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1 Introduction
In this paper, we are concerned with the following gradient system

⎧⎪⎨
⎪⎩
–�u = Fu(x,u, v), x ∈ �,
–�v = Fv(x,u, v), x ∈ �,
u = v = , x ∈ ∂�,

(GS)

where � ⊂RN is a bounded open domain with a smooth boundary ∂� and Fu designates
the partial derivative with respect to u of the nonlinearity F : � ×R → R. The solutions
of such systems are steady-states of reaction-diffusion systems arising in many applied
sciences such as biology, chemistry, ecology or physics. It is well known that (GS) has
variational structure when the nonlinearity F satisfies the subcritical growth condition

(F) F ∈ C(� ×R,R) and there are C >  and  < p < ∗ such that

∣∣∇F(x, z)
∣∣ ≤ C

(
 + |z|p–), for x ∈ �, z = (u, v) ∈R,

where ∗ = N
N– if N ≥  and ∗ =∞ if N = , .

That is, the solutions of (GS) can be found as critical points of the following functional

�(u, v) :=



∫
�

|∇u| + |∇v| dx –
∫

�

F(x,u, v)dx

defined on E :=H
(�)×H

(�) which is a Hilbert space endowed with the inner product

〈z,w〉 = 〈
(u, v), (φ,ψ)

〉
=

∫
�

(∇u∇φ +∇v∇ψ)dx, z = (u, v),w = (φ,ψ) ∈ E
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and the associated norm

‖z‖ =
∫

�

|∇z| dx =
∫

�

|∇u| + |∇v| dx, z = (u, v) ∈ E.

By the compact Sobolev embedding E ↪→ Lq(�)× Lq(�) with q ∈ [, ∗), under the global
assumption (F), the functional � is well defined and is of class C (see []) with its Fréchet
derivative

〈
�′(u, v), (ϕ,ψ)

〉
=

∫
�

(∇u∇ϕ +∇v∇ψ)dx –
∫

�

(∇F(x,u, v), (ϕ,ψ)
)
dx

for (u, v), (ϕ,ψ) ∈ E. The weak solutions to (GS) in E are exactly critical points of � in E.
We make some conventions. We use | · | and (·, ·) to denote the norm and the inner

product in R and use z = (u, v) to denote an element in R and E. Bz denotes the matrix
product in R for a  ×  matrix B and z = (u, v) ∈ R. We use  to denote the origin in
various spaces. LetM(�) be the set of all continuous, cooperative and symmetric matrix
functions on R. A matrix function A ∈M(�) takes the form

A(x) =

(
a(x) b(x)
b(x) c(x)

)

with the functions a,b, c ∈ C(�̄,R) satisfying the conditions that b(x) ≥  for all x ∈ �,
which means A is cooperative, and that maxx∈�̄{a, c} > .
When F satisfies ∇F(x, ) = , F(x, ) =  for x ∈ �, the system (GS) admits a trivial

solution z = . We are interested in the nontrivial solutions for (GS). In the current paper
we apply the Morse theory to study the existence of nontrivial solutions of (GS) when the
problem is sublinear near the origin and is asymptotically linear near infinity.
We make the following assumption near the origin.

(F) ∇F(x, ) = , F(x, ) =  and there are δ >  and  < σ <  such that

 <
(∇F(x, z), z

) ≤ σF(x, z) for z ∈R with  < |z| ≤ δ,x ∈ �.

In order to state the assumptions on the nonlinearity at infinity, we need some basic facts
about the eigenvalue problem of linear gradient system. For a given matrix A ∈M(�), it
is known (see [, ]) that the corresponding linear system

{
–�z = λA(x)z, x ∈ �,
z = , x ∈ ∂�,

(LA)

admits a sequence of distinct eigenvalues of finite multiplicity

 < λ(A) < λ(A) < · · · < λk(A) < · · ·

such that λk(A) → ∞ as k → ∞. According to A, the space E can be split as

E = E–
A ⊕ EA ⊕ E+

A,
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where

EA = ker(� +A), E–
A =

⊕
λk (A)<

ker
(
� + λk(A)A

)
.

The numbersm(A) = dimE–
A, n(A) = dimEA are well determined and finite.

We assume that the nonlinear system (GS) is asymptotically linear at infinity in the sense
that the function F satisfies

(F∞) there is a matrix B∞ ∈M(�) such that

∇F(x, z) – B∞(x)z = o
(|z|), |z| → ∞, z ∈R,x ∈ �.

Associated toB∞, we set E–∞ = E–
B∞ , E∞ = EB∞ , E+∞ = E+

B∞ . Denotem∞ =m(B∞) := dimE–∞,
n∞ = nB∞ := dimE∞.We say that the system (GS) is nonresonant at infinity if n∞ = , while
it is resonant at infinity if n∞ > .
We first consider the nonresonance case. We have the following.

Theorem . Assume that F satisfies (F), (F∞) and n∞ = . Then (GS) has at least one
nontrivial weak solution in E.

Next we consider the resonance case. We need additional assumptions on F near infin-
ity.

(F∞) λ(B∞) =  and

lim|z|→∞
(
F(x, z) – (B∞z, z)

)
= –∞ uniformly in �.

(F±
∞) λk(B∞) =  for some k ≥ . For zn = yn + wn, where yn ∈ E∞, wn ∈ E⊥∞, ‖zn‖ → ∞

and ‖yn‖
‖zn‖ →  imply that there exist δ >  and N ∈N such that

±
∫

�

(∇F(x, zn) – B∞zn, yn
)
dx ≥ δ for n≥N .

Theorem . Let F satisfy (F), (F∞) and (F∞). Then (GS) has at least one nontrivial
weak solution in E. Moreover, if F is even in z, then (GS) has infinitely many nontrivial
weak solutions in E.

Theorem . Let F satisfy (F), (F∞) and (F±
∞). Then (GS) has at least one nontrivial

weak solution in E.

Now we give some remarks and comments. The gradient system represents the steady-
state case of reaction-diffusion systemwhich is amodel for problems arising from biology,
chemistry, physics and ecology, etc. In this paper we look for nontrivial solutions for the
system (GS) viaMorse theory.When the problem is resonant at infinity, we impose on the
nonlinearity F the global assumption (F±∞) to ensure the compactness and clear descrip-
tion of critical groups for � at infinity. (F±∞) can be regarded as a variant of the famous

http://www.boundaryvalueproblems.com/content/2013/1/280


Cai and Su Boundary Value Problems 2013, 2013:280 Page 4 of 16
http://www.boundaryvalueproblems.com/content/2013/1/280

Landesman-Lazer type resonance condition [] which can be formulated as

{
|∇F(x, z) – B∞(x)z| ≤ C, x ∈ �, z ∈R,
lim‖y‖→∞

∫
�
(F(x, y) – (B∞(x)y, y))dx =±∞, y ∈ E∞.

(LL±)

See [] for details. Near the origin we impose (F), which means that ∇F is sublinear or F
is sub-quadratic near zero. This kind of condition caught our attention first in a preprint
by Liu andWu [] where a single elliptic equation was considered. This is the first use for
gradient system in the current paper.
The asymptotically linear gradient systems (GS) have received some attention for years.

We mention some recent related works [–] and the references therein. In these works,
existence andmultiplicity of nontrivial solutions for (GS)were obtained by combining var-
ious arguments involving Morse theory, saddle point reduction method (see [–]) and
three critical point theorem (see []), etc. All above mentioned works dealt with the case
that at least one of the critical groups of� at  is nontrivial somewhere. In the present pa-
per, we study viaMorse theory the case that all critical groups of� at  are trivial under the
condition (F). Due to (F), the saddle point reduction methods [–] cannot be applied
and there is no linking at . Comparing with known ones, the existence and multiplicity
results for (GS) are all new. See more remarks in the last section of the paper.
The paper is organized as follows. In Section , we collect some basic abstract tools. In

Section  we compute the critical groups at zero and infinity. The proofs of Theorems .-
. and comments are given in Section .

2 Preliminary
In this section we cite some preliminaries that will be used to prove the main results of
the paper. We first collect some results on Morse theory (see [, ]) for a C functional
� defined on a Hilbert space E.
Let � ∈ C(E,R). Denote for c ∈R

�c =
{
z ∈ E :�(z) ≤ c

}
, Kc =

{
z ∈ E :�′(z) = ,�(z) = c

}
.

We say that� possesses the deformation property at the level c ∈R if for any ε̄ >  and any
neighborhood N of Kc, there are ε >  and a continuous deformation η : E × [, ] → E
such that
() η(z, t) = z for either t =  or z /∈ �–[c – ε̄, c + ε̄];
() �(η(z, t)) is non-increasing in t for any z ∈ E;
() η(�c+ε \N ) ⊂ �c–ε .

Wesay that� possesses the deformation property if� possesses the deformation property
at each level c ∈ R.
In applications the deformation property is ensured by the Palais-Smale condition or

the Cerami condition.
We say that � satisfies the Palais-Smale condition at the level c ∈ R if any sequence

{zn} ⊂ E satisfying �(zn) → c and �′(zn) →  as n → ∞ has a convergent subsequence.
� satisfies the Palais-Smale condition if � satisfies the Palais-Smale condition at each
c ∈R. We say that � satisfies the Cerami condition [, ] at the level c ∈ R if any se-
quence {zn} ⊂ E satisfying that �(zn) → c, ( + ‖zn‖)‖�′(zn)‖ →  as n → ∞ has a con-
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vergent subsequence. � satisfies the Cerami condition if � satisfies the Cerami condition
at each c ∈R.
If � satisfies the Palais-Smale condition or the Cerami condition, then � possesses the

deformation property [, ].
Let z be an isolated critical point of � with �(z) = c ∈ R, and U be a neighborhood

of z. The group

Cq(�, z) :=Hq
(
�c ∩U ,�c ∩U \ {z}

)
, q ∈ Z

is called the qth critical group of � at z, where H∗(A,B) denotes a singular relative ho-
mology group of the pair (A,B) with integer coefficients.
Let K = {z ∈ E : �′(z) = }. Assume that �(K) is bounded from below by a ∈ R and �

possesses the deformation property at all c ≤ a. Then the group

Cq(�,∞) :=Hq
(
E,�a), q ∈ Z

is called the qth critical group of � at infinity [].
Assume that � satisfies the deformation property and K is a finite set. The Morse type

numbers of the pair (E,�a) are defined byMq :=
∑

z∈K dimCq(�, z), and the Betti numbers
of the pair (E,�a) are defined by βq := dimCq(�,∞).

Proposition . Assume that � ∈ C(E,R) possesses the deformation property, #K < ∞,
and all Mq, βq are finite and only finitely many of them are nonzero. Then it holds

q∑
j=

(–)q–jMj ≥
q∑
j=

(–)q–jβj (Morse inequality), (.)

∞∑
q=

(–)qMq =
∞∑
q=

(–)qβq (Morse equality). (.)

If K = ∅, then βq =  for all q ∈ Z. From (.) one can deduce thatMq ≥ βq for all q ∈ Z.
Thus if βq �=  for some q∗ ∈ Z, then � must have a critical point z∗ with Cq∗ (�, z∗)� . If
K = {z∗}, then Cq(�,∞) ∼= Cq(�, z∗) for all q ∈ Z. Thus if Cq(�,∞)� Cq(�, z∗) for some
q ∈ Z, then � must have a new critical point. Therefore the basic idea in applying Morse
theory to find critical points of � is to compute critical groups both at infinity and at
known critical points clearly and then to findunknown critical points by applying formulas
(.) and (.).
Now we state an abstract result for the critical groups at infinity.

Proposition . Let the functional � : E →R take the form

�(z) =


〈Lz, z〉 +�(z), (.)

where L : E → E is a self-adjoint linear operator such that  is isolated in σ (L), the spec-
trum of L. Assume that � ∈ C(E,R) satisfies

∥∥� ′(z)
∥∥ = o

(‖z‖) as ‖z‖ → ∞. (.)

http://www.boundaryvalueproblems.com/content/2013/1/280
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Denote V := kerL, W := V⊥ =W+ ⊕W–, where W± are subspaces on which L is positive
(negative) definite. Assume that μ = dimW– and ν = dimV are finite, and � possesses the
deformation property.
() If ν = , then

Cq(�,∞)∼= δq,μZ, q ∈ Z.

() If ν > , then

Cq(�,∞)∼= δq,k±Z, k+ = μ,k– = μ + ν

provided � satisfies the angle conditions with respect to E = V ⊕W :

(AC±
∞) there existM >  and ε ∈ (, ) such that

±〈
�′(z), y

〉 ≥ , for z = y +w,‖z‖ ≥M,‖w‖ ≤ ε‖z‖, y ∈ V ,w ∈W .

Proposition .() was obtained in [] (see Remark . in []). Proposition .() is a
revision of Proposition . in [] which was made first in [] and was remade in [].
Next we recall an abstract critical point theorem built by Wang in [].

Proposition . ([]) Let � ∈ C(X,R), where X is a Banach space. Assume that � pos-
sesses the deformation property, is even and bounded from below, and �() = . If for any
k ∈N, there exist k-dimensional subspaces Xk and ρk >  such that

sup
z∈Xk∩Sρk

�(z) < , (.)

where Sρ = {u ∈ X | ‖u‖ = ρ}, then � has a sequence of critical values ck <  satisfying
ck →  as k → ∞.

Finally, we mention the eigenvalues of the linear gradient system (LA). By the compact
embedding E ↪→ L(�) × L(�), for a given A ∈ M(�), there is a compact self-adjoint
operator TA : E → E associated with A such that

〈TAz,w〉 =
∫

�

(
A(x)z,w

)
dx, z,w ∈ E.

The operator TA possesses the property that λ(A) is an eigenvalue of (LA) if and only if
there is nonzero z ∈ E such that

λ(A)TAz = z.

(LA) has a sequence of distinct eigenvalues

 < λ(A) < λ(A) < · · · < λk(A) < · · · → ∞,

and each eigenvalue λ(A) of (LA) has a finite multiplicity. All eigenvectors of (LA) form a
Hilbertian basis of E and that E can be split as E = E–

A ⊕ EA ⊕ E+
A, where E

–
A, E

+
A, EA are the

http://www.boundaryvalueproblems.com/content/2013/1/280
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negative, positive definite invariant subspaces and the kernel of I – TA, respectively. We
refer to [, ] for more properties related to the eigenvalue problem (LA) and the opera-
tor TA.

3 Critical groups and compactness
In this section we verify the compactness of the functional � and compute the critical
groups of � at both zero and infinity. Without loss of generality, we assume that (GS) has
finitely many weak solutions so that the trivial solution z =  is an isolated critical point
of �. We first compute the critical groups Cq(�, ). The idea was from an unpublished
preprint by Liu and Wu [] where a single elliptic equation was studied.
We work with the functional

�(z) =



∫
�

|∇z| dx –
∫

�

F(x, z)dx, z ∈ E.

Lemma . Assume that F satisfies (F) and (F), then

Cq(�, )∼=  for all q ∈ Z. (.)

Proof Denote Bρ := {z ∈ E : ‖z‖ ≤ ρ}. By definition of critical groups, we can write
Cq(�, ) � Hq(Bρ ∩ �,Bρ ∩ � \ {}). We will construct a deformation mapping from
(Bρ ,Bρ \ {}) to (Bρ ∩ �,Bρ ∩ � \ {}) for ρ >  small.
In the following we use ci to denote positive constants. By (F), one deduces that

F(x, z)≥ c|z|σ for x ∈ �, z ∈R, |z| ≤ δ. (.)

It follows from (F) and (.) that for some p ∈ (, ∗),

F(x, z)≥ c|z|σ – c|z|p, x ∈ �, z ∈R. (.)

For z ∈ E and s > , we have

�(sz) =


s

∫
�

|∇z| dx –
∫

�

F(x, sz)dx

≤ 

s‖z‖ –

∫
�

(
c|sz|σ – c|sz|p

)
dx

≤ 

s‖z‖ – csσ‖z‖σ

Lσ + csp‖z‖pLp . (.)

Since σ <  < p, for each given z ∈ E \ {}, there exists s = s(z) >  such that

�(sz) <  for all  < s < s. (.)

http://www.boundaryvalueproblems.com/content/2013/1/280
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Let z ∈ E be such that z �=  and �(z) = . Then

d
ds

�(sz)|s= =
∫

�

|∇z| dx –
∫

�

(∇F(x, z), z
)
dx

=
(
 –

σ



)
‖z‖ –

∫
�

((∇F(x, z), z
)
– σF(x, z)

)
dx

≥
(
 –

σ



)
‖z‖ – c

∫
�

|z|p dx

≥
(
 –

σ



)
‖z‖ – c‖z‖p. (.)

From (.), one concludes that there exists ρ >  such that

d
ds

�(sz)|s= >  for z ∈ E with �(z) =  and  < ‖z‖ ≤ ρ. (.)

From now on we fix ρ > . We claim that

z ∈ Bρ and �(z) <  �⇒ �(sz) <  for all s ∈ (, ). (.)

Let z ∈ Bρ and �(z) < . By the continuity of �, there exists τ ∈ (, ] such that �(sz) < 
for all s ∈ ( – τ , ). We will get (.) by proving τ = . Suppose that  < τ < . Then there
is some s ∈ (,  – τ ] such that

�(sz) = , �(sz) <  for s < s < .

As sz ∈ Bρ , it follows from (.) that

d
ds

�
(
s(sz)

)|s= > . (.)

But �(sz) –�(sz) = �(sz) <  implies that

d
ds

�
(
s(sz)

)|s= ≤ . (.)

This contradicts (.). Thus τ =  and (.) holds.
Now define a mapping π : Bρ → [, ] as

π (z) =

{
 for z ∈ Bρ with �(z) ≤ ,
s ∈ (, ) for z ∈ Bρ with �(z) >  and �(sz) = .

(.)

By (.), (.) and (.), for z ∈ Bρ with �(z) > , there exists a unique π (z) ∈ (, ) such
that

⎧⎪⎨
⎪⎩

�(π (z)z) = ,
�(sz) <  for all s ∈ (,π (z)),
�(sz) >  for all s ∈ (π (z), ).

(.)

http://www.boundaryvalueproblems.com/content/2013/1/280
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Thus themapping π is well defined.Moreover, it follows from (.), (.) and the implicit
function theorem that themappingπ is continuous in z. Define amapping η : [, ]×Bρ →
Bρ by

η(s, z) = ( – s)z + sπ (z)z, s ∈ [, ], z ∈ Bρ .

Then η is a continuous deformation from (Bρ ,Bρ \ {}) to (Bρ ∩ �,Bρ ∩ � \ {}). By
homotopy invariance of a homology group and the contractibility of Bρ \ {}, we have

Cq(�, ) =Hq
(
Bρ ∩ �,Bρ ∩ � \ {}) ∼= Hq

(
Bρ ,Bρ \ {}) ∼=  for all q ∈ Z.

The proof is complete. �

We remark here that in [] the similar idea for computing the critical groups at  was
presented for a single elliptic equation. For (GS), the conditions used in [] can be for-
mulated as

(F̃) there are δ >  and  < σ <  such that

(i) F(x, z)≥ c|z|σ for z ∈R with |z| ≤ δ,x ∈ �,

(ii) F(x, z) –
(∇F(x, z), z

)
>  for all z �= ,x ∈ �.

We note here that (F̃) is not comparable with (F) since (F) is a local condition and
although (F) implies (F̃)(i) but (F̃)(ii) is a global condition.
Now we verify the compactness for the functional � and compute the critical groups of

� at infinity. To do this, we rewrite the functional � as

�(z) =



∫
�

(|∇z| – (B∞z, z)
)
dx –

∫
�

G(x, z)dx, z ∈ E,

where G(x, z) = F(x, z) – (B∞z, z).

Lemma . Let F satisfy (F∞) and (F∞).
(i) The functional � is coercive on E and satisfies the Palais-Smale condition.
(ii) Cq(�,∞)∼= δq,Z, q ∈ Z.

Proof (i) First, (F∞) implies (F) while (F∞) implies

lim|z|→∞G(x, z) = –∞ uniformly in �. (.)

We will prove that

�(z) → ∞ as ‖z‖ → ∞, z ∈ E. (.)

Assume that there is a sequence {zn} ⊂ E such that for someM > , it holds

�(zn)≤M for all n ∈ N, (.)

http://www.boundaryvalueproblems.com/content/2013/1/280
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‖zn‖ → ∞ as n→ ∞. (.)

Set z̃n = zn
‖zn‖ . Then ‖z̃n‖ =  for all n ∈ N. Up to a subsequence, we may assume that there

is z̃ ∈ E such that

⎧⎪⎨
⎪⎩
z̃n ⇀ z̃ weakly in E,
z̃n → z̃ strongly in Lp(�)× Lp(�),  ≤ p < ∗,
z̃n(x)→ z̃(x) for a.e. x ∈ �.

(.)

By (.) one has that for some constant c > ,

G(x, z) ≤ c for x ∈ �, z ∈R.

Therefore by (.) we deduce that

M
‖zn‖ ≥ �(zn)

‖zn‖ ≥ 

‖z̃n‖ – 



∫
�

(B∞z̃n, z̃n)dx –
c|�|
‖zn‖ . (.)

Taking n→ ∞ in (.), it follows from (.) and (.) that

lim sup
n→∞

‖z̃n‖ ≤
∫

�

(B∞z̃, z̃)dx. (.)

On the other hand, we have by the lower semi-continuity of the norm that

∫
�

(B∞z̃, z̃)dx ≤ ‖z̃‖ ≤ lim inf
n→∞ ‖z̃n‖. (.)

Thus

lim
n→∞‖z̃n‖ = ‖z̃‖. (.)

By (.), (.) we get

z̃n → z̃ strongly in E and ‖z̃‖ =
∫

�

(B∞z̃, z̃)dx. (.)

Hence ‖z̃‖ =  and z̃ is an eigenvector corresponding to the first eigenvalue λ(B∞) = .
It follows that z̃ �=  for almost every x ∈ � and then

∣∣zn(x)∣∣ → ∞ for a.e. x ∈ �. (.)

Now it follows from (.), (.) and the Fatou lemma that

M ≥ 

‖zn‖ – 



∫
�

(B∞zn, zn)dx –
∫

�

G
(
x, zn(x)

)
dx

≥ –
∫

�

G
(
x, zn(x)

)
dx → ∞ as n→ ∞. (.)

This is a contradiction. Thus � is coercive on E.

http://www.boundaryvalueproblems.com/content/2013/1/280


Cai and Su Boundary Value Problems 2013, 2013:280 Page 11 of 16
http://www.boundaryvalueproblems.com/content/2013/1/280

By the coercivity of �, a Palais-Smale sequence {zn} of � must be bounded. Since F has
a subcritical growth, a standard argument shows that {zn} has a convergent subsequence.
(ii) Since � is coercive and weakly lower semi-continuous, � is bounded from below.

Take a < infz∈E �(z). Then

Cq(�,∞) =Hq
(
E,�a) ∼= Hq(E,∅)∼= δq,Z, q ∈ Z.

The proof is complete. �

Lemma . Let F satisfy (F∞) and (F±
∞).

(i) � satisfies the Cerami condition.
(ii) Cq(�,∞)∼= δq,m∞+n∞Z if (F+∞) holds.
(iii) Cq(�,∞)∼= δq,m∞Z if (F–∞) holds.

Proof (i) Let {zn} ⊂ E be such that

(
 + ‖zn‖

)∥∥�′(zn)
∥∥ →  as n→ ∞. (.)

We only need to show that {zn} is bounded in E. Suppose, by the way of contradiction, that

‖zn‖ → ∞ as n→ ∞. (.)

Denote z̄n = zn
‖zn‖ , then ‖z̄n‖ = . Passing to a subsequence if necessary, wemay assume that

there is z̄ ∈ E such that as n→ ∞,
⎧⎪⎨
⎪⎩
z̄n → z̄ strongly in L(�)× L(�),
z̄n ⇀ z̄ weakly in E,
z̄n(x)→ z̄(x) almost everywhere in �.

(.)

By (F∞) and (.) we deduce that {∇F(x,zn(x))–B∞(x)zn(x)
‖zn‖ } is bounded in L(�)× L(�) and

∇F(x, zn) – B∞(x)zn
‖zn‖ →  almost everywhere in �.

Therefore

∇F(x, zn) – B∞(x)zn
‖zn‖ ⇀  in L(�)× L(�). (.)

For w ∈ E, we have

〈�′(zn),w〉
‖zn‖ =

∫
�

∇ z̄n∇w –
(
B∞(x)z̄n,w

)
dx

–
∫

�

(∇F(x, zn) – B∞(x)zn
‖zn‖ ,w

)
dx. (.)

Letting n → ∞, it follows that

∫
�

∇ z̄∇w –
(
B∞(x)z̄,w

)
dx =  for w ∈ E. (.)
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Cai and Su Boundary Value Problems 2013, 2013:280 Page 12 of 16
http://www.boundaryvalueproblems.com/content/2013/1/280

Taking w = z̄n in (.) and using (.), (.), we obtain that

 =
∫

�

(
B∞(x)z̄, z̄

)
dx. (.)

Taking w = z̄ in (.), we obtain that

‖z̄‖ =
∫

�

(
B∞(x)z̄, z̄

)
dx = . (.)

Therefore ‖z̄n‖ → ‖z̄‖ =  and thus

z̄n → z̄ strongly in E

and z̄ is an eigenvector of (LB∞ ) associated with eigenvalue . It follows that z̄ ∈ E∞. Write
zn = yn +wn, where yn ∈ E∞, wn ∈ E⊥∞, then

‖yn‖
‖zn‖ →  as n→ ∞. (.)

By (F±
∞) there exist δ >  and N ∈N such that

∣∣〈�′(zn), yn
〉∣∣ = ∣∣∣∣±

∫
�

(∇F(x, zn) – B∞(x)zn, yn
)
dx

∣∣∣∣ ≥ δ for all n ≥N .

This implies that

∥∥�′(zn)
∥∥‖zn‖ ≥ δ for all n≥N .

This is a contradiction with (.).
(ii) We apply Proposition .. Set L := I – TB∞ and

�(z) =



∫
�

((
B∞(x)z, z

)
– F(x, z)

)
dx.

Then � can be rewritten as

�(z) =


〈Lz, z〉 +�(z), z ∈ E. (.)

By Lemma ., � satisfies the Cerami condition and hence possesses the deformation
property. From (F∞) one sees that � ′ satisfies

� ′(z) = o
(‖z‖), ‖z‖ → ∞.

Now we show that � satisfies the angle condition (AC–
∞) at infinity with respect to the

orthogonal decomposition E = E∞ ⊕ E⊥∞ when (F+∞) holds. Suppose it is not true, then
for each n ∈ N, there are zn ∈ E, zn = yn +wn, yn ∈ E∞, wn ∈ E⊥∞ such that

‖zn‖ ≥ n, ‖wn‖ ≤ 
n

‖zn‖ for all n ∈ N, (.)

http://www.boundaryvalueproblems.com/content/2013/1/280
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and

〈
�′(zn), yn

〉
>  for all n ∈N. (.)

It follows from (.) that

‖zn‖ → ∞,
‖yn‖
‖zn‖ → , n→ ∞.

By (F+∞) we have that for N ∈N,

〈
�′(zn), yn

〉
=

〈
� ′(zn), yn

〉
= –

∫
�

(∇F(x, zn) – B∞(x)zn, yn
)
dx ≤ –δ, n≥N ,

this contradicts (.). Therefore (AC–
∞) holds, and by Proposition . we have

Cq(�,∞) = δq,m∞+n∞Z, q ∈ Z.

(iii) This case is proved in a similar way.
The proof is finished. �

4 Proofs of main theorems
In this section we give the proofs of main theorems in this paper.

Proof of Theorem . By (F∞), the functional � takes the form

�(z) =


〈Lz, z〉 +�(z), z ∈ E,

where L = I –TB∞ is a bounded self-adjoint linear operator, � ∈ C(E,R) with a compact
gradient � ′ satisfying

� ′(z) = o
(‖z‖), ‖z‖ → ∞.

Since n∞ = , the problem is no resonance at infinity and thus � satisfies the Palais-Smale
condition. By Proposition .() we have

Cq(�,∞)∼= δq,m∞Z, q ∈ Z. (.)

Therefore � has a critical point z∗ satisfying

Cm∞ (�, z∗)� . (.)

By Lemma . we have

Cq(�, )∼= , ∀q ∈ Z. (.)

By (.) and (.), we see that z∗ �=  and then is a nontrivial weak solution of (GS). �

http://www.boundaryvalueproblems.com/content/2013/1/280
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Proof of Theorem . By (F∞), (F∞) and Lemma ., we have

Cq(�,∞)∼= δq,Z, q ∈ Z. (.)

Therefore � has a critical point z∗ satisfying

C(�, z∗)� . (.)

We still have (.). Thus z∗ �=  is a nontrivial weak solution of (GS). In fact, z∗ is a global
minimizer of �.
Assume that F(x, z) is even in z. We will employ Proposition . to prove themultiplicity

in Theorem .. Now � is even, �() = . By Lemma ., � satisfies the Palais-Smale
condition and is bounded from below following from the coercivity.
We verify (.). Let Ek be a k-dimensional subspace of E. For z ∈ Ek , as arguments in the

proof of Lemma ., we have

�(z) ≤ 

‖z‖ – c‖z‖σ

Lσ + c‖z‖pLp . (.)

Since σ <  < p and all norms on Ek are equivalent, we get that for ρk >  small enough,

sup
z∈Xk∩Sρk

�(z) < .

With all the conditions of Proposition . being verified, we get the conclusion that � has
a sequence of critical values ck <  satisfying ck →  as k → ∞. Thus (GS) has infinitely
many nontrivial weak solutions in E. The proof is finished. �

Proof of Theorem . By a similar argument, it follows from Lemma . and Lemma ..
�

We conclude the paper with further comments and remarks.

Remark . (i) In Theorem ., when λ(B∞) >  which impliesm∞ =  and F is even in z,
by the same arguments as the last part of the proof of Theorem ., one can show that (GS)
has infinitely many nontrivial weak solutions in E with negative energies which converge
to zero.
(ii) In Theorem ., one nontrivial solution could be obtained if (F∞) is replaced by the

nonquadraticity condition []

lim|z|→∞
{(∇F(x, z), z

)
– F(x, z)

}
=∞ uniformly for a.e. x ∈ �. (F̃+∞)

Indeed, (F̃+∞) is equivalent to

lim|z|→∞
{(∇G(x, z), z

)
– G(x, z)

}
=∞ uniformly for a.e. x ∈ �, (G̃∞)

which implies (F∞), i.e.,

G(x, z) → –∞ uniformly for a.e. x ∈ �.

(F∞) is weaker than (F̃∞).

http://www.boundaryvalueproblems.com/content/2013/1/280


Cai and Su Boundary Value Problems 2013, 2013:280 Page 15 of 16
http://www.boundaryvalueproblems.com/content/2013/1/280

(iii) The result for one nontrivial solution in Theorem . is valid when F satisfies (F),
(F∞) and the nonquadraticity condition []

lim|z|→∞
{(∇F(x, z), z

)
– F(x, z)

}
= –∞ uniformly for a.e. x ∈ �. (F̃–∞)

Indeed, in this case, � satisfies the Cerami condition and � has a saddle point structure
at infinity with respect to E = E∞ ⊕ E⊥∞ in the sense that � is bounded from below on E⊥∞
and is anti-coercive on E∞. Then Proposition . in [] is applied to get C(�,∞)� .
(iv) In Theorem ., the global condition (F±∞) is somewhat abstract and has been used in

[]. It could be verified if±(∇F(x, z)–B∞(x)z, z) acts as |z|s+ near infinity for any s ∈ (, )
(see [, ]). See [] for more comparisons.

Remark . In Theorem ., we proved the multiplicity result by a critical point theorem
in []when� is even. This result is completely new for gradient systems. Since the critical
groups of � at both zero and infinity are clearly computed, when � is even, the Morse
equality may provide us an idea to give a different proof provided we have in hand the
following basic conclusion.

(�) If z∗ is a solution of (HS), then Cq(�, z∗) �=  for finitely many q ∈N.

Let (�) hold and let F be even. We prove the multiplicity for (GS) in Theorem . via
Morse theory. Assume that (GS) has only finitely many pairs of nontrivial solutions. De-
note K = {,±z,±z, . . . ,±zk}. Then by the Morse equality, one has that

∞∑
q=

(–)q
∑
z∈K

dimCq(�, z) =
∞∑
q=

(–)q dimCq(�,∞).

By (�), (.) and (.), it follows that

∞∑
q=

(–)q
k∑
i=

dimCq(�, zi) = ,

a contradiction. Similarly, if (�) is valid and F is even, then we have the same multiplicity
result in Theorems . and ..

We note here that the conclusion (�) is valid for � is of C. A natural problem arises
here whether or not that (�) is valid for a C functional. It is still open to the best of our
knowledge. We will focus on this problem in near future.
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