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Abstract
In this paper, a solution of the Dirichlet problem in the upper half-plane is
constructed by the generalized Dirichlet integral with a fast growing continuous
boundary function.
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1 Introduction and results
Let R be the set of all real numbers, and let C denote the complex plane with points z =
x+ iy, where x, y ∈ R. The boundary and closure of an open set� are denoted by ∂� and�

respectively. The upper half-plane is the set C+ := {z = x + iy ∈ C : y > }, whose boundary
is ∂C+ = R. Let [d] denote the integer part of the positive real number d.
Given a continuous function f in ∂C+, we say that h is a solution of the (classical) Dirich-

let problem in C+ with f , if �h =  in C+ and limz∈C+,z→t h(z) = f (t) for every t ∈ ∂C+.
The classical Poisson kernel in C+ is defined by

P(z, t) =
y

π |z – t| ,

where z = x + iy ∈C+ and t ∈ R.
It is well known (see [, ]) that the Poisson kernel P(z, t) is harmonic for z ∈C– {t} and

has the expansion

P(z, t) =

π
Im

∞∑
k=

zk

tk+
,

which converges for |z| < |t|. We define a modified Cauchy kernel of z ∈C+ by

Cm(z, t) =

{

π


t–z when |t| ≤ ,


π


t–z –


π

∑m
k=

zk
tk+ when |t| > ,

wherem is a nonnegative integer.
To solve the Dirichlet problem in C+, as in [], we use the following modified Poisson

kernel defined by

Pm(z, t) = ImCm(z, t) =

{
P(z, t) when |t| ≤ ,
P(z, t) – 

π
Im

∑m
k=

zk
tk+ when |t| > .

We remark that the modified Poisson kernel Pm(z, t) is harmonic in C+.
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Put

Um(f )(z) =
∫ ∞

–∞
Pm(z, t)f (t)dt,

where f (t) is a continuous function in ∂C+.
We say that u is of order λ if

λ = lim sup
r→∞

log(supH∩B(r) |u|)
log r

.

If λ <∞, then u is said to be of finite order. See Hayman-Kennedy [, Definition .].
In case λ < ∞, about the solution of the Dirichlet problem with continuous data in H ,

we refer readers to the following result, which is due to Nevanlinna (see [–]).

Theorem A Let u be a nonnegative real-valued function harmonic in C+ and continuous
in C+. If

∫ ∞

–∞
u(t)
 + t

dt <∞,

then there exists a nonnegative real constant d such that

u(z) = dy +
∫ ∞

–∞
P(z, t)u(t)dt

for all z = x + iy ∈C+.

Inspired by Theorem A, we consider the Dirichlet problem for harmonic functions of
infinite order in C+. To do this, we define a nondecreasing and continuously differentiable
function ρ(R)≥  on the interval [, +∞). We assume further that

ε = lim sup
R→∞

ρ ′(R)R logR
ρ(R)

< . (.)

Remark For any ε ( < ε <  – ε), there exists a sufficiently large positive number R such
that r > R, by (.) we have

ρ(r) < ρ(e)(ln r)ε+ε .

Let F(ρ,α) be the set of continuous functions f on ∂C+ such that

∫ ∞

–∞
|f (t)|

 + |t|ρ(|t|)+α+ dt <∞, (.)

where α is a positive real number.
Now we show the solution of the Dirichlet problem with continuous data in C+. For

similar results in a cone, we refer readers to the paper by Qiao (see [, ]). For similar
results with respect to the Schrödinger operator in a half-space, we refer readers to the
paper by Ren, Su and Yang (see [–]).
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Theorem  If f ∈ F(ρ,α), then the integral U[ρ(|t|)+α](f )(z) is a solution of the Dirichlet
problem in C+ with f .

The following result is obtained by putting [ρ(|t|) + α] =m in Theorem .

Corollary If f is a continuous function in ∂C+ satisfying

∫ ∞

–∞
|f (t)|

 + |t|m+ dt < ∞,

then Um(f )(z) is a solution of the Dirichlet problem in C+ with f .

Theorem  Let u be a real-valued function harmonic in C+ and continuous in C+. If u ∈
F(p,ρ,α), then we have u(z) = U[ρ(|t|)+α](u)(z) + Im�(z) for all z ∈ C+, where �(z) is an
entire function in C+ and vanishes continuously in ∂C+.

2 Proof of Theorem 1
By a simple calculation, we have the following inequality:

∣∣Cm(z, t)
∣∣ ≤M|z|m+|t|–m– (.)

for any z ∈C+ and t ∈ ∂C+ satisfying |t| ≥max{, |z|}, whereM is a positive constant.
Take a number r satisfying r > R, where R is a sufficiently large positive number. For any

ε ( < ε <  – ε), from Remark we have

ρ(r) < ρ(e)(ln r)(ε+ε),

which yields that there exists a positive constantM(r) dependent only on r such that

k–α/(r)ρ(k+)+α+ ≤M(r) (.)

for any k > kr = [r] + .
For any z ∈ C+ and |z| ≤ r, we have by (.), (.), (.), /p + /q =  and Hölder’s in-

equality

M
∞∑
k=kr

∫
k≤|t|<k+

|z|[ρ(|t|)+α]+

|t|[ρ(|t|)+α]+

∣∣f (t)∣∣dt

≤M
∞∑
k=kr

rρ(k+)+α+

kα/

∫
k≤|t|<k+

|f (t)|
|t|ρ(|t|)++pα/ dt

≤ MM(r)
∫

|t|≥kr

|f (t)|
 + |t|ρ(|t|)++pα/ dt

< ∞.

Thus U[ρ(|t|)+α](f )(z) is finite for any z ∈ C+. Since P[ρ(|t|)+α](z, t) is a harmonic function
of z ∈C+ for any fixed t ∈ ∂C+, U[ρ(|t|)+α](f )(z) is also a harmonic function of z ∈ C+.
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Now we shall prove the boundary behavior of U[ρ(|t|)+α](f )(z). For any fixed boundary
point t′ ∈ ∂C+, we can choose a number T such that T > |t′| + . Now we write

U[ρ(|t|)+α](f )(z) = I(z) – I(z) + I(z),

where

I(z) =
∫

|t|≤T
P(z, t)f (t)dt, I(z) = Im

[ρ(|t|+α)]∑
k=

∫
<|t|≤T

zk

π tk+
f (t)dt,

I(z) =
∫

|t|>T
P[ρ(|t|+α)](z, t)f (t)dt.

Note that I(z) is the Poisson integral of u(t)χ[–T ,T](t), whereχ[–T ,T] is the characteris-
tic function of the interval [–T , T]. So it tends to f (t′) as z → t′. Clearly, I(z) vanishes on
∂C+. Further, I(z) =O(y), which tends to zero as z → t′. Thus the function U[ρ(|t|)+α](f )(z)
can be continuously extended to C+ such that U[ρ(|t|)+α](f )(t′) = f (t′) for any t′ ∈ ∂C+. The-
orem  is proved.

3 Proof of Theorem 2
Consider that the function u(z) –U[ρ(|t|)+α](u)(z), which is harmonic in C+, can be contin-
uously extended to C+ and vanishes in ∂C+.
The Schwarz reflection principle [, p.] applied to u(z) – U[ρ(|t|)+α](u)(z) shows that

there exists an entire harmonic function �(z) in C+ satisfying �(z) = �(z) such that
Im�(z) = u(z) –U[ρ(|t|)+α](u)(z) for z ∈C+.
Thus u(z) = U[ρ(|t|)+α](u)(z) + Im�(z) for all z ∈ C+, where �(z) is an entire function in

C+ and vanishes continuously in ∂C+. Then we complete the proof of Theorem .
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