
Zhang et al. Boundary Value Problems 2013, 2013:270
http://www.boundaryvalueproblems.com/content/2013/1/270

RESEARCH Open Access

Remarks on the regularity criteria for the D
MHD equations in the multiplier spaces
Zujin Zhang1*, Xiqin Ouyang2, Dingxing Zhong1 and Shulin Qiu1

*Correspondence:
zhangzujin361@163.com
1School of Mathematics and
Computer Sciences, Gannan
Normal University, Ganzhou, Jiangxi
341000, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we consider the regularity criteria for the 3D MHD equations. It is proved
that if

∂3(u + b) ∈ L
2
1–r (0, T ; Ẋr) (0 ≤ r ≤ 1),

or

∂3(u – b) ∈ L
2
1–r (0, T ; Ẋr) (0≤ r ≤ 1),

then the solution actually is smooth. This extends the previous results given by Guo
and Gala (Anal. Appl. 10:373-380, 2013), Gala (Math. Methods Appl. Sci. 33:1496-1503,
2010).
MSC: 35B65; 35Q35; 76D03
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1 Introduction
In this paper, we consider the following three-dimensional (D) magnetohydrodynamic
(MHD) equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + (u · ∇)u – (b · ∇)b –�u +∇π = ,

bt + (u · ∇)b – (b · ∇)u –�b = ,

∇ · u = ,

∇ · b = ,

u() = u, b() = b,

()

where u = (u,u,u) is the fluid velocity field, b = (b,b,b) is the magnetic field, π is a
scalar pressure, and (u,b) are the prescribed initial data satisfying ∇ · u = ∇ · b = 
in the distributional sense. Physically, () governs the dynamics of the velocity and mag-
netic fields in electrically conducting fluids such as plasmas, liquid metals, and salt water.
Moreover, () reflects the conservation of momentum, () is the induction equation, and
() specifies the conservation of mass.
Besides its physical applications,MHD system () is alsomathematically significant. Du-

vaut and Lions [] constructed a global weak solution to () for initial data with finite
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energy. However, the issue of regularity and uniqueness of such a given weak solution re-
mains a challenging open problem. Many sufficient conditions (see, e.g., [–] and the
references therein) were derived to guarantee the regularity of the weak solution. Among
these results, we are interested in regularity criteria involving only partial components of
the velocity u, the magnetic field b, the pressure gradient ∇π , etc.
In [], Jia and Zhou used an intricate decomposition technique and delicate inequalities

to obtain the following regularity criterion:

∂π ∈ Lp
(
,T ;Lq

(
R)), 

p
+

q
= ,  ≤ q < ∞, ()

that is, if () holds, then the solution of () is smooth. Applying a more subtle decom-
position technique (see [, Remark ]), Zhang, Li, and Yu [] could be able to prove
smoothness condition () in the case / ≤ q ≤ . Noticeably, Zhang [] treated the range

 ≤ q ≤ ∞ in a unified approach.
As far as one directional derivative of the velocity field is concerned, Cao and Wu []

proved the following regularity criterion:

∂u ∈ Lp
(
,T ;Lq

(
R)), 

p
+

q
= ,  ≤ q ≤ ∞;

Jia and Zhou [] showed that if

∂u ∈ Lp
(
,T ;Lq

(
R)), 

p
+

q
=


+


q

,q > ,

then the solution is regular. These results were improved by Zhang [] to be

∂u ∈ Lp
(
,T ;Lq

(
R)), 

p
+

q
=  +


q
,q > .

We would like to give another contribution in this direction and prove that if

∂(u + b) ∈ L

–r (,T ; Ẋr) (≤ r ≤ ),

or

∂(u – b) ∈ L

–r (,T ; Ẋr) (≤ r ≤ ),

then the solution actually is smooth. Here, Ẋr is the multiplier spaces, which is strictly
larger than L 

r (R) (see Section  for details).
Notice that our result extends

∂u ∈ L

–r (,T ; Ẋr) (≤ r ≤ )

which is in [] for the Navier-Stokes equations. At this moment, for MHD equations (),
we could not be able to add the regularity condition on one directional derivative of the
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velocity field only, since we need to convert () into a symmetric form. We also improve
the result

∇(u + b) ∈ L


–r (,T ; Ẋr) (≤ r ≤ )

of [] in the sense that we need only one directional derivative of u+b or u–b to ensure
the smoothness of the solution.
Before stating the precise result, let us recall theweak formulation ofMHDequations ().

Definition  Let (u,b) ∈ L(R) with ∇ · u = ∇ · b = , and T > . A measurable
R-valued pair (u,b) is called a weak solution to () with initial data (u,b) provided that
the following three conditions hold:
() u ∈ L∞(,T ;L(R))∩ L(,T ;H(R)), b ∈ L∞(,T ;L(R))∩ L(,T ;H(R));
() (),,, are satisfied in the distributional sense;
() the energy inequality

∥∥(u,b)∥∥
L (t) + 

∫ t



∥∥∇(u,b)
∥∥
L ds ≤ ∥∥(u,b)

∥∥
L .

Now, our main results read as follows.

Theorem  Let (u,b) ∈ H(R) with ∇ ·u =∇ ·b = , and T > . Assume that (u,b) is
a given weak solution pair of MHD system () with initial data (u,b) on (,T). If

∂(u + b) ∈ L

–r (,T ; Ẋr) (≤ r ≤ ),

or

∂(u – b) ∈ L

–r (,T ; Ẋr) (≤ r ≤ ),

then the solution is smooth on (,T).

The proof of Theorem  will be given in Section . In Section , we introduce the mul-
tiplier spaces Ẋr and recall their fine properties.

2 Preliminaries
In this section, we recall the definition and fine properties of the multiplier spaces Ẋr (see
[, ] for example).

Definition  For  ≤ r < /, the homogeneous space Ẋr is defined as the space of f ∈
Lloc(R) such that

‖f ‖Ẋr ≡ sup
‖g‖Ḣr≤

‖fg‖L <∞,

where Ḣr(R) is the space of distributions u such that

‖u‖Ḣr ≡ ∥∥(–�)
r
 u

∥∥
L < ∞.

http://www.boundaryvalueproblems.com/content/2013/1/270


Zhang et al. Boundary Value Problems 2013, 2013:270 Page 4 of 7
http://www.boundaryvalueproblems.com/content/2013/1/270

We have the following scaling properties:

∥∥f (· + x)
∥∥
Ẋr

= ‖f ‖Ẋr , ∀x ∈R,

∥∥f (λ·)∥∥Ẋr
=


λr ‖f ‖Ẋr , ∀λ > .

When r = , we have

Ẋ ∼= BMO,

where BMO is the homogeneous space of bounded mean oscillations associated with the
semi-norm

‖f ‖BMO = sup
x∈R,r>


|Br(x)|

∫
Br(x)

∣∣∣∣f (x) – 
Br(y)

∫
Br(y)

f (z) dz
∣∣∣∣dy.

Furthermore, we have the following strict imbeddings:

L

r
(
R)� Ẋr

(
R),

which could be justified simply as

‖fg‖L ≤ ‖f ‖
L

r
‖g‖

L


–r
(Hölder inequality)

≤ C‖f ‖
L

r
‖g‖Ḣr (Sobolev imbeddings)

≤ C‖f ‖
L

r

(∀g ∈ Ḣr(R) with ‖g‖Ḣr ≤ 
)
.

3 Proof of Theorem 2
In this section, we shall prove Theorem . As we will see in the proof below, we need only
to consider the case that

∂(u + b) ∈ L

–r (,T ; Ẋr) (≤ r ≤ ). ()

First, let us convert () into a symmetric form. Writing

ω± = u± b,

we find by adding and subtracting () with (),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω+
t + (ω– · ∇)ω+ –�ω+ +∇π = ,

ω–
t + (ω+ · ∇)ω– –�ω– +∇π = ,

∇ · ω+ =∇ · ω– = ,

ω+() = ω+
 ≡ u + b, ω–() = ω–

 ≡ u – b.

()

The rest of the proof is organized as follows. In the first step, we dominate ‖∂ω±(t)‖L
and the time integral of ‖∇∂ω

±(t)‖L , while the second step is devoted to controlling
‖∇ω±(t)‖L .
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Step . ‖∂ω±‖L estimates.
Taking the inner product of () with –∂∂ω

+, () with –∂∂ω
– in L(R) respectively,

adding them together, and noticing that ∇ · ω± = , we obtain



d
dt

∥∥∂ω
±∥∥

L +
∥∥∇∂ω

±∥∥
L

= –
∫
R

[(
ω– · ∇)

ω+] · ∂∂ω+ dx –
∫
R

[(
ω+ · ∇)

ω–] · ∂∂ω– dx

=
∫
R

[(
∂ω

– · ∇)
ω+] · ∂ω+ dx +

∫
R

[(
∂ω

+ · ∇)
ω–] · ∂ω– dx

≡ I. ()

We now estimate I as

I ≤ ∥∥∂ω
+ · ∂ω–∥∥

L
∥∥∇ω±∥∥

L (Hölder inequality)

≤ ∥∥∂ω
+∥∥

Ẋr

∥∥∂ω
–∥∥

Ḣr

∥∥∇ω±∥∥
L (definition of multiplier spaces)

≤ ∥∥∂ω
+∥∥

Ẋr

∥∥∂ω
–∥∥–r

L
∥∥∇∂ω

–∥∥r
L

∥∥∇ω±∥∥
L (interpolation inequalities)

≤ C
∥∥∂ω

+∥∥ 
–r
Ẋr

∥∥∇ω±∥∥ 
–r
L

∥∥∂ω
–∥∥ (–r)

–r
L +



∥∥∇∂ω

±∥∥
L (Young inequality)

≤ C
[∥∥∂ω

+∥∥ 
–r
Ẋr

+
∥∥∇ω±∥∥

L
] · [∥∥∂ω

–∥∥
L + 

]

+


∥∥∇∂ω

±∥∥
L (Young inequality). ()

Plugging () into (), invoking the Gronwall inequality, and noticing (), we deduce

sup
≤t≤T

∥∥∂ω
±(t)

∥∥
L ≤ C < ∞, and

∫ T



∥∥∇∂ω
±(t)

∥∥
L dt ≤ C <∞. ()

Step . ‖∇ω±‖L estimates.
Taking the inner product of () with –�ω+, () with –�ω– in L(R) respectively,

adding them together, and noticing that ∇ · ω± = , we obtain



d
dt

∥∥∇ω±∥∥
L +

∥∥�ω±∥∥
L

= –
∫
R

[(
ω– · ∇)

ω+] · �ω+ dx –
∫
R

[(
ω+ · ∇)

ω–] · �ω– dx

=
∫
R

[(∇ω– · ∇)
ω+] · ∇ω+ dx +

∫
R

[(∇ω+ · ∇)
ω–] · ∇ω– dx

≡ J . ()

Utilizing interpolation inequalities and the following multiplicative Gagliardo-Nireberg
inequalities

‖f ‖L ≤ C‖∂f ‖


L‖∂f ‖



L‖∂f ‖



L , ()
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it follows that

J ≤ ∥∥∇ω±∥∥
L

≤ ∥∥∇ω±∥∥ 

L

∥∥∇ω±∥∥ 

L (interpolation inequalities)

≤ C
∥∥∇ω±∥∥ 


L

∥∥∇(∂, ∂)ω±∥∥
L

∥∥∇∂ω
±∥∥ 


L (by ())

≤ C
∥∥∇ω±∥∥

L
∥∥∇∂ω

±∥∥
L +



∥∥�ω±∥∥

L (Young inequality)

≤ C
[∥∥∇∂ω

±∥∥
L +

∥∥∇ω±∥∥
L

] · ∥∥∇ω±∥∥
L +



∥∥�ω±∥∥

L (Young inequality). ()

Putting () into (), utilizing the Gronwall inequality, and noticing (), we deduce

sup
≤t≤T

∥∥∇ω±(t)
∥∥
L ≤ C < ∞, and

∫ T



∥∥�ω±(t)
∥∥
L dt ≤ C <∞,

and consequently,

u =


(
ω+ +ω–) ∈ L∞(

,T ;L
(
R)).

The classical Serrin-type regularity criterion [] then concludes the proof of Theorem .
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