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1 Introduction
The theory of impulsive differential equations provides a general framework for themath-
ematical modeling ofmany real world phenomena; see, for instance, [–] and []. Indeed,
many dynamical systems have an impulsive dynamical behavior due to abrupt changes at
certain instants during the evolution process. Impulsive differential equations are basic
tools for studying these phenomena [, ].
There are some common techniques to approach these problems: the fixed point theo-

rems [, ], the method of upper and lower solutions [], or the topological degree theory
[–]. On the other hand, in the last few years, some authors have studied the existence
of solutions by variational methods; see [–].
Here, we use critical point theory to investigate the existence of infinitelymany solutions

for the following nonlinear impulsive differential problem:

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + a(t)u′(t) + b(t)u(t) = λg(t,u(t)), t ∈ [,T], t �= tj,

u() = u(T) = ,

�u′(tj) = μIj(u(tj)), j = , , . . . ,n,

(Dλ,μ)

where λ ∈ ], +∞[,μ ∈ ], +∞[, g : [,T]×R→R, a,b ∈ L∞([,T]) with ess inft∈[,T] a(t)≥
 and ess inft∈[,T] b(t) ≥ ,  = t < t < t < · · · < tn < tn+ = T , �u′(tj) = u′(t+j ) – u′(t–j ) =
limt→t+j u

′(t) – limt→t–j u
′(t), and Ij :R →R are continuous for every j = , , . . . ,n.

We establish some multiplicity results for problem (Dλ,μ) under an appropriate oscilla-
tion behavior of the primitive of the nonlinearity g and a suitable growth of the primitive of
Ij at infinity, for all λ belonging to a precise interval and provided μ is small enough (The-
orem ., Theorem .). It is worth noticing that, when the impulsive effects Ij, j = , . . . ,n,
are sublinear at infinity, our results hold for allμ ≥  (see Remark .). Here, as an example
of our results, we present the following special case of Theorem ..

©2013 Bonanno et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.boundaryvalueproblems.com/content/2013/1/278
mailto:bonanno@unime.it
http://creativecommons.org/licenses/by/2.0


Bonanno et al. Boundary Value Problems 2013, 2013:278 Page 2 of 14
http://www.boundaryvalueproblems.com/content/2013/1/278

Theorem . Let g : R → [,∞) be a continuous function and put G(ξ ) =
∫ ξ

 g(t)dt for
every ξ ∈R. Assume that

lim inf
ξ→+∞

G(ξ )
ξ  =  and lim sup

ξ→+∞
G(ξ )
ξ  = +∞.

Then there is δ̄ > , where δ̄ = 
nTeT , such that for each μ ∈ [, δ̄[, the problem

⎧⎪⎨
⎪⎩
–u′′(t) + u′(t) + u(t) = g(t,u(t)), t ∈ [,T], t �= tj,
u() = u(T) = ,
–�u′(tj) = μu(tj), j = , , . . . ,n

admits infinitely many pairwise distinct classical solutions.

We explicitly observe that in Theorem . impulsive effects Ij, j = , . . . ,n, (that is, Ij(x) = x
for all x ∈ R) are linear, contrary to the usual assumption of sublinearity of impulses; see
[, , –] and []. The rest of this paper is organized as follows. In Section , we
introduce some notations and preliminary results. Moreover, the abstract critical point
theorem (Theorem .) is recalled. In Section , we obtain some existence results. In Sec-
tion , we give some examples to illustrate our results.

2 Preliminaries
By a classical solution of (Dλ,μ) we mean a function

u ∈ {
w ∈ C

(
[,T]

)
: w|[tj ,tj+] ∈H([tj, tj+])}

that satisfies the equation in (Dλ,μ) a.e. on [,T] \ {t, . . . , tn}, the limits u′(t+j ), u′(t–j ), j =
, . . . ,n, exist, that satisfies the impulsive conditions �u′(tj) = μIj(u(tj)) and the boundary
conditions u() = u(T) = . Clearly, if a, b and g are continuous, then a classical solution
u ∈ C([tj, tj+]), j = , , . . . ,n, satisfies the equation in (Dλ,μ) for all t ∈ [,T] \ {t, . . . , tn}.
We consider the following slightly different form of problem (Dλ,μ):

⎧⎪⎪⎨
⎪⎪⎩
–(p(t)u′(t))′ + q(t)u(t) = λf (t,u(t)), t ∈ [,T], t �= tj,

u() = u(T) = ,

�u′(tj) = u′(t+j ) – u′(t–j ) = μIj(u(tj)), j = , , . . . ,n,

(Sλ,μ)

where p ∈ C([,T], ], +∞[), and q ∈ L∞([,T]) with ess inft∈[,T] q(t) ≥ .
It is easy to see that, by choosing

p(t) = e–
∫ t
 a(τ )dτ , q(t) = b(t)e–

∫ t
 a(τ )dτ , f (t,u) = g(t,u)e–

∫ t
 a(τ )dτ ,

the solutions of (Sλ,μ) are solutions of (Dλ,μ).
Let us introduce some notations. In the Sobolev spaceH

(,T), consider the inner prod-
uct

(u, v) =
∫ T


p(t)u′(t)v′(t)dt +

∫ T


q(t)u(t)v(t)dt,
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which induces the norm

‖u‖ =
(∫ T


p(t)

(
u′(t)

) dt + ∫ T


q(t)

(
u(t)

) dt)/

.

The following lemmas are useful for proving our main result. Their proofs can be found
in [].

Lemma  ([, Proposition .]) Let u ∈ H
(,T). Then

‖u‖∞ ≤ 


√
T
p∗ ‖u‖, ()

where p∗ :=mint∈[,T] p(t).

Here, and in the sequel, f : [,T]×R →R is an L-Carathéodory function, namely:
(a) t → f (t,x) is measurable for every x ∈R;
(b) x → f (t,x) is continuous for almost every t ∈ [,T];
(c) for every ρ > , there exists a function lρ ∈ L([,T]) such that

sup
|x|≤ρ

∣∣f (t,x)∣∣ ≤ lρ(t)

for almost every t ∈ [,T].

Definition  A function u ∈H
(,T) is said to be a weak solution of (Sλ,μ) if u satisfies

∫ T


p(t)u′(t)v′(t)dt +

∫ T


q(t)u(t)v(t)dt

– λ

∫ T


f
(
t,u(t)

)
v(t)dt +μ

n∑
j=

p(tj)Ij
(
u(tj)

)
v(tj) =  ()

for any v ∈H
(,T).

Lemma  ([, Lemma . ]) u ∈ H
(,T) is a weak solution of (Sλ,μ) if and only if u is a

classical solution of (Sλ,μ).

Now, we define the functionals �,	 :H
(,T)→R in the following way:

�(u) =


‖u‖ and 	(u) =

∫ T


F
(
t,u(t)

)
dt –

μ

λ

n∑
j=

p(tj)
∫ u(tj)


Ij(x)dx, ()

for each u ∈ H
(,T), where F(t, ξ ) =

∫ ξ

 f (t,x)dx for each (t, ξ ) ∈ [,T] × R. Using the
property of f and the continuity of Ij, j = , , . . . ,n, we have that �,	 ∈ C(H

(,T),R)
and for any v ∈H

(,T), one has

�′(u)(v) =
∫ T


p(t)u′(t)v′(t)dt +

∫ T


q(t)u(t)v(t)dt

http://www.boundaryvalueproblems.com/content/2013/1/278
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and

	 ′(u)(v) =
∫ T


f
(
t,u(t)

)
v(t)dt –

μ

λ

n∑
j=

p(tj)Ij
(
u(tj)

)
v(tj).

So, arguing in a standardway, it is possible to prove that the critical points of the functional
Eλ(u) := �(u) – λ	(u) are the weak solutions of problem (Sλ,μ) and so they are classical
solutions.
In the next section we shall prove our results applying the following infinitely many

critical points theorem obtained in []. First, we recall the following definition.

Definition  LetX be a real Banach space,�,	 : X →R twoGâteaux differentiable func-
tionals, r ∈ ]–∞, +∞]. We say that functional E :=� –	 satisfies the Palais-Smale condi-
tion cut off upper at r (in short (PS)[r]-condition) if any sequence {un}, such that

(α) {E(un)} is bounded,
(β) limn→+∞ ‖E′(un)‖X∗ = ,
(γ ) �(un) < r for all n ∈N,

has a convergent subsequence.

When r = +∞, the previous definition is the same as the classical definition of the Palais-
Smale condition, while if r < +∞, such a condition is more general than the classical one.
We refer to [] for more details.

Theorem . (see [], Theorem .) Let X be a real Banach space, and let �,	 : X →R

be two continuously Gâteaux differentiable functionals such that� is bounded from below.
For every r > infX �, let us put

ϕ(r) := inf
x∈�–(]–∞,r[)

supv∈�–(]–∞,r[) 	(v) –	(u)
r –�(u)

and

γ := lim inf
r→+∞ ϕ(r), δ := lim inf

r→(infX �)+
ϕ(r).

(a) If γ < +∞ and for each λ ∈ ], 
γ
[, the functional Eλ =� – λ	 satisfies the

(PS)[r]-condition for all r ∈R, then for each λ ∈ ], 
γ
[, the following alternative holds:

either

(a) Eλ has a global minimum

or

(a) there exists a sequence {un} of critical points (local minima) of Eλ such that
limn→∞ �(un) = +∞.

(b) If δ < +∞ and for each λ ∈ ], 
δ
[, the functional Eλ =� – λ	 satisfies the

(PS)[r]-condition for all r ∈R, then for each λ ∈ ], 
δ
[, the following alternative holds:

either

http://www.boundaryvalueproblems.com/content/2013/1/278
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(b) there exists a global minimum of � which is a local minimum of Eλ

or

(b) there exists a sequence of pairwise distinct critical points (local minima) of Eλ

such that limn→+∞ �(un) = infX �.

We recall that Theorem . improves [, Theorem .] since no assumptions with re-
spect to weak topology of X are made. In particular, the set �–(]–∞, r[)

w
is not involved

in the definition of ϕ and the sequential weak lower semicontinuity of Eλ is not required.

3 Main results
In this section, we present our main results. Put

k :=
p∗

‖p‖∞ + T‖q‖∞
.

Moreover, let

A := lim inf
ξ→+∞

∫ T
 max|x|≤ξ F(t,x)dt

ξ  , B := lim sup
ξ→+∞

∫ T/
T/ F(t, ξ )dt

ξ  .

Our first result is as follows.

Theorem . Assume that

(a) F(t, ξ )≥  for all (t, ξ ) ∈ ([, T ]∪ [ T ,T])×R;
(a) A < kB.

Then, for every λ ∈ � := ] p
∗

kTB ,
p∗
TA [ and for every continuous function Ij :R →R, j = , . . . ,n,

whose potential Ij(ξ ) :=
∫ ξ

 Ij(x)dx, ξ ∈R, satisfies

(i) supξ≥ Ij(ξ ) = ;

(i) I∞ := lim supξ→+∞
∑n

j=max|t|≤ξ (–Ij(t))
ξ

< +∞,

there exists δI,λ > , where

δI,λ :=


‖p‖∞I∞

(
p*
T

– λA
)
,

such that for every μ ∈ [, δI,λ[, problem (Sλ,μ) has an unbounded sequence of weak solu-
tions.

Proof First, we observe that owing to (a) the interval � is non-empty. Moreover, for each
λ ∈ � and taking into account that λ < p∗

TA , one has δI,λ > . Now, fix λ and μ as in the
conclusion. Our aim is to apply Theorem .. For this end, take X =H

(,T) and �, 	 as
in ().
We divide our proof into three steps in order to show Theorem .. First, we prove that

Eλ = � – λ	 satisfies the (PS)[r]-condition for all r ∈ R. So, fix r ∈ R and let {un} ⊆ X
be a sequence such that {Eλ(un)} is bounded, limn→+∞ ‖E′

λ(un)‖X∗ =  and �(un) < r for
all n ∈ N. From �(un) < r, taking into account that � is coercive, {un} is bounded in X.

http://www.boundaryvalueproblems.com/content/2013/1/278
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Since the embedding of X in C(,T) is compact (see, for instance, [, Theorem .]) and
X is reflexive, up to a subsequence, {un(x)} is uniformly convergent to u(x), and {un} is
weakly convergent to u in X. The uniform convergence of {un}, taking also into account
Lebesgue’s theorem, ensures that

lim
n→+∞

[∫ T


f
(
t,un(t)

)(
un(t) – u(t)

)
dt –

μ

λ

n∑
j=

p(tj)Ij
(
un(tj)

)(
un(tj) – u(tj)

)]
= ,

that is,

lim
n→+∞	 ′(un)(un – u) = . ()

Now, from limn→+∞ ‖E′
λ(un)‖X∗ = , there is a sequence {εn}, with εn → +, such that

∣∣E′
λ(un)(v)

∣∣ ≤ εn

for all v ∈ X with ‖v‖ ≤  and for all n ∈ N. Setting = un–u
‖un–u‖ , one has

∣∣E′
λ(un)(un – u)

∣∣ ≤ εn‖un – u‖ ()

for all n ∈N. Moreover, having in mind that ab ≤ 
a

 + 
b

, one has

�′(un)(un – u) =
∫ T


p(t)u′

n(t)
(
u′
n(t) – u′

(t)
)
dt +

∫ T


q(t)un(t)

(
un(t) – u(t)

)
dt

= ‖un‖ –
[∫ T


p(t)u′

n(t)u
′
(t)dt +

∫ T


q(t)un(t)u(t)dt

]

≥ ‖un‖ – 


[∫ T


p(t)

(
u′
n(t)

) dt + ∫ T


p(t)

(
u′
(t)

) dt
+

∫ T


q(t)

(
un(t)

) dt + ∫ T


q(t)

(
u(t)

) dt]

=


‖un‖ – 


‖u‖,

that is,

�′(un)(un – u) ≥ 

‖un‖ – 


‖u‖. ()

From () and () one has

�′(un)(un – u) – λ	 ′(un)(un – u) ≤ εn‖un – u‖,


‖un‖ – 


‖u‖ – λ	 ′(un)(un – u)≤ εn‖un – u‖,

and owing to (), one has

lim sup
n→+∞



‖un‖ ≤ 


‖u‖.

http://www.boundaryvalueproblems.com/content/2013/1/278
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Hence, [, Proposition III.] ensures that {un} strongly converges to u ∈ X and our
claim is proved.
Second, we wish to prove that

γ < +∞.

Let {ξn} be a sequence of positive numbers such that ξn → +∞ and

lim
n→∞

∫ 
 max|x|≤ξn F(t,x)dt

ξ 
n

= A.

Put rn = p∗
T ξ 

n for all n ∈N. By Lemma , for all u ∈ X, one has

max
t∈[,T]

∣∣v(t)∣∣ ≤ ξn

for all v ∈ X such that ‖v‖ < rn. Hence, one has

ϕ(rn) = inf
u∈�–(]–∞,rn[)

supv∈�–(]–∞,rn[) 	(v) –	(u)
rn –�(u)

≤ supv∈�–(]–∞,rn[) 	(v)
rn

≤ T
p∗

∫ T
 max|x|≤ξn F(t,x)dt

ξ 
n

+
μ

λ

T‖p‖∞
p∗

n∑
j=

max|x|≤ξn (–Ij(x))
ξ 
n

.

So, from assumptions (a) and (i),

γ ≤ lim inf
ξ→+∞

[
T
p∗

∫ T
 max|x|≤ξ F(t,x)dt

ξ  +
μ

λ

T‖p‖∞
p∗

n∑
j=

max|x|≤ξ (–Ij(x))
ξ 

]
< +∞.

Assumption  < μ < δI,λ immediately yields

γ ≤ T
p∗A +

μ

λ

T‖p‖∞
p∗ I∞ <

T
p∗A +

 – λ T
p∗A

λ
=

λ
,

that is, λ < 
γ
. The previous inequality assures that conclusion (a) of Theorem . can be

used, for which either � – λ	 has a global minimum or there exists a sequence {un} of
solutions of problem (Sλ,μ) such that limn→∞ ‖un‖ = +∞.
The final step is to verify that the functional � – λ	 has no global minimum. From

lim supξ→+∞
∫ T/
T/ F(t,ξ )dt

ξ
= B, and taking into account that λ > p∗

kTB , there is h ∈R such that

lim sup
ξ→+∞

∫ T/
T/ F(t, ξ )dt

ξ  > h >
p∗

λkT
. ()

So, there exists a sequence of positive numbers ηn such that ηn → +∞ and

lim
n→+∞

∫ T/
T/ F(t,ηn)dt

η
n

> h.

http://www.boundaryvalueproblems.com/content/2013/1/278
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It follows that there is ν ∈N such that for all n > ν , one has

∫ T/
T/ F(t,ηn)dt

η
n

> h.

Now, consider a function vn ∈ X defined by setting

vn(x) =

⎧⎪⎪⎨
⎪⎪⎩

ηnx
T , x ∈ [, T ],

ηn, x ∈ ]T ,
T
 ],

ηn
T (T – x), x ∈ ] T ,T].

Clearly, one has

�(vn) ≤
(

T

‖p‖∞ +
T


‖q‖∞
)

η
n =

p∗

kT
η
n.

Moreover, bearing in mind (a) and (i),

�(vn) – λ	(vn) ≤ p∗

kT
η
n – λ

∫ T/

T/
F(t,ηn)dt

< η
n

(
p∗

kT
– λh

)
. ()

Putting together () and (), we get that the functional � – λ	 is unbounded from below
and so it has no global minimum.
Therefore, Theorem . assures that there is a sequence {un} ⊆ X of critical points of

� – λ	 such that limn→+∞ ‖un‖ = +∞ and, taking into account the considerations made
in Section , the theorem is completely proved. �

Remark . Assume that f : [, ]×R→ [,∞). Clearly, condition (a) holds, and condi-
tion (a) assumes the following simpler form:

(a′
)

lim inf
ξ→+∞

∫ T
 F(t, ξ )dt

ξ  < k lim sup
ξ→+∞

∫ T/
T/ F(t, ξ )dt

ξ  .

In particular, if lim infξ→+∞
∫ T
 F(t,ξ )dt

ξ
=  and lim supξ→+∞

∫ T/
T/ F(t,ξ )dt

ξ
= +∞, then (a′

)
holds and problem (Sλ,μ) has an unbounded sequence of weak solutions in X for every
pair (λ,μ) ∈ ], +∞[×[, 

TI∞ [.
Moreover, under the assumption I∞ = , Theorem . guarantees the existence of in-

finitely many solutions to problem (Sλ,μ) for every μ ≥ .

As an example, we point out below a special case of Theorem ..

Corollary . Let f : R → [,∞) be a continuous function, put F(ξ ) =
∫ ξ

 f (t)dt for every
ξ ∈R, and let q ∈ C([,T]). Assume that

lim inf
ξ→+∞

F(ξ )
ξ  <

k

lim sup
ξ→+∞

F(ξ )
ξ  .

http://www.boundaryvalueproblems.com/content/2013/1/278
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Then, for each λ ∈ ] p
∗

kT


lim supξ→+∞ F(ξ )
ξ

, p
∗

kT


lim infξ→+∞ F(ξ )
ξ

[, and for each continuous function

Ij :R→ [,∞) such that limξ→+∞
Ij(x)
ξ

= , j = , . . . ,n, the problem

⎧⎪⎨
⎪⎩
–(p(t)u′(t))′ + q(t)u(t) = λf (u(t)), t ∈ [,T], t �= tj,
u() = u(T) = ,
–�u′(tj) = Ij(u(tj)), j = , , . . . ,n,

admits infinitely many pairwise distinct classical solutions.

Replacing the condition at infinity of the potential F by a similar one at zero, and arguing
as in the proof of Theorem . but using conclusion (b) of Theorem . instead of (a), one
establishes the following result. Put

A∗ := lim inf
ξ→+

∫ T
 max|x|≤ξ F(t,x)dt

ξ  , B∗ := lim sup
ξ→+

∫ T/
T/ F(t, ξ )dt

ξ  .

Theorem . Assume that

(a) F(t, ξ )≥  for all (t, ξ ) ∈ ([, T ]∪ [ T ,T])×R;
(b) A∗ < kB∗.

Then, for every λ ∈ �∗ := ] p∗
kTB∗ , p∗

TA∗ [ and for every continuous function Ij : R → R, j =
, , . . . ,n, whose potential Ij(ξ ) :=

∫ ξ

 Ij(x)dx, ξ ∈R, satisfies

(i) supξ≥ Ij(ξ ) = ;

(j) I := lim supξ→+

∑n
j=max|t|≤ξ (–Ij(t))

ξ
< +∞,

there exists δ∗
I,λ > , where

δ∗
I,λ :=


I‖p‖∞

(
p∗

T
– λA∗

)

such that for every μ ∈ [, δ∗
I,λ[, problem (Sλ,μ) has a sequence of non-zero weak solutions,

which strongly converges to .

Proof We take X, � and 	 as in the proof of Theorem .. Fix λ∗ ∈ �∗, let Ij be a func-
tion that satisfies assumptions (i) and (j) and take  ≤ μ∗ < δ∗

I,λ. Arguing as in the proof
of Theorem ., one has δ = lim infr→+ ϕ(r) < +∞. Now, arguing again as in the proof
of Theorem ., there is a sequence of positive numbers {ηn} such that ηn → + and∫ T/
T/ F(t,ηn)dt

ηn
> h for all n > ν and for some ν ∈ N. By choosing vn as in the proof of Theo-

rem ., the sequence {vn} strongly converges to  in X and �(vn) – λ∗	(vn) <  for each
n > ν . Therefore, taking into account that (� – λ∗	)() = ,  is not a local minimum of
� – λ∗	 . The part (b) of Theorem . ensures that there exists a sequence {un} in X of
critical points of � – λ∗	 such that limn→+∞ ‖un‖ =  and the proof is complete. �

Let A(t) be a primitive of a(t), g : [,T]×R→ R an L-Carathéodory function and put

G(t, ξ ) =
∫ ξ


g(t,x)dx, k̃ :=


e‖a‖ ( + T‖b‖∞)

.

http://www.boundaryvalueproblems.com/content/2013/1/278
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Moreover, let

α := lim inf
ξ→+∞

∫ T
 e–A(t)max|x|≤ξ G(t,x)dt

ξ  , β := lim sup
ξ→+∞

∫ T/
T/ e–A(t)G(t, ξ )dt

ξ  .

In virtue of Theorems . and ., we obtain the following results for problem (Dλ,μ).

Theorem . Assume that

(c) G(t, ξ ) ≥  for all (t, ξ ) ∈ ([, T ]∪ [ T ,T])×R;
(c) α < k̃β .

Then, for every λ ∈ � := ] 
k̃Te‖a‖β ,


Te‖a‖α [ and for every continuous function Ij : R → R,

j = , , . . . ,n, whose potential Ij(ξ ) :=
∫ ξ

 Ij(x)dx, ξ ∈R, satisfies

(i) supξ≥ Ij(ξ ) = ,

(i) I∞ := lim supξ→+∞
∑n

j=max|t|≤ξ (–Ij(t))
ξ

< +∞,

there exists δI,λ > , where

δI,λ :=

I∞

(


Te‖a‖ – λα

)
,

such that for each μ ∈ [, δI,λ[, problem (Dλ,μ) has an unbounded sequence of weak solu-
tions.

Proof As seen in Section , we put p(t) = e–A(t), q(t) = b(t)e–A(t) and f (t,u) = g(t,u)e–A(t),
t ∈ [,T]. Clearly, one has F(t,u) = e–A(t)G(t,u),A = α, B = β , p∗ = 

e‖a‖ , k ≥ k̃. Hence, from
Theorem . the conclusion is achieved. �

Remark . Theorem . in Introduction is an immediate consequence of Theorem ..
In fact, it is enough to observe that (c) is verified and one has α =  and β = +∞, for which

 ∈ � = ],+∞[. Moreover, from I∞ = limξ→+∞
∑n

j= ξ/
ξ

= n
 < +∞, one has δ̄ = δI,λ = 

nTeT

and the conclusion is achieved.

Replacing the condition at infinity of the potential G by a similar one at zero, one estab-
lishes the following result. Put

α∗ := lim inf
ξ→+

∫ T
 e–A(t)max|x|≤ξ G(t,x)dt

ξ  , β∗ := lim sup
ξ→+

∫ T/
T/ e–A(t)G(t, ξ )dt

ξ  .

Theorem . Assume

(c) G(t, ξ ) ≥  for all (t, ξ ) ∈ ([, T ]∪ [ T ,T])×R;
(c′

) α∗ < k̃β∗.

Then, for every λ ∈ �′ := ] 
k̃Te‖a‖β∗ ,


Te‖a‖α∗ [ and for every continuous function Ij : R → R,

j = , . . . ,n, whose potential Ij(ξ ) :=
∫ ξ

 Ij(x)dx, ξ ∈ R, satisfies

(i) supξ≥ Ij(ξ ) = ,
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(j) I := lim supξ→+

∑n
j=max|t|≤ξ (–Ij(t))

ξ
< +∞,

there exists δ∗
I,λ > , where

δ∗
I,λ :=


I

(


Te‖a‖ – λα∗
)
,

such that for each μ ∈ [, δ∗
I,λ[, problem (Dλ,μ) has a sequence of non-zero weak solutions,

which strongly converges to .

Proof The conclusion follows from Theorem . by arguing as in the proof of Theo-
rem .. �

Remark . We point out that in Theorem . (as in Theorem .) the assumption
ess inf[,T] a ≥  can be deleted provided that we assume the constant k̃ := min[,T] e–A(t)

+T‖be–A‖∞

and the interval � = ]min[,T] e–A(t)

k̃Tβ
, min[,T] e–A(t)

Tα
[.

Finally, we observe that the existence of infinitely many solutions to problem (Dλ,μ) can
be obtained from Theorem . and Theorem . even under small perturbations of the
nonlinearity. As an example, we point out the following consequence of Theorem ..

Corollary . Let g : [,T] × R → R be an L-Carathéodory function satisfying (c) and
(c) of Theorem ..
Then, for every λ ∈ � = ] 

k̃Te‖a‖β ,


Te‖a‖α [, for every nonnegative L
-Carathéodory function

h : [,T]×R →R, whose potential h(t, ξ ) =
∫ ξ

 h(t,x)dx satisfies

H∞ = lim sup
ξ→+∞

∫ T
 H(t, ξ )dt

ξ  < +∞,

and for every continuous function Ij : R → R, j = , , . . . ,n, whose potential Ij(ξ ) :=∫ ξ

 Ij(x)dx, ξ ∈ R, satisfies (i) and (i) of Theorem ., there exist γ ∗
H,λ >  and δ∗

I,λ > ,
where

γ ∗
H,λ :=


H∞

(
p∗

T
– λα

)
,

δ∗
I,λ :=


I∞

(
p∗

T
– λα

)

such that for all γ ∈ [,γ ∗
H,λ[ and for all μ ∈ [, δ∗

I,λ[, the problem

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + a(t)u′(t) + b(t)u(t) = λg(t,u(t)) + γ h(t,u(t)), t ∈ [,T] \ {tj},
u() = u(T) = ,

�u′(tj) = u′(t+j ) – u′(t–j ) = μIj(u(tj)), j = , , . . . ,n,

(Dλ,γ ,μ)

has an unbounded sequence of weak solutions.
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Proof It is enough to apply Theorem . to the following function:

ḡ(t,x) = g(t,x) +
γ̄

λ̄
h(t,x), (t,x) ∈ [,T]×R,

where γ̄ is fixed in [,γ ∗
H,λ[ and λ̄ is fixed in �. In fact, one has

ᾱ = lim inf
ξ→+∞

∫ T
 e–A(t)max|x|≤ξ Ḡ(t,x)dt

ξ  ≤ α +
γ̄

λ̄
H∞ < α +

γ ∗
H,λ

λ̄
H∞

= α +


Te‖a‖

λ̄
– α =


Te‖a‖


λ̄

()

and

β̄ = lim sup
ξ→+∞

∫ T/
T/ e–A(t)Ḡ(t, ξ )dt

ξ  ≥ lim sup
ξ→+∞

∫ T/
T/ e–A(t)G(t, ξ )dt

ξ  = β , ()

for which ᾱ < 
Te‖a‖


λ̄
< 

Te‖a‖
k̃Te‖a‖β

 = k̃β ≤ k̃β̄ , that is, ᾱ < k̃β̄ . Moreover, from () one
has λ̄ < 

Te‖a‖

ᾱ
and from () λ̄ > 

k̃Te‖a‖

β̄
. Hence, λ̄ ∈ ] 

k̃Te‖a‖

β̄
, 
Te‖a‖


ᾱ
[ and Theorem .

ensures the conclusion. �

4 Applications
In many papers [, , , ] and [], the authors obtain the existence of infinitely
many solutions for problem (Dλ,μ) while the impulsive term is supposed to be odd. The
next examples provide problems that admit infinitelymany solutions forwhich those other
results cannot be applied.

Example . Consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
–(

√
t+
t+ u′(t))′ + ( +

√
t)u(t) = λf (t,u(t)), t ∈ [, ], t �= tj,

u() = u() = ,

�u′(tj) = μ( u
u+ – ), j = , , . . . ,n,

()

where f : [, ]×R→R is the function defined as follows:

f (t,u) =

⎧⎨
⎩cos(π

 t)u sin
 ln(u) if u > ,

 if u ≤ .

It is easy to see that conditions (a), (a), (i) and (i) of Theorem . hold. In particular,
k = 


√
+ and

lim inf
ξ→+∞

∫ 
 max|x|≤ξ F(t,x)dt

ξ  =
 –

√


π
,

lim sup
ξ→+∞

∫ /
/ F(t, ξ )dt

ξ  =
( +

√
)

√
 – 

√


π
.

Then, for each λ ∈ [, ] and for every μ ≥ , problem () has an unbounded sequence
of solutions in X.

http://www.boundaryvalueproblems.com/content/2013/1/278
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Now, we give an application of Theorem ..

Example . Consider the Dirichlet problem

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + u′(t) + u(t) = λg(t,u(t)), t ∈ [,  ], t �= t,

u() = u(/) = ,

�u′(t) = μ(–eu(u + u)),

()

where g : [, ]×R →R is the function defined as follows:

g(t,u) =

⎧⎨
⎩etu(  –  sin(ln |u|) – cos(ln |u|)) if u �= ,

 if u = .

By a simple calculation, we get k = 


√
e and

lim inf
ξ→+

∫ T
 e–A(t)max|x|≤ξ G(t,x)dt

ξ  =


,

lim sup
ξ→+

∫ T/
T/ e–A(t)G(t, ξ )dt

ξ  =



.

Then, from Theorem ., for each λ ∈ [, ] and for every μ ∈ [, 
 [, problem () ad-

mits a sequence of pairwise distinct classical solutions strongly converging at . We ob-
serve that, in this case, as direct computations show, also zero is a solution of the problem.
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