ C(, ) such that tn–β ∈ C[, ], tnβ ′ ∈ C[, ], (tn–β)′ ∈
L[, ] is called an upper solution for (.) if

–
(
tnβ ′)′ ≥ f

(
t, tn–β

)
+

∫ t


K

(
t, s, sn–β(s)

)
ds,  < t < ,

lim
t→+

tn–β(t)≥ u, β()≥ g(β).

Similarly, a function α ∈ C(, ) such that tn–α ∈ C[, ], tnα′ ∈ C[, ], (tn–α)′ ∈ L[, ]
is called a lower solution for (.) if

–
(
tnα′)′ ≤ f

(
t, tn–α

)
+

∫ t


K

(
t, s, sn–α(s)

)
ds,  < t < ,

lim
t→+

tn–α(t)≤ u, α()≤ g(α).

Lemma . Assume that f : [, ]×R→R and K : [, ]× [, ]×R→R are continuous
functions, and g : R → R is a Lipschitz function. Suppose that there exist an upper solu-
tion β and a lower solution α for (.) such that α ≤ β on (, ), and limt→+ tn–α(t)≤ u ≤
limt→+ tn–β(t). Then (.) has a solution u satisfying the relation tn–α(t) ≤ tn–u(t) ≤
tn–β(t) for t ∈ [, ].

Proof Consider the modified problem

–
(
tnu′)′ = F

(
t, tn–u

)
,  < t < ,

lim
t→+

tn–u(t) = u, u() = g(u),
(.)
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where

F(t, v) =

⎧⎪⎨
⎪⎩
f (t, tn–β) +

∫ t
 K (t, s, sn–β(s))ds – (v – tn–β) if v≥ tn–β(t),

f (t, v) +
∫ t
 K (t, s, v)ds if tn–α(t)≤ v ≤ tn–β(t),

f (t, tn–α) +
∫ t
 K (t, s, sn–α(s))ds – (v – tn–α) if v≤ tn–α(t).

By Lemma ., problem (.) has a solution u. Let us claim that

tn–α(t)≤ tn–u(t) ≤ tn–β(t), t ∈ [, ]. (.)

If (.) is true, then we are done, that is, u is a solution of (.). On the contrary, as-
sume that tn–u(t)� tn–β(t) for t ∈ [, ]. Then there exists t ∈ (, ) such that (tn–u(t) –
tn–β(t)) has a positive maximum at t. Thus, (tn–u(t) – tn–β(t))′(t) =  and (tn–u(t) –
tn–β(t))′′(t) ≤ . On the other hand,

(
tn–u(t) – tn–β(t)

)′′(t)

=

t

(
tnu

′(t)
)′ + (n – )tn– u′(t) + (n – )(n – )tn– u(t)

–

t

(
tnβ

′(t)
)′ – (n – )tn– β ′(t) – (n – )(n – )tn– β(t)

=

t

(
tnu

′(t)
)′ –


t

(
tnβ

′(t)
)′

≥ 
t

(
tnu

′(t)
)′ +


t

(
f
(
t, tn– β(t)

)
+

∫ t


K

(
t, s, sn–β(s)

)
ds

)

=

t

(
tn– u(t) – tn– β(t)

)
> ,

which is a contradiction. Hence tn–u(t) ≤ tn–β(t) for t ∈ (, ). Similarly, it can be shown
that tn–α(t) ≤ tn–u(t) for t ∈ (, ). In view of assumptions that g is a Lipschitz function
and α ≤ β on (, ), it follows that α()≤ β(). Thus we conclude that

tn–α(t)≤ tn–u(t) ≤ tn–β(t) for t ∈ [, ].

This completes the proof. �

Lemma . Let α,β ∈ E be lower and upper solutions of (.) respectively with

lim
t→+

tn–α(t)≤ u ≤ lim
t→+

tn–β(t).

Further, suppose that f : [, ] × R → R, K : [, ] × [, ] × R → R and g : R → R are
continuous functions and satisfy

f
(
t, tn–x

)
– f

(
t, tn–y

) ≤ –L(x – y), L > ,

K
(
t, s, sn–x

)
–K

(
t, s, sn–y

) ≤ –L(x – y), L > ,

g(x) – g(y) ≤ L(x – y),  < L < ,

whenever x≥ y. Then tn–α(t)≤ tn–β(t) on [, ].
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Proof For the sake of contradiction, suppose that the conclusion does not hold, that is,
tn–α(t) > tn–β(t) at some t ∈ (, ]. Then, by continuity, there exists a local maximum at
t ∈ (, ). Thus, at t = t, we have

(
tn–(α – β)

)′ = , (.)(
tn–(α – β)

)′′ ≤ . (.)

In view of (.), (.) takes the form

 ≥ [
tn–(α – β)

]′′

=
[
(n – )tn–(α – β) + tn–

(
α′ – β ′)]′

= (n – )(n – )tn–(α – β) + (n – )tn–
(
α′ – β ′)

+ (n – )tn–
(
α′ – β ′) + tn–

(
α′′ – β ′′)

= (n – )(n – )tn–(α – β) + (n – )tn–
(
α′ – β ′) + tn–

(
α′′ – β ′′)

= (n – )(n – )tn–(α – β) + (n – )tn–
(
α′ – β ′) + tn–

(
α′′ – β ′′)

= (n – )(n – )tn–(α – β) + (n – )tn–
(
α′ – β ′)

+ ntn–α′ – ntn–β ′ + tn–
(
α′′ – β ′′)

=
n – 
t

[
(n – )tn–(α – β) + tn–

(
α′ – β ′)]

+ ntn–α′ – ntn–β ′ + tn–α′′ – tn–β ′′

=
n – 
t

[
tn–(α – β)

]′ + ntn–α′ + tn–α′′ – ntn–β ′ – tn–β ′′

=
n – 
t

() + ntn–α′ + tn–α′′ – ntn–β ′ – tn–β ′′

=

t
(
tnα′)′ –


t
(
tnβ ′)′,

which can alternatively be written as –t–(tnα′)′ ≥ –t–(tnβ ′)′ at t = t ∈ (, ). Using the
definition of lower and upper solutions together with (.), we obtain

f
(
t, tn– α

)
+

∫ t


K

(
t, s, sn–α(s)

)
ds

≥ –
(
tnα

′)′ ≥ –
(
tnβ

′)′

≥ f
(
t, tn– β

)
+

∫ t


K

(
t, s, sn–β(s)

)
ds,

which yields a contradiction:

 ≤ f
(
t, tn– α

)
– f

(
t, tn– β

)
+

∫ t



[
K

(
t, s, sn–α(s)

)
–K

(
t, s, sn–β(s)

)]
ds

≤ –(L + tL)tn– (α – β) < .
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Hence we obtain tn–α(t) ≤ tn–β(t) on (, ). As  < σ < , therefore, in view of the fore-
going arguments, at t = , we have

 < α() – β() ≤ g(α) – g(β)

≤ L
σ n–

(
σ n–α(σ ) – σ n–β(σ )

) ≤ ,  < σ < ,

which is a contradiction. This completes the proof. �

3 Main result
Theorem . Assume that

(A) α,β ∈ E are lower and upper solutions of (.) respectively such that tn–α(t) ≤
tn–β(t) for t ∈ (, ] with limt→+ tn–α(t) ≤ u ≤ limt→+ tn–β(t);

(A) f (t, v) is convex, that is, fvv(t, v) exists, continuous with fvv(t, v) ≥  for each (t, v) ∈
(, ]×R, and fv(t, tn–u) < , where tn–α ≤ v ≤ tn–β;

(A) K (t, s, v) is convex, that is, Kvv(t, s, v) exists, continuous with Kvv(t, s, v) ≥  for each
(t, s, v) ∈ (, ]× (, ]×R, and Kv(t, s, sn–u) < , where tn–α ≤ v≤ tn–β;

(A) g is continuous on R such that g ′, g ′′ exist and  ≤ g ′ < , g ′′ ≤ .

Then there exist monotone sequences {tn–αk(t)} and {tn–βk(t)} that converge uniformly
and quadratically in the space of continuous functions on [, ] to a unique solution tn–u(t)
of (.).

Proof Using the generalized mean value theorem together with (A), (A), and (A), we
obtain

f
(
t, tn–u

) ≥ f
(
t, tn–w

)
+ fv

(
t, tn–w

)
(u –w)tn–, u ≥ w, (.)

K
(
t, s, sn–u

) ≥ K
(
t, s, sn–w

)
+ kv

(
t, s, sn–w

)
(u –w)sn–, u ≥ w, (.)

g(u) ≤ g(w) + g ′(w)(u –w). (.)

Now, we set

F
(
t, tn–α;α

)
= f

(
t, tn–α

)
+ fv

(
t, tn–α

)
(α – α)tn–,

F
(
t, tn–β;α,β

)
= f

(
t, tn–β

)
+ fv

(
t, tn–α

)
(β – β)tn–,

K∗(t, s, sn–α;α
)
= K

(
t, s, sn–α

)
+Kv

(
t, s, sn–α

)
(α – α)sn–,

K∗∗(t, s, sn–β;α,β
)
= K

(
t, s, sn–β

)
+Kv

(
t, s, sn–α

)
(β – β)sn–,

h(α;α,β) = g(α) + g ′(β)(α – α),

h(β;β) = g(β) + g ′(β)(β – β).

Consider the singular BVP

{
–(tnα′

)′ = F(t, tn–α;α) +
∫ t
 K

∗(t, s, sn–α;α)ds,  < t < ,
limt→+ tn–α(t) = u, α() = h(α;α,β).

(.)

http://www.boundaryvalueproblems.com/content/2013/1/261
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Using assumption (A), (.) and (.), we obtain

–
(
tnα′


)′ ≤ f

(
t, tn–α

)
+

∫ t


K

(
t, s, sn–α(s)

)
ds

= F
(
t, tn–α;α

)
+

∫ t


K∗(t, s, sn–α;α

)
ds

and

–
(
tnβ ′


)′ ≥ f

(
t, tn–β

)
+

∫ t


K

(
t, s, sn–β

)
ds

≥ f
(
t, tn–α

)
+ fv

(
t, tn–α

)
(β – α)tn–

+
∫ t



[
K

(
t, s, sn–α

)
+ kv

(
t, s, sn–α

)
(β – α)sn–

]
ds

= F
(
t, tn–β;α

)
+

∫ t


K∗(t, s, sn–β;α

)
ds.

Further, we note that α() ≤ g(α) = h(α;α,β) and using assumption (A), for c ∈
(α,β), we find that

g(β) – h(β;α,β) = g(β) – g(α) – g ′(β)(β – α)

=
[
g ′(c) – g ′(β)

]
(β – α)≥ ,

which implies that β() ≥ g(β) ≥ h(β;α,β). Thus, it follows that α and β are re-
spectively lower and upper solutions of (.). Since h′

i = g ′ (i = , ), therefore it follows by
Lemmas . and . that there exists a unique solution α of (.) satisfying

tn–α(t) ≤ tn–α(t)≤ tn–β(t), t ∈ [, ].

Observe that the hypotheses of Lemma . hold in view of the conditions fv < , Kv < ,
and  ≤ g ′ < , demanded in (A), (A), and (A).
Next, consider the singular BVP

{
–(tnβ ′

)′ = F(t, tn–β;α,β) +
∫ t
 K

∗∗(t, s, sn–β;α,β)ds,  < t < ,
limt→+ tn–β(t) = u, β() = h(β;β).

(.)

Using the definition of the lower and upper solutions, (.) and (.), we get

–
(
tnα′


)′ ≤ f

(
t, tn–α

)
+

∫ t


K

(
t, s, sn–α(s)

)
ds

≤ f
(
t, tn–β

)
+ fv

(
t, tn–α

)
(α – β)tn–

+
∫ t



[
K

(
t, s, sn–β

)
+Kv

(
t, s, sn–α

)
(α – β)sn–

]
ds

= F
(
t, tn–α;α,β

)
+

∫ t


K∗∗(t, s, sn–α;α,β

)
ds,
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–
(
tnβ ′


)′ ≥ f

(
t, tn–β

)
+

∫ t


K

(
t, s, sn–β

)
ds

= F
(
t, tn–β;α,β

)
+

∫ t


K∗∗(t, s, sn–β;α,β

)
ds.

By assumption (A), we have α() ≤ h(α;β) as

g(α) – h(α;β) = g(α) – g(β) + g ′(β)(β – α)

=
[
–g ′(c) + g ′(β)

]
(β – α) ≤ , c ∈ (α,β),

and β() ≥ g(β) = h(β;β). In view of the above inequalities, we find that α and β

are respectively lower and upper solutions of (.). Therefore it follows by Lemmas .
and . that there exists a unique solution β of (.) satisfying

tn–α(t) ≤ tn–β(t)≤ tn–β(t), t ∈ [, ].

Now we show that tn–α(t)≤ tn–β(t). Using (.), (.), and assumption (A), we obtain

–
(
tnα′


)′ = F

(
t, tn–α;α

)
+

∫ t


K∗(t, s, sn–α;α

)
ds

= f
(
t, tn–α

)
+ fv

(
t, tn–α

)
(α – α)tn–

+
∫ t



[
K

(
t, s, sn–α

)
+Kv

(
t, s, sn–α

)
(α – α)sn–

]
ds

≤ f
(
t, tn–β

)
+ fv

(
t, tn–α

)
(α – β)tn– + fv

(
t, tn–α

)
(α – α)tn–

+
∫ t



[
K

(
t, s, sn–β

)
+Kv

(
t, s, sn–α

)
(α – β)sn–

+Kv
(
t, s, sn–α

)
(α – α)sn–

]
ds

= f
(
t, tn–β

)
+ fv

(
t, tn–α

)
(α – β)tn–

+
∫ t



[
K

(
t, s, sn–β

)
+Kv

(
t, s, sn–α

)
(α – β)sn–

]
ds

= F
(
t, tn–α;α,β

)
+

∫ t


K∗∗(t, s, sn–α;α,β

)
ds,

and in view of (A), we get g(α) – h(α;β) ≤ , which implies that α() ≤ h(α;β).
Clearly, the above inequalities and singular boundary value problem (.) satisfy the hy-
potheses of Lemma .. Therefore, by the conclusion of Lemma ., we have tn–α(t) ≤
tn–β(t), t ∈ [, ]. Consequently, we obtain

tn–α(t) ≤ tn–α(t)≤ tn–β(t) ≤ tn–β(t), t ∈ [, ].

As a next step, we prove that

tn–αk(t) ≤ tn–αk+(t) ≤ tn–βk+(t) ≤ tn–βk(t), t ∈ [, ],
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for k > . For that, we consider the following SBVP:

{
–(tnα′

k+)′ = F(t, tn–αk+;αk) +
∫ t
 K

∗(t, s, sn–αk+;αk)ds,  < t < ,
limt→+ tn–αk+(t) = u, αk+() = h(αk+;αk ,β).

(.)

Using (.), (.), (.), and the inequality tn–αk– ≤ tn–αk , we get

–
(
tnα′

k
)′ = F

(
t, tn–αk ;αk–

)
+

∫ t


K∗(t, s, sn–αk ;αk–

)
ds

= f
(
t, tn–αk–

)
+ fv

(
t, tn–αk–

)
(αk – αk–)tn–

+
∫ t



[
K

(
t, s, sn–αk–

)
+Kv

(
t, s, sn–αk–

)
(αk – αk–)sn–

]
ds

≤ f
(
t, tn–αk

)
– fv

(
t, tn–αk–

)
(αk – αk–)tn–

+ fv
(
t, tn–αk–

)
(αk – αk–)tn–

+
∫ t



[
K

(
t, s, sn–αk

)
–Kv

(
t, s, sn–αk–

)
(αk – αk–)sn–

+Kv
(
t, s, sn–αk–

)
(αk – αk–)sn–

]
ds

= f
(
t, tn–αk

)
+

∫ t


K

(
t, s, sn–αk

)
ds

= F
(
t, tn–αk ;αk

)
+

∫ t


K∗(t, s, sn–αk ;αk

)
ds,

αk()≤ g(αk) = h(αk ,αk ;β).

Since fv(t, v), kv(t, s, v) are increasing in v by assumptions (A) and (A), therefore,
fv(t, tn–α) ≤ fv(t, tn–αk), Kv(t, s, sn–α) ≤ Kv(t, s, sn–αk) for tn–α ≤ tn–αk . Conse-
quently, in view of (.), (.), (.), we obtain the inequality

–
(
tnβ ′

k
)′ = F

(
t, tn–βk ;α,βk–

)
+

∫ t


K∗∗(t, s, sn–βk ;α,βk–

)
ds

= f
(
t, tn–βk–

)
+ fv

(
t, tn–α

)
(βk – βk–)tn–

+
∫ t



[
K

(
t, s, sn–βk–

)
+Kv

(
t, s, sn–α

)
(βk – βk–)sn–

]
ds

≥ f
(
t, tn–αk

)
+ fv

(
t, tn–αk

)
(βk– – αk)tn– – fv

(
t, tn–α

)
(βk– – βk)tn–

+
∫ t



[
K

(
t, s, sn–αk

)
+Kv

(
t, s, sn–αk

)
(βk– – αk)sn–

–Kv
(
t, s, sn–α

)
(βk– – βk)sn–

]
ds

≥ f
(
t, tn–αk

)
+ fv

(
t, tn–αk

)
(βk– – αk)tn– – fv

(
t, tn–αk

)
(βk– – βk)tn–

+
∫ t



[
K

(
t, s, sn–αk

)
+Kv

(
t, s, sn–αk

)
(βk– – αk)sn–

–Kv
(
t, s, sn–αk

)
(βk– – βk)sn–

]
ds

= f
(
t, tn–αk

)
+ fv

(
t, tn–αk

)
(βk – αk)tn–
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+
∫ t



[
K

(
t, s, sn–αk

)
+Kv

(
t, s, sn–αk

)
(βk – αk)sn–

]
ds

= F
(
t, tn–βk ;αk

)
+

∫ t


K∗(t, s, sn–βk ;αk

)
ds,

and by virtue of the inequality

g(βk) – h(βk ,αk ;β)

= g(βk) – g(αk) – g ′(β)(βk – αk)

=
[
g ′(c) – g ′(β)

]
(βk – αk) ≥ , αk ≤ c ≤ βk ≤ β,

we get βk() ≥ g(βk) = h(βk ,αk ;β). Thus, as argued earlier, there exists a unique solution
αk+ of (.) such that

tn–αk(t) ≤ tn–αk+(t) ≤ tn–βk(t), t ∈ [, ].

Now let us consider the following SBVP:

⎧⎪⎨
⎪⎩
–(tnβ ′

k+)′ = F(t, tn–βk+;α,βk)
+

∫ t
 K

∗∗(t, s, sn–βk+;α,βk)ds,  < t < ,
limt→+ tn–βk+(t) = u, βk+() = h(βk+,βk).

(.)

Again, using assumptions (A)-(A), (.), (.), (.), and the inequality

tn–α ≤ tn–αk– ≤ tn–αk ≤ tn–βk ≤ tn–βk– ≤ tn–β,

we obtain

–
(
tnβ ′

k
)′ = F

(
t, tn–βk ;α,βk–

)
+

∫ t


K∗∗(t, s, sn–βk ;α,βk–

)
ds

= f
(
t, tn–βk–

)
+ fv

(
t, tn–α

)
(βk – βk–)tn–

+
∫ t



[
K

(
t, s, sn–βk–

)
+Kv

(
t, s, sn–α

)
(βk – βk–)sn–

]
ds

≥ f
(
t, tn–βk

)
+ fv

(
t, tn–βk

)
(βk– – βk)tn–

– fv
(
t, tn–α

)
(βk– – βk)tn–

+
∫ t



[
K

(
t, s, sn–βk

)
+Kv

(
t, s, sn–βk

)
(βk– – βk)sn–

–Kv
(
t, s, sn–α

)
(βk– – βk)sn–

]
ds

≥ f
(
t, tn–βk

)
+

∫ t


K

(
t, s, sn–βk

)
ds

= F
(
t, tn–βk ;α,βk

)
+

∫ t


K∗∗(t, s, sn–βk ;α,βk

)
ds,

βk()≥ g(βk) = h(βk ,βk),
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–
(
tnα′

k
)′ = F

(
t, tn–αk ;αk–

)
+

∫ t


K∗(t, s, sn–αk ;αk–

)
ds

= f
(
t, tn–αk–

)
+ fv

(
t, tn–αk–

)
(αk – αk–)tn–

+
∫ t



[
K

(
t, s, sn–αk–

)
+Kv

(
t, s, sn–αk–

)
(αk – αk–)sn–

]
ds

≤ f
(
t, tn–βk

)
– fv

(
t, tn–αk–

)
(βk – αk–)tn– + fv

(
t, tn–αk–

)
(αk – αk–)tn–

+
∫ t



[
K

(
t, s, sn–βk

)
–Kv

(
t, s, sn–αk–

)
(βk – αk–)sn–

+Kv
(
t, s, sn–αk–

)
(αk – αk–)sn–

]
ds

= f
(
t, tn–βk

)
– fv

(
t, tn–αk–

)
(βk – αk)tn–

+
∫ t



[
K

(
t, s, sn–βk

)
–Kv

(
t, s, sn–αk–

)
(βk – αk)sn–

]
ds

≤ f
(
t, tn–βk

)
+ fv

(
t, tn–α

)
(αk – βk)tn–

+
∫ t



[
K

(
t, s, sn–βk

)
+Kv

(
t, s, sn–α

)
(αk – βk)sn–

]
ds

= F
(
t, tn–αk ;α,βk

)
+

∫ t


K∗∗(t, s, sn–αk ;α,βk

)
ds,

αk() = g(αk) ≤ h(αk ,αk–).

Applying the earlier arguments, it follows that there exists a unique solution βk+ of (.)
such that

tn–αk(t) ≤ tn–βk+(t) ≤ tn–βk(t), t ∈ [, ].

Following the procedure employed to prove tn–α(t) ≤ tn–β(t), it can be shown that
tn–αk+(t) ≤ tn–βk+(t). Hence we have

tn–α(t) ≤ tn–α(t) ≤ · · · ≤ tn–αk+(t) ≤ tn–βk+(t)

≤ · · · ≤ tn–β(t)≤ tn–β(t), t ∈ [, ]. (.)

As the monotone sequences {tn–αk+(t)} and {tn–βk+(t)} are both bounded, therefore,
they converge to the limit functions tn–ρ(t) and tn–σ (t) pointwise respectively.
Nowwe show that the convergence of the sequences {tn–αk+(t)} and {tn–βk+(t)} to the

limit functions {tn–ρ(t)} and {tn–σ (t)} respectively is indeed uniform. Using SBVP (.),
integral equation (.), and relation (.), we observe that {tn–αk+(t)}, {(tn–αk+(t))′},
{tnα′

k+(t)}, {(tnα′
k+(t))′} are uniformly bounded sequences. Thus, by the Arzela-Ascoli

theorem, the sequences {tn–αk+(t)}, {tnα′
k+(t)} have uniformly convergent subsequences.

Hence, by the monotonicity of the sequence {tn–αk+(t)} in E , it follows that the sequence
converges uniformly to the limit function tn–ρ(t) in E . In a similar manner, the sequence
{tn–βk+(t)} in E converges uniformly to the limit function tn–σ (t) in E .
Finally, we show that the convergence of the sequences is quadratic. We only prove the

quadratic convergence for the sequence {tn–αk+(t)} as that of the sequence {tn–βk+(t)}
follows a similar procedure.
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Let us define

ek+(t) = ρ(t) – αk+(t).

Then, for tn–ζ ∈ (tn–αk , tn–ρ), sn–ζ ∈ (sn–αk , sn–ρ), tn–ζ ∈ (tn–αk , tn–ζ), sn–ζ ∈
(sn–αk , sn–ζ), we have

–
(
tnα′

k+(t)
)′

= –
(
tnρ ′(t)

)′ +
(
tnα′

k+(t)
)′

= f
(
t, tn–ρ(t)

)
+

∫ t


K

(
t, s, sn–ρ(s)

)
ds

– f
(
t, tn–αk

)
– fv

(
t, tn–αk

)
(αk+ – αk)tn–

–
∫ t



[
K

(
t, s, sn–αk

)
+Kv

(
t, s, sn–αk

)
(αk+ – αk)sn–

]
ds

= fv
(
t, tn–ζ

)
(ρ – αk)tn– – fv

(
t, tn–αk

)
(αk+ – αk)tn–

+
∫ t



[
Kv

(
t, s, sn–ζ

)
(ρ – αk)sn– –Kv

(
t, s, sn–αk

)
(αk+ – αk)sn–

]
ds

=
[
fv
(
t, tn–ζ

)
– fv

(
t, tn–αk

)]
(ρ – αk)tn– + fv

(
t, tn–αk

)
(ρ – αk+)tn–

+
∫ t



[{
Kv

(
t, s, sn–ζ

)
–Kv

(
t, s, sn–αk

)}
(ρ – αk)sn–

+Kv
(
t, s, sn–αk

)
(ρ – αk+)sn–

]
ds

= fvv
(
t, tn–ζ

)
(ζ – αk)(ρ – αk)

(
tn–

) + fv
(
t, tn–αk

)
(ρ – αk+)tn–

+
∫ t



[
Kvv

(
t, s, sn–ζ

)
(ζ – αk)(ρ – αk)

(
sn–

)
+Kv

(
t, s, sn–αk

)
(ρ – αk+)sn–

]
ds

≤ fvv
(
t, tn–ζ

)(
(ρ – αk)tn–

) + fv
(
t, tn–αk

)
(ρ – αk+)tn–

+
∫ t



[
Kvv

(
t, s, sn–ζ

)(
(ρ – αk)sn–

) +Kv
(
t, s, sn–αk

)
(ρ – αk+)sn–

]
ds.

Setting N = N + N, M = M + M, where N and N provide bounds for fvv(t, ·)(tn–)
and

∫ t
 [Kvv(t, s, ·)(sn–)]ds respectively and fv(t, ·) ≤ –M,

∫ t
 Kv(t, s, ·)ds≤ –M, the above

inequality takes the form

–
(
tnα′

k+(t)
)′ ≤N |ek| –Mek+(t)tn–. (.)

GivenM, N and |ek|, there exists μ ∈R+ such that

 =N |ek| –Mμtn–. (.)

By a comparison theorem [], it follows from (.) and (.) that

ek+(t)tn– ≤ μtn– =
N
M

|ek|, t ∈ [, ),
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which implies that

|ek+| ≤ N
M

|ek|. (.)

Now, we consider

ek+() = ρ() – αk+()

= g(ρ) – h(αk+,αk ,β)

= g(ρ) – g(αk) – g ′(β)(αk+ – αk)

=
[
g ′(η) – g ′(β)

]
(ρ – αk) + g ′(β)(ρ – αk+)

≤ [
g ′(αk) – g ′(ρ)

]
(ρ – αk) + g ′(β)(ρ – αk+)

= –g ′′(η)|ek| + g ′(β)ek+,

where η,η ∈ (αk ,ρ). Letting g ′′(·)≤ –λ on (αk ,ρ) and g ′(·) ≤ λ < , we find that

|ek+| ≤ λ

 – λ
|ek|. (.)

From (.) and (.), we conclude that the sequence {tn–αk+(t)} converges to the unique
solution of SBVP (.) quadratically. Similarly, we can prove the quadratic convergence of
the sequence {tn–βk+(t)}. This completes the proof. �

Example Consider the following singular nonlocal boundary value problem:

⎧⎪⎨
⎪⎩
–(tu′)′ = A( + t)e–tu(t)+

+
∫ t
 [B( – t)se–su(s)– –Csu(s)]ds,  < t < ,

limt→+ tu(t) = , u() =  + 
u(


 ),

(.)

where f (t, tu(t)) = A( + t)e–tu(t)+, K (t, s,u(s)) = [B( – t)se–su(s)– – Csu(s)], n = ,
g(u(/)) = + 

u(

 ), and A, B, C are suitable positive constants. Let α(t) =  and β(t) = t

be respectively lower and upper solutions of (.). Clearly, α(t) and β(t) are not the so-
lutions of (.) and α(t) ≤ β(t), t ∈ [, ]. Moreover, assumptions (A), (A), (A), and
(A) of Theorem . are satisfied. Thus, the conclusion of Theorem . applies to problem
(.).

4 Conclusions
In this paper, we have presented monotone sequences of approximate solutions converg-
ing uniformly and quadratically to a unique solution of a nonlocal singular boundary value
problem involving second-order integro-differential equations inweighted spaces. The re-
sults established in this project are new and contribute to the present theory of singular
boundary value problems of integro-differential equations. The present work provides a
guideline to extend it further by relaxing the convexity assumptions on the nonlinear func-
tions f (t, v) and K (t, s, v) in (.). In fact, we can find a continuous function φ(t, v) such that
fvv(t, v)+φvv(t, v)≥ , where φvv(t, v) exists, continuous with φvv(t, v)≥ . In a similar man-
ner, the convexity assumption on K (t, s, v) and the concavity assumption on g(u) can be
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relaxed. Further, for g(u) = u and K (t, s, v) ≡  in (.), our results become the existence
results obtained in []. The results for a nonlocal singular boundary value problem of
second-order integro-differential equations involving a purely integral type of nonlinear-
ity follow by taking f (t, v)≡  in (.). Thus, the work presented in this paper takes care of
numerous interesting situations.
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