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Abstract
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1 Introduction
The theory of fractional differential equations and inclusions has received much attention
over the past years and has become an important field of investigation due to its extensive
applications in numerous branches of physics, economics and engineering sciences [–].
Fractional differential equations and inclusions provide appropriatemodels for describing
real world problems, which cannot be described using classical integer order differential
equations. Some recent contributions to the subject can be seen in [–] and references
cited therein.
It has been noticed that most of the work on the topic is based on Riemann-Liouville

and Caputo-type fractional differential equations. Another kind of fractional derivatives
that appears side by side to Riemann-Liouville and Caputo derivatives in the literature is
the fractional derivative due to Hadamard introduced in  [], which differs from the
preceding ones in the sense that the kernel of the integral (in the definition of Hadamard
derivative) contains a logarithmic function of arbitrary exponent. Details and properties
of the Hadamard fractional derivative and integral can be found in [, –].
In this paper, we study the following boundary value problem of Hadamard-type frac-

tional differential inclusions:

{
Dαx(t) ∈ F(t,x(t)),  < t < e,  < α ≤ ,
x() = , x(e) = Iβx(η),  < η < e,

(.)
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where Dα is the Hadamard fractional derivative of order α, Iβ is the Hadamard fractional
integral of order β and F : [, e] × R → P(R) is a multivalued map, P(R) is the family of
all nonempty subsets of R.
We aim to establish a variety of results for inclusion problem (.) by considering the

given multivalued map to be convex as well as non-convex valued. The first result relies
on the nonlinear alternative of Leray-Schauder type. In the second result, we combine
the nonlinear alternative of Leray-Schauder type for single-valued maps with a selection
theorem due to Bressan and Colombo for lower semicontinuous multivalued maps with
nonempty closed and decomposable values, while the third result is obtained by using the
fixed point theorem for contractive multivalued maps due to Covitz and Nadler.
We emphasize that themain idea of the present research is to introduceHadamard-type

fractional differential inclusions supplemented with Hadamard-type integral boundary
conditions and develop some existence results for the problem at hand. It is imperative to
note that our results are absolutely new in the context of Hadamard-type integral bound-
ary value problems and provide a new avenue to the researchers working on fractional
boundary value problems.
The paper is organized as follows. In Section , we solve a linearHadamard-type integro-

differential boundary value problem and recall some preliminary concepts of multivalued
analysis that we need in the sequel. Section  contains the main results for problem (.).
In Section , some illustrative examples are discussed.

2 Preliminaries
This section is devoted to the basic concepts of Hadamard-type fractional calculus and
multivalued analysis. We also establish an auxiliary lemma to define the solutions for the
given problem.

2.1 Fractional calculus
Definition . [] The Hadamard derivative of fractional order q for a function g :
[,∞) →R is defined as

Dqg(t) =


�(n – q)

(
t
d
dt

)n ∫ t



(
log

t
s

)n–q– g(s)
s

ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q and log(·) = loge(·).

Definition . [] The Hadamard fractional integral of order q for a function g is defined
as

Iqg(t) =


�(q)

∫ t



(
log

t
s

)q– g(s)
s

ds, q > ,

provided the integral exists.

Lemma . (Auxiliary lemma) For  < α ≤  and ζ ∈ C([, e],R), the unique solution of
the problem

{
Dαx(t) = ζ (t),  < t < e,
x() = , x(e) = Iβx(η)

(.)
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is given by

x(t) = Iαζ (t) +
(log t)α–

�

[
Iβ+αζ (η) – Iαζ (e)

]
, (.)

where

� =


 – 
�(β)

∫ η

 (log
η

s )β–
(log s)α–

s ds
. (.)

Proof As argued in [], the solution of the Hadamard differential equation in (.) can be
written as

x(t) = Iαζ (t) + c(log t)α– + c(log t)α–. (.)

Using the given boundary conditions, we find that c =  and

Iαζ (e) + c = Iβ
(
Iαζ (s) + c(log s)α–

)
(η)

= Iβ+αζ (η) +
c

�(β)

∫ η



(
log

η

s

)β– (log s)α–

s
ds,

which gives

c =


 – 
�(β)

∫ η

 (log
η

s )β–
(log s)α–

s ds

[
Iβ+αζ (η) – Iαζ (e)

]
. (.)

Substituting the values of c and c in (.), we obtain (.). This completes the proof. �

2.2 Basic concepts of multivalued analysis
Here we outline some basic definitions and results for multivalued maps [, ].
Let C([, e],R) denote a Banach space of continuous functions from [, e] intoRwith the

norm ‖x‖ = supt∈[,e] |x(t)|. Let L([, e],R) be the Banach space of measurable functions
x : [, e] →R which are Lebesgue integrable and normed by ‖x‖L =

∫ e
 |x(t)|dt.

For a normed space (X,‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈
P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) = {Y ∈ P(X) :
Y is compact and convex}. A multi-valued map G : X →P(X):

(i) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X ;
(ii) is bounded on bounded sets if G(B) =

⋃
x∈BG(x) is bounded in X for all B ∈Pb(X)

(i.e., supx∈B{sup{|y| : y ∈G(x)}} <∞);
(iii) is called upper semicontinuous (u.s.c.) on X if for each x ∈ X , the set G(x) is a

nonempty closed subset of X and if for each open set N of X containing G(x),
there exists an open neighborhoodN of x such that G(N) ⊆N ;

(iv) G is lower semicontinuous (l.s.c.) if the set {y ∈ X :G(y)∩ B 	= ∅} is open for any
open set B in E;

(v) is said to be completely continuous if G(B) is relatively compact for every
B ∈Pb(X);

http://www.boundaryvalueproblems.com/content/2013/1/275
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(vi) is said to bemeasurable if for every y ∈ R, the function

t �→ d
(
y,G(t)

)
= inf

{|y – z| : z ∈G(t)
}

is measurable;
(vii) has a fixed point if there is x ∈ X such that x ∈G(x). The fixed point set of the

multivalued operator G will be denoted by FixG.
For each x ∈ C([, e],R), define the set of selections of F by

SF ,x :=
{
v ∈ L

(
[, e],R

)
: v(t) ∈ F

(
t,x(t)

)
for a.e. t ∈ [, e]

}
. (.)

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y , y ∈ G(x)} and recall two
results for closed graphs and upper-semicontinuity.

Lemma . [, Proposition .] If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a closed subset
of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if when n → ∞, xn → x∗,
yn → y∗ and yn ∈G(xn), then y∗ ∈G(x∗). Conversely, if G is completely continuous and has
a closed graph, then it is upper semicontinuous.

Lemma . [] Let X be a separable Banach space. Let F : [, ]×X →Pcp,c(X) be mea-
surable with respect to t for each x ∈ X and u.s.c.with respect to x for almost all t ∈ [, e] and
SF ,x 	= ∅ for any x ∈ C([, e],X), and let � be a linear continuous mapping from L([, e],X)
to C([, e],X). Then the operator

� ◦ SF : C
(
[, e],X

) →Pcp,c
(
C

(
[, e],X

))
, x �→ (� ◦ SF )(x) =�(SF ,x,y)

is a closed graph operator in C([, e],X)×C([, e],X).

3 Existence results
Definition . A function x ∈ AC([, e],R) is called a solution of problem (.) if there
exists a function g ∈ L([, e],R) with g(t) ∈ F(t,x(t)), a.e. on [, e] such that Dαx(t) = g(t),
a.e. on [, e] and x() = , x(e) = Iβx(η).

3.1 The upper semicontinuous case
Our first main result for Carathéodory case is established via the nonlinear alternative of
Leray-Schauder for multivalued maps.

Lemma . (Nonlinear alternative for Kakutani maps []) Let E be a Banach space, C
be a closed convex subset of E, U be an open subset of C and  ∈ U . Suppose that F :U →
Pc,cv(C) is an upper semicontinuous compact map. Then either

(i) F has a fixed point in U , or
(ii) there are u ∈ ∂U and λ ∈ (, ) with u ∈ λF(u).

Theorem . Assume that:

(H) F : [, e]×R →Pcp,c(R) is Carathéodory, i.e.,
(i) t �→ F(t,x) is measurable for each x ∈ R;
(ii) x �→ F(t,x) is u.s.c. for almost all t ∈ [, e];
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(H) there exist a continuous nondecreasing function ψ : [,∞) → (,∞) and a function
p ∈ C([, e],R+) such that

∥∥F(t,x)∥∥P := sup
{|y| : y ∈ F(t,x)

} ≤ p(t)ψ
(‖x‖) for each (t,x) ∈ [, e]×R;

(H) there exists a constantM >  such that

M

ψ(M)‖p‖{ 
�(α+) +


|�| (

(logη)β+α

�(β+α+) +


�(α+) )}
> ,

where � is given by (.).

Then problem (.) has at least one solution on [, e].

Proof In view of Lemma ., we define an operator F : C([, e],R)→P(C([, e],R)) by

F (x) =
{
h ∈ C

(
[, e],R

)
: h(t) =


�(α)

∫ t



(
log

t
s

)α– g(s)
s

ds

+
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– g(s)
s

ds

–


�(α)

∫ e



(
log

e
s

)α– g(s)
s

ds
]}

(.)

for g ∈ SF ,x (defined by (.)). Observe that the fixed points of the operator F correspond
to the solutions of problem (.). We will show that F satisfies the assumptions of the
Leray-Schauder nonlinear alternative (Lemma .). The proof consists of several steps.
Step . F (x) is convex for each x ∈ C([, e],R).
This step is obvious since SF ,x is convex (F has convex values), and therefore we omit the

proof.
Step . F maps bounded sets (balls) into bounded sets in C([, e],R).
For a positive number ρ , let Bρ = {x ∈ C([, e],R) : ‖x‖ ≤ ρ} be a bounded ball in

C([, e],R). Then, for each h ∈F (x), x ∈ Bρ , there exists g ∈ SF ,x such that

h(t) =


�(α)

∫ t



(
log

t
s

)α– g(s)
s

ds +
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– g(s)
s

ds

–


�(α)

∫ e



(
log

e
s

)α– g(s)
s

ds
]
.

Then we have

∣∣h(t)∣∣ ≤ 
�(α)

∫ t



(
log

t
s

)α– |g(s)|
s

ds

+


|�|
[


�(β + α)

∫ η



(
log

η

s

)β+α– |g(s)|
s

ds +


�(α)

∫ e



(
log

e
s

)α– |g(s)|
s

ds
]

≤ 
�(α)

∫ t



(
log

t
s

)α– p(s)ψ(‖x‖)
s

ds
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+


|�|
[


�(β + α)

∫ η



(
log

η

s

)β+α– p(s)ψ(‖x‖)
s

ds

+


�(α)

∫ e



(
log

e
s

)α– p(s)ψ(‖x‖)
s

ds
]

≤ ψ(‖x‖)‖p‖
�(α + )

+
ψ(‖x‖)‖p‖

|�|
(

(logη)β+α

�(β + α + )
+


�(α + )

)
.

Thus

‖h‖ ≤ ψ(ρ)‖p‖
{


�(α + )

+


|�|
(

(logη)β+α

�(β + α + )
+


�(α + )

)}
.

Step . F maps bounded sets into equicontinuous sets of C([, e],R).
Let τ, τ ∈ [, e] with τ < τ and u ∈ Bρ , where Bρ is a bounded set of C([, e],R) as in

Step . For each h ∈F (u), we obtain

∣∣h(τ) – h(τ)
∣∣

≤ ψ(ρ)‖p‖
�(α)

∣∣∣∣
∫ τ



(
log

τ

s

)α– 
s
ds –

∫ τ



(
log

τ

s

)α– 
s
ds

∣∣∣∣
+ψ(ρ)‖p‖

∣∣∣∣ (log τ)α– – (log τ)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– 
s
ds

–


�(α)

∫ e



(
log

e
s

)α– 
s
ds

]∣∣∣∣
≤ ψ(ρ)‖p‖

�(α)

∣∣∣∣
∫ τ



[(
log

τ

s

)α–

–
(
log

τ

s

)α–]
s
ds

∣∣∣∣
+

ψ(ρ)‖p‖
�(α)

∣∣∣∣
∫ τ

τ

(
log

τ

s

)α– 
s
ds

∣∣∣∣
+ψ(ρ)‖p‖

∣∣∣∣ (log τ)α– – (log τ)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– 
s
ds

–


�(α)

∫ e



(
log

e
s

)α– 
s
ds

]∣∣∣∣.
Obviously the right-hand side of the above inequality tends to zero independently of x ∈ Br

as τ – τ → . In view of Steps -, the Arzelá-Ascoli theorem applies and hence F :
C([, e],R) →P(C([, e],R)) is completely continuous.
By Lemma ., F will be upper semicontinuous (u.s.c.) if we prove that it has a closed

graph since F is already shown to be completely continuous.
Step . F has a closed graph.
Let xn → x∗, hn ∈F (xn) and hn → h∗. Thenwe need to show that h∗ ∈F (x∗). Associated

with hn ∈F (xn), there exists gn ∈ SF ,xn such that for each t ∈ [, e],

hn(t) =


�(α)

∫ t



(
log

t
s

)α– gn(s)
s

ds +
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– gn(s)
s

ds

–


�(α)

∫ e



(
log

e
s

)α– gn(s)
s

ds
]
.
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Thus we have to show that there exists g∗ ∈ SF ,x∗ such that for each t ∈ [, e],

h∗(t) =


�(α)

∫ t



(
log

t
s

)α– g∗(s)
s

ds +
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– g∗(s)
s

ds

–


�(α)

∫ e



(
log

e
s

)α– g∗(s)
s

ds
]
.

Let us consider the linear operator � : L([, e],R)→ C([, e],R) given by

g �→ �(g)(t)

=


�(α)

∫ t



(
log

t
s

)α– g(s)
s

ds +
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– g(s)
s

ds

–


�(α)

∫ e



(
log

e
s

)α– g(s)
s

ds
]
.

Observe that

∥∥hn(t) – h∗(t)
∥∥ =

∥∥∥∥ 
�(α)

∫ t



(
log

t
s

)α– (gn(s) – g∗(s))
s

ds

+
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– (gn(s) – g∗(s))
s

ds

–


�(α)

∫ e



(
log

e
s

)α– (gn(s) – g∗(s))
s

ds
]∥∥∥∥ → 

as n→ ∞.
Thus, it follows by Lemma . that � ◦ SF is a closed graph operator. Further, we have

hn(t) ∈ �(SF ,xn ). Since xn → x∗, therefore, we have

h∗(t) =


�(α)

∫ t



(
log

t
s

)α– g∗(s)
s

ds +
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– g∗(s)
s

ds

–


�(α)

∫ e



(
log

e
s

)α– g∗(s)
s

ds
]

for some g∗ ∈ SF ,x∗ .
Step . We show that there exists an open set U ⊆ C([, e],R) with x /∈ λF (x) for any

λ ∈ (, ) and all x ∈ ∂U .
Let x ∈ λF (x) for some λ ∈ (, ). Then there exists g ∈ L([, e],R) with g ∈ SF ,x such

that, for t ∈ [, e], we have

x(t) = λ


�(α)

∫ t



(
log

t
s

)α– g(s)
s

ds + λ
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– g(s)
s

ds

–


�(α)

∫ e



(
log

e
s

)α– g(s)
s

ds
]
.

Using the computations of the second step above, we have

‖x‖ ≤ ψ
(‖x‖)‖p‖{ 

�(α + )
+


|�|

(
(logη)β+α

�(β + α + )
+


�(α + )

)}
.
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Consequently, we have

‖x‖
ψ(‖x‖)‖p‖{ 

�(α+) +


|�| (
(logη)β+α

�(β+α+) +


�(α+) )}
≤ .

In view of (H), there existsM such that ‖x‖ 	=M. Let us set

U =
{
x ∈ C

(
[, e],R

)
: ‖x‖ <M

}
.

Note that the operator F : U → P(C([, e],R)) is upper semicontinuous and completely
continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ λF (x) for some λ ∈
(, ). Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we
deduce that F has a fixed point x ∈ U which is a solution of problem (.). This completes
the proof. �

3.2 The lower semicontinuous case
In what follows, we consider the case when F is not necessarily convex valued and obtain
the existence result by combining the nonlinear alternative of Leray-Schauder type with
the selection theorem due to Bressan and Colombo [] for lower semicontinuous maps
with decomposable values.

Definition . Let A be a subset of I × R. A is L ⊗ B measurable if A belongs to the
σ -algebra generated by all sets of the form J ×D, where J is Lebesgue measurable in I
and D is Borel measurable in R.

Definition . A subset A of L(I,R) is decomposable if for all u, v ∈ A and measurable
J ⊂ I , the function uχJ + vχI–J ∈ A, where χJ stands for the characteristic function
of J .

Lemma . [] Let Y be a separable metric space, and let N : Y →P(L(I,R)) be a lower
semicontinuous (l.s.c.)multivalued operator with nonempty closed and decomposable val-
ues. Then N has a continuous selection, that is, there exists a continuous function (single-
valued) h : Y → L(I,R) such that h(x) ∈N(x) for every x ∈ Y .

Theorem . Assume that (H), (H) and the following condition holds:

(H) F : [, e]×R →P(R) is a nonempty compact-valued multivalued map such that
(a) (t,x) �→ F(t,x) is L⊗B measurable,
(b) x �→ F(t,x) is lower semicontinuous for each t ∈ [, e].

Then problem (.) has at least one solution on [, e].

Proof It follows from (H) and (H) that F is of l.s.c. type []. Then, by Lemma ., there
exists a continuous function f : AC([, e],R)→ L([, e],R) such that f (x) ∈ S(x) for all x ∈
C([, e],R), where S : C([, e]×R)→P(L([, e],R)) is the Nemytskii operator associated
with F , defined as

S(x) =
{
w ∈ L

(
[, e],R

)
: w(t) ∈ F

(
t,x(t)

)
for a.e. t ∈ [, e]

}
.

http://www.boundaryvalueproblems.com/content/2013/1/275
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Consider the problem

{
Dαx(t) = f (x(t)), t ∈ [, e],
x() = , x(e) = Iβx(η).

(.)

Observe that if x ∈ AC([, e],R) is a solution of problem (.), then x is a solution to
problem (.). In order to transform problem (.) into a fixed point problem, we define
an operator F as

Fx(t) =


�(α)

∫ t



(
log

t
s

)α– f (x(s))
s

ds

+
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– f (x(s))
s

ds

–


�(α)

∫ e



(
log

e
s

)α– f (x(s))
s

ds
]
.

It can easily be shown that F is continuous and completely continuous. The remain-
ing part of the proof is similar to that of Theorem .. So we omit it. This completes the
proof. �

3.3 The Lipschitz case
Let (X,d) be ametric space induced from the normed space (X;‖·‖). ConsiderHd :P(X)×
P(X)→R∪ {∞} given by

Hd(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}
,

where d(A,b) = infa∈A d(a;b) and d(a,B) = infb∈B d(a;b). Then (Pb,cl(X),Hd) is a metric
space (see []).

Definition . A multivalued operator N : X →Pcl(X) is called
(a) γ -Lipschitz if and only if there exists γ >  such that

Hd
(
N(x),N(y)

) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ -Lipschitz with γ < .

To show the existence of solutions for problem (.) with a nonconvex valued right-hand
side, we need a fixed point theorem for multivalued maps due to Covitz and Nadler [].

Lemma . [] Let (X,d) be a complete metric space. If N : X →Pcl(X) is a contraction,
then FixN 	= ∅.

Theorem . Assume that the following conditions hold:

(H) F : [, e] × R → Pcp(R) is such that F(·,x) : [, e] → Pcp(R) is measurable for each
x ∈ R.
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(H) Hd(F(t,x),F(t, x̄)) ≤ m(t)|x – x̄| for almost all t ∈ [, e] and x, x̄ ∈ R with m ∈
C([, e],R+) and d(,F(t, ))≤m(t) for almost all t ∈ [, e].

Then problem (.) has at least one solution on [, e] if

‖m‖
{


�(α + )

+


|�|
(

(logη)β+α

�(β + α + )
+


�(α + )

)}
< .

Proof We transform problem (.) into a fixed point problem by means of the operator
F : C([, e],R) → P(C([, e],R)) defined by (.) and show that the operator F satisfies
the assumptions of Lemma .. The proof will be given in two steps.
Step . F (x) is nonempty and closed for every v ∈ SF ,x.
Since the set-valued map F(·,x(·)) is measurable with the measurable selection theorem

(e.g., [, Theorem III.]), it admits a measurable selection v : [, e] → R. Moreover, by
assumption (H), we have

∣∣v(t)∣∣ ≤m(t) +m(t)
∣∣x(t)∣∣,

that is, v ∈ L([, e],R) and hence F is integrably bounded. Therefore, SF ,x 	= ∅. Moreover,
F (x) ∈ Pcl(C([, e],R)) for each x ∈ C([, e],R). Indeed, let {un}n≥ ∈ F (x) be such that
un → u (n → ∞) in C([, e],R). Then u ∈ C([, e],R) and there exists gn ∈ SF ,un such that,
for each t ∈ [, e],

un(t) =


�(α)

∫ t



(
log

t
s

)α– gn(s)
s

ds

+
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– gn(s)
s

ds

–


�(α)

∫ e



(
log

e
s

)α– gn(s)
s

ds
]
.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that gn
converges to g in L([, e],R). Thus, g ∈ SF ,u and for each t ∈ [, e], we have

un(t) → u(t)

=


�(α)

∫ t



(
log

t
s

)α– g(s)
s

ds

+
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– g(s)
s

ds

–


�(α)

∫ e



(
log

e
s

)α– g(s)
s

ds
]
.

Hence, u ∈F (x).
Step . Next we show that there exists δ <  such that

Hd
(
F (x),F (x̄)

) ≤ δ‖x – x̄‖ for each x, x̄ ∈ AC
(
[, e],R

)
.

http://www.boundaryvalueproblems.com/content/2013/1/275


Ahmad et al. Boundary Value Problems 2013, 2013:275 Page 11 of 14
http://www.boundaryvalueproblems.com/content/2013/1/275

Let x, x̄ ∈ AC([, e],R) and h ∈F (x). Then there exists v(t) ∈ F(t,x(t)) such that, for each
t ∈ [, e],

h(t) =


�(α)

∫ t



(
log

t
s

)α– v(s)
s

ds

+
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– v(s)
s

ds

–


�(α)

∫ e



(
log

e
s

)α– v(s)
s

ds
]
.

By (H), we have

Hd
(
F(t,x),F(t, x̄)

) ≤m(t)
∣∣x(t) – x̄(t)

∣∣.
So, there exists w(t) ∈ F(t, x̄(t)) such that

∣∣v(t) –w(t)
∣∣ ≤m(t)

∣∣x(t) – x̄(t)
∣∣, t ∈ [, e].

Define U : [, e] → P(R) by

U(t) =
{
w ∈R :

∣∣v(t) –w(t)
∣∣ ≤m(t)

∣∣x(t) – x̄(t)
∣∣}.

Since themultivalued operatorU(t)∩F(t, x̄(t)) ismeasurable (Proposition III. []), there
exists a function v(t) which is a measurable selection for U . So v(t) ∈ F(t, x̄(t)) and for
each t ∈ [, e], we have |v(t) – v(t)| ≤m(t)|x(t) – x̄(t)|.
For each t ∈ [, e], let us define

h(t) =


�(α)

∫ t



(
log

t
s

)α– v(s)
s

ds

+
(log t)α–

�

[


�(β + α)

∫ η



(
log

η

s

)β+α– v(s)
s

ds

–


�(α)

∫ e



(
log

e
s

)α– v(s)
s

ds
]
.

Thus,

∣∣h(t) – h(t)
∣∣ ≤ 

�(α)

∫ t



(
log

t
s

)α– |v(s) – v(s)|
s

ds

+
(log t)α–

|�|
[


�(β + α)

∫ η



(
log

η

s

)β+α– |v(s) – v(s)|
s

ds

+


�(α)

∫ e



(
log

e
s

)α– |v(s) – v(s)|
s

ds
]

≤ 
�(α)

∫ t



(
log

t
s

)α–m(s)‖x – x̄‖
s

ds

+


|�|
[


�(β + α)

∫ η



(
log

η

s

)β+α–m(s)‖x – x̄‖
s

ds
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+


�(α)

∫ e



(
log

e
s

)α–m(s)‖x – x̄‖
s

ds
]

≤ ‖m‖
{


�(α + )

+


|�|
(

(logη)β+α

�(β + α + )
+


�(α + )

)}
‖x – x̄‖.

Hence,

‖h – h‖ ≤ ‖m‖
{


�(α + )

+


|�|
(

(logη)β+α

�(β + α + )
+


�(α + )

)}
‖x – x̄‖.

Analogously, interchanging the roles of x and x̄, we obtain

Hd
(
F (x),F (x̄)

) ≤ δ‖x – x̄‖

≤ ‖m‖
{


�(α + )

+


|�|
(

(logη)β+α

�(β + α + )
+


�(α + )

)}
‖x – x̄‖.

Since F is a contraction, it follows by Lemma . that F has a fixed point x which is a
solution of (.). This completes the proof. �

4 Examples
In this section we present some concrete examples to illustrate our results.
Let us consider the boundary value problem

{
D/x(t) ∈ F(t,x(t)),  < t < e,
x() = , x(e) = I/x().

(.)

Here α = /, β = /, η = ,

� =


 – 
�(β)

∫ η

 (log
η

s )β–
(log s)α–

s ds
=


 –

√
π (log)

≈ .

and

ω =


�(α + )
+


|�|

(
(logη)β+α

�(β + α + )
+


�(α + )

)
≈ ..

Example . Let F : [, e]×R →P(R) be a multivalued map given by

x → F(t,x) =
[

x

x + 
+ e–x


+ t + ,

|x|
|x| + 

+ t +



]
. (.)

For f ∈ F , we have

|f | ≤max

(
x

x + 
+ e–x


+ t + ,

|x|
|x| + 

+ t +



)
≤ , x ∈ R.

Here ‖F(t,x)‖P := sup{|y| : y ∈ F(t,x)} ≤  = p(t)ψ(‖x‖), x ∈R, with p(t) = , ψ(‖x‖) = . It
is easy to verify that M > .. Then, by Theorem ., problem (.) with F(t,x) given by
(.) has at least one solution on [, e].
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Example . Consider the multivalued map F : [, e]×R →P(R) given by

x → F(t,x) =
[
,



(t + ) sinx +




]
. (.)

Then we have

sup
{|u| : u ∈ F(t,x)

} ≤ 

(t + ) +




and

Hd
(
F(t,x),F(t, x̄)

) ≤ 

(t + )|x – x̄|.

Let m(t) = 
 (t + ). Then Hd(F(t,x),F(t, x̄)) ≤ m(t)|x – x̄|, and ‖m‖ω ≈ . < . By Theo-

rem ., problem (.) with F(t,x) given by (.) has at least one solution on [, e].
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