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Abstract
In this paper we present an approximate solution of a fractional order two-point
boundary value problem (FBVP). We use the sinc-Galerkin method that has almost
not been employed for the fractional order differential equations. We expand the
solution function in a finite series in terms of composite translated sinc functions and
some unknown coefficients. These coefficients are determined by writing the original
FBVP as a bilinear form with respect to some base functions. The bilinear forms are
expressed by some appropriate integrals. These integrals are approximately solved by
sinc quadrature rule where a conformal map and its inverse are evaluated at sinc grid
points. Obtained results are presented as two new theorems. In order to illustrate the
applicability and accuracy of the present method, the method is applied to some
specific examples, and simulations of the approximate solutions are provided. The
results are compared with the ones obtained by the Cubic splines. Because there are
only a few studies regarding the application of sinc-type methods to fractional order
differential equations, this study is going to be a totally new contribution and highly
useful for the researchers in fractional calculus area of scientific research.
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1 Introduction
Fractional calculus is one of the most novel types of calculus having a broad range of ap-
plications inmany different scientific and engineering disciplines. Order of the derivatives
in the fractional calculusmight be any real number which separates the fractional calculus
from the ordinary calculus where the derivatives are allowed only positive integer num-
bers. Therefore fractional calculus might be considered as an extension of ordinary calcu-
lus. Fractional calculus is a highly useful tool in the modeling of many sorts of scientific
phenomena including image processing, earthquake engineering, biomedical engineering
and physics. In the references [] and [] (amongst many others), fundamental concepts
of fractional calculus and applications of it to different scientific and engineering areas are
studied in a quite neat manner. Interested reader can read those references in conjunction
with the present paper to have a detailed information of this significantly useful type of
calculus.
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Even though fractional calculus is a highly useful and important topic, a general so-
lution method which could be used at almost every sorts of problems has not yet been
established. Most of the solution techniques in this area have been developed for partic-
ular sorts of problems. As a result, a single standard method for problems regarding frac-
tional calculus has not emerged. Therefore, finding reliable and accurate solution tech-
niques along with fast implementation methods is useful and active research area. Some
well-known methods for the analytical and numerical solutions of fractional differential
and integral equations might be listed as power series method [], differential transform
method [] and [], homotopy analysis method [], variational iteration method [] and
homotopy perturbation method []. Typical numerical methods including collocation, fi-
nite differences and elements are among the most popular numerical techniques, and de-
tailed information about most of these techniques can be obtained from, for instance,
[–] and the aforementioned references.
In this paper we propose a new solution technique for approximate (or alternatively say-

ing numerical) solution of a fractional order two-point boundary value problem (FBVP).
We use the sinc-Galerkin method that has almost not been employed for the fractional
order differential equations. We expand the solution function in a finite series in terms
of composite translated sinc functions and some unknown coefficients. These coefficients
are determined by writing the original FBVP as a bilinear form with respect to some basis
functions. Bearing in mind the methodology of the sinc-Galerkin method, these bilinear
forms are expressed by some integrals. These integrals are approximately solved by the
sinc quadrature rule where a conformal map and its inverse are evaluated at sinc grid
points. Finally, it is proved that some new results are obtained as a new contribution to
the subject.
Although there are several studies about the applications of sinc function-based meth-

ods to deterministic boundary value problems such as [] and [], the applicability of the
sinc functions-based methods has not been investigated in detail at the numerical solu-
tions of fractional order differential equations. The most significant methods employing
sinc functions at the numerical solution of differential equations might be given as the
sinc-Nyström method [] and the method presented in [].
The rest of this paper is organized as follows. Section  reviews the underlying ideas and

basic theorems of fractional calculus and sinc-Galerkin technique. In Section  we apply
the sinc-Galerkin method to a general two-point boundary value problem. In the same
section, the obtained results are presented as two new theorems. In Section  we present
three specific examples in order to illustrate the applicability and accuracy of the present
method. Simulations of the approximate solutions are provided. The results are compared
with the ones obtained by the Cubic splines. Because there are only a few studies regarding
the application of sinc-type methods to fractional order differential equations, this study
is going to be a totally new contribution and highly useful for the researchers in fractional
calculus area of scientific research. We illustrate the results in the simulations and tables.
We complete the paper with a conclusion section where we briefly overview the present
paper and discuss some future extensions of this research.
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2 Preliminaries
2.1 Fractional calculus
In this section, firstly we present the definitions of the Riemann-Liouville and the Caputo
of fractional derivative. Also, we give the definition of integration by parts of fractional
order by using these definitions.

Definition . [] Let f : [a,b] → R be a function, α be a positive real number, n be the
integer satisfying n –  ≤ α < n, and � be the Euler gamma function. Then:

i. The left and right Riemann-Liouville fractional derivatives of order α of f (x) are
given as

aDα
x f (x) =


�(n – α)

dn

dxn

∫ x

a
(x – t)n–α–f (t)dt (.)

and

xDα
b f (x) =

(–)n

�(n – α)
dn

dxn

∫ b

x
(t – x)n–α–f (t)dt, (.)

respectively.
ii. The left and right Caputo fractional derivatives of order α of f (x) are given as

C
a D

α
x f (x) =


�(n – α)

∫ x

a
(x – t)n–α–f (n)(t)dt (.)

and

C
x D

α
b f (x) =


�(n – α)

∫ b

x
(–)n(t – x)n–α–f (n)(t)dt, (.)

respectively.

Now we can write the definition of integration by parts of fractional order by using the
relations given in (.)-(.).

Definition . [] If  < α <  and f is a function such that f (a) = f (b) = , we can write

∫ b

a
g(x)Ca D

α
x f (x)dx =

∫ b

a
f (x)xDα

b g(x)dx (.)

and

∫ b

a
g(x)Cx D

α
b f (x)dx =

∫ b

a
f (x)aDα

x g(x)dx.

2.2 Sinc basis functions properties and quadrature interpolations
In this section, we recall notations and definitions of the sinc function, state some known
results, and derive useful formulas that are important for this paper.

http://www.boundaryvalueproblems.com/content/2013/1/281
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The sinc basis functions
Definition . [] The function defined all z ∈C by

sinc(z) =

{
sin(πz)

πz , z �= ,
, z = ,

(.)

is called the sinc function.

Definition . [] Let f be a function defined on R, and let h > . Define the series

C(f ,h)(x) =
∞∑

k=–∞
f (kh) sinc

(
x – kh
h

)
, (.)

where from (.)

S(k,h)(x) = sinc

(
x – kh
h

)
=

⎧⎨
⎩

sin(π x–kh
h )

π x–kh
h

, x �= kh,

, x = kh.

Whenever the series in (.) converges, it is called theWhittaker cardinal function of f .
They are based on the infinite strip Ds in the complex plane

Ds ≡
{
w = u + iv : |v| < d ≤ π



}
.

In general, approximations can be constructed for infinite, semi-infinite and finite inter-
vals. Define the function

w = φ(z) = ln

(
z

 – z

)
(.)

which is a conformal mapping from DE , the eye-shaped domain in the z-plane, onto the
infinite strip DS , where

DE = z =
{
x + iy :

∣∣∣∣arg
(

z
 – z

)∣∣∣∣ < d ≤ π



}
.

This is shown in Figure . For the sinc-Galerkin method, the basis functions are derived
from the composite translated sinc functions

Sk(z) = S(k,h)(z)oφ(z) = sinc

(
φ(z) – kh

h

)
(.)

for z ∈ DE . The function z = φ–(w) = ew
+ew is an inverse mapping of w = φ(z). We may

define the range of φ– on the real line as

� =
{
φ–(u) ∈ DE : –∞ < u < ∞}

,

http://www.boundaryvalueproblems.com/content/2013/1/281
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Figure 1 The domains DE and DS .

the evenly spaced nodes {kh}∞k=–∞ on the real line. The image which corresponds to these
nodes is denoted by

xk = φ–(kh) =
ekh

 + ekh
.

Sinc function interpolation and quadratures
Definition . [] LetDE be a simply connected domain in the complex plane C, and let
∂DE denote the boundary of DE . Let a, b be points on ∂DE and φ be a conformal map DE

ontoDS such that φ(a) = –∞ and φ(b) = ∞. If the inverse map of φ is denoted by ϕ, define

� =
{
φ–(u) ∈ DE : –∞ < u < ∞}

and zk = ϕ(kh), k =±,±, . . . .

Definition . [] Let B(DE) be the class of functions F that are analytic inDE and satisfy

∫
ψ(L+u)

∣∣F(z)∣∣dz → , as u =∓∞,

where

L =
{
iy : |y| < d ≤ π



}
,

and those on the boundary of DE satisfy

T(F) =
∫

∂DE

∣∣F(z)dz∣∣ <∞.

Theorem . [] Let � be (, ), F ∈ B(DE), then for h >  sufficiently small,

∫
�

F(z)dz – h
∞∑

j=–∞

F(zj)
φ′(zj)

=
i


∫
∂D

F(z)k(φ,h)(z)
sin(πφ(z)/h)

dz ≡ IF , (.)

where

∣∣k(φ,h)∣∣z∈∂D =
∣∣e[ iπφ(z)

h sgn(Imφ(z))]∣∣
z∈∂D = e

–πd
h .
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For the sinc-Galerkin method, the infinite quadrature rule must be truncated to a finite
sum. The following theorem indicates the conditions under which an exponential conver-
gence results.

Theorem . [] If there exist positive constants α, β and C such that

∣∣∣∣ F(x)φ′(x)

∣∣∣∣ ≤ C

{
e–α|φ(x)|, x ∈ ψ((–∞,∞)),
e–β|φ(x)|, x ∈ ψ((,∞)),

(.)

then the error bound for quadrature rule (.) is

∣∣∣∣∣
∫

�

F(x)dx – h
N∑

j=–M

F(xj)
φ′(xj)

∣∣∣∣∣ ≤ C
(
e–αMh

α
+
e–βNh

β

)
+ |IF |. (.)

The infinite sum in (.) is truncated with the use of (.) to arrive at inequality (.).
Making the selections

h =
√

πd
αM

,

N ≡
�

αM
β

+ 
�
,

where �·� is an integer part of the statement andM is the integer value which specifies the
grid size, then

∫
�

F(x)dx = h
N∑

j=–M

F(xj)
φ′(xj)

+O
(
e–(παdM)


 )
. (.)

We used these theorems to approximate the integrals that arise in the formulation of the
discrete systems corresponding to a second-order boundary value problem.

3 The sinc-Galerkin method
Consider the linear two-point boundary value problem

μ(x)y′′ +μ(x)y′ + λ(x)CD
α
x y +μ(x)y = f (x),  < x < ,  < α < , (.)

with the boundary conditions

y() = y() = ,

where C
Dx is the Caputo fractional derivative operator.

An approximate solution for y(x) is represented by the formula

yn(x) =
M∑

k=–M

ckSk(x), n = M + , (.)

http://www.boundaryvalueproblems.com/content/2013/1/281
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where Sk(x) is the function S(k,h)oφ(x) defined in (.) for some fixed step size h. The un-
known coefficients ck in (.) are determined by orthogonalizing the residual with respect
to the basis functions, i.e.,

〈
μ(x)y′′,Sk

〉
+

〈
μ(x)y′,Sk

〉
+

〈
λ(x)CD

α
x y,Sk

〉
+

〈
μ(x)y,Sk

〉
=

〈
f (x),Sk

〉
. (.)

The inner product used for the sinc-Galerkin method is defined by

〈f ,η〉 =
∫ b

a
f (x)η(x)w(x)dx,

where w(x) is a weight function and it is convenient to take

w(x) =


φ′(x)

for the case of second-order problems.
A complete discussion on the choice of the weight function can be found in [].

Lemma . [] Let φ be the conformal one-to-one mapping of the simply connected do-
main DE onto DS given by (.). Then

δ
()
jk =

[
S(j,h)oφ(x)

]∣∣
x=xk

=

{
, j = k,
, j �= k,

δ
()
jk = h

d
dφ

[
S(j,h)oφ(x)

]∣∣∣∣
x=xk

=

{
, j = k,
(–)k–j
k–j , j �= k,

δ
()
jk = h

d

dφ

[
S(j,h)oφ(x)

]∣∣∣∣
x=xk

=

{
–π

 , j = k,
–(–)k–j
(k–j) , j �= k.

The method of approximating the integrals in (.) begins by integrating by parts to
transfer all derivatives from y to Sk . The following theorems, which can easily be proved
by using Lemma . and Definition ., are used to solve equation (.).

Theorem . [] The following relations hold:

〈
μ(x)y′′,Sk

〉 ∼= h
M∑

k=–M

∑
i=

y(xk)
φ′(xk)hi

δ
(i)
jk g,i, (.)

〈
μ(x)y′,Sk

〉 ∼= –h
M∑

k=–M

∑
i=

y(xk)
φ′(xk)hi

δ
(i)
jk g,i (.)

and

〈G,Sk〉 ∼= h
G(xk)w(xk)

φ′(xk)
, (.)

where

g, = (μw)
(
φ′), g, = (μw)φ′′ + (μw)′φ′, g, = (μw)′′,

g, = (μw)φ′, g, = (μw)′

http://www.boundaryvalueproblems.com/content/2013/1/281
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and

G = μy or f (x).

Theorem . For  < α < , the following relation holds:

〈
λ(x)CD

α
x y(x),Sk

〉
∼= –

hM
�( – α)

M∑
k=–M

y(xk)
φ′(xk)

d
dx

[
hL

L∑
r=–L

(xr – x)–αK (xr)
ξ ′(xr)

]∣∣∣∣∣
x=xk

, –M ≤ j ≤M, (.)

where K(x) = λ(x)Sk(x)w(x), ξ (t) = ln( t–x–t ).

Proof The inner product with sinc basis element is given by

〈
λ(x)CD

α
x y(x),Sk

〉
=

∫ 



(
λ(x)Sk(x)w(x)

)C
D

α
x y(x)dx.

Using Definition ., we can write

∫ 



(
λ(x)Sk(x)w(x)

)C
D

α
x y(x)dx =

∫ 


y(x)RxD

α

(
K (x)

)
dx, (.)

where K (x) = λ(x)Sk(x)w(x). By the definition of the Riemann-Liouville fractional deriva-
tive given in (.), we have

R
xD

α

(
K (x)

)
= –


�( – α)

d
dx

∫ 

x
(t – x)–αK (t)dt. (.)

We will use the sinc quadrature rule given with equation (.) to compute it because the
integral given in (.) is divergent on the interval [x, ]. For this purpose, a conformal map
and its inverse image that denotes the sinc grid points are given by

ξ (t) = ln

(
t – x
 – t

)

and

xr = ξ–(rhL) =
erhL + x
 + erhL

,

respectively. Then, according to equality (.), we write

–


�( – α)
d
dx

∫ 

x
(t – x)–αK (t)dt ∼= –


�( – α)

d
dx

[
hL

L∑
r=–L

(xr – x)–αK (xr)
ξ ′(xr)

]
,

where hL = π/
√
L. Thus, the right-hand side of (.) can be rewritten as follows:

∫ 


y(x)RxD

α

(
K (x)

)
dx∼= –


�( – α)

∫ 



(
y(x)

d
dx

[
hL

L∑
r=–L

(xr – x)–αK (xr)
ξ ′(xr)

])
dx. (.)

http://www.boundaryvalueproblems.com/content/2013/1/281
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To apply the sinc quadrature rule given in (.) on the right-hand side of (.), a confor-
mal map and its inverse image are given by

φ(t) = ln

(
t

 – t

)

and

xk = φ–(kh) =
ekh

 + ekh
,

respectively. Consequently, when the rule is applied, it is obtained

〈
λ(x)CD

α
x y(x),Sk

〉
∼= –

h
�( – α)

M∑
k=–M

y(xk)
φ′(xk)

d
dx

[
hL

L∑
r=–L

(xr – x)–αK (xr)
ξ ′(xr)

]∣∣∣∣∣
x=xk

, –M ≤ j ≤M,

where h = π/
√
M. This completes the proof. �

Replacing each term of (.) with the approximation defined in (.)-(.), replacing
y(xk) with ck and dividing by h, we obtain the following theorem.

Theorem . If the assumed approximate solution of boundary value problem (.) is
(.), then the discrete sinc-Galerkin system for the determination of the unknown coef-
ficients {ck}Mk=–M is given by

M∑
k=–M

{ ∑
i=


hi

δ
(i)
jk
g,i(xk)
φ′(xk)

ck –
∑

i=


hi

δ
(i)
jk
g,i(xk)
φ′(xk)

ck

–


�( – α)
ck

φ′(xk)
d
dx

[
hL

L∑
r=–L

(xr – x)–αK (xr)
ξ ′(xr)

]∣∣∣∣∣
x=xk

}
+

μ(xj)w(xj)
φ′(xj)

cj

=
f (xj)w(xj)

φ′(xj)
, –M ≤ j ≤M.

4 Examples
In this section, three problems that have homogeneous and nonhomogeneous boundary
conditions will be tested by using the presentmethod. In all the examples, we take d = π/,
α = β = /, N =M.

Example . Consider the linear fractional boundary value problem

y′′(x) + C
D

.
x y(x) = f (x),

subject to the homogeneous boundary conditions

y() = y() = ,

where f (x) = + 
�(.) (.x

. –x.). The exact solution of this problem is y(x) = x(x–).

http://www.boundaryvalueproblems.com/content/2013/1/281
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Figure 2 Graphs of exact and approximate solutions for different values of L andM.

Table 1 Numerical results for L = 5,M = 5

x Exact solution Approx. sol. Error

0 0 0 0
0.1 –0.09 –0.0892201 7.79 ∗ 10–4

0.2 –0.16 –0.162342 2.34 ∗ 10–3

0.3 –0.21 –0.211748 1.74 ∗ 10–3

0.4 –0.24 –0.239574 4.25 ∗ 10–4

0.5 –0.25 –0.248273 1.72 ∗ 10–3

0.6 –0.24 –0.238808 1.19 ∗ 10–3

0.7 –0.21 –0.210588 5.87 ∗ 10–4

0.8 –0.16 –0.16155 1.55 ∗ 10–3

0.9 –0.09 –0.0895538 4.46 ∗ 10–4

1 0 0 0

Table 2 Numerical results for L = 40,M = 100

x Exact solution Approx. sol. Error

0 0 0 0
0.1 –0.09 –0.0899988 1.15 ∗ 10–6

0.2 –0.16 –0.159998 1.50 ∗ 10–6

0.3 –0.21 –0.209998 1.85 ∗ 10–6

0.4 –0.24 –0.239999 1.43 ∗ 10–6

0.5 –0.25 –0.249999 1.04 ∗ 10–6

0.6 –0.24 –0.239999 1.27 ∗ 10–6

0.7 –0.21 –0.209999 5.20 ∗ 10–7

0.8 –0.16 –0.16000015 1.59 ∗ 10–7

0.9 –0.09 –0.0900004 3.50 ∗ 10–7

1 0 0 0

The numerical solutions which are obtained by using the sinc-Galerkinmethod (SGM) for
this problem are presented in Table  and Table . Also, graphs of exact and approximate
solutions for different values of L andM are presented in Figure .

Example . [] Consider the linear fractional boundary value problem

y′′(x) + .CD
.
x y(x) + y(x) = f (x),

subject to the homogeneous boundary conditions

y() = y() = ,

where f (x) = x(x – ) + .x.( 
�(.)x –


�(.) ) + x(x – ). The exact solution of this

http://www.boundaryvalueproblems.com/content/2013/1/281
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Figure 3 Graphs of exact and approximate solutions for different values of L andM.

Table 3 Numerical results for L = 40,M = 100

x Exact solution Approx. sol. (SGM) Error (SGM)

0 0 0 0
0.125 –0.000213623 –0.000213621 2.06 ∗ 10–9

0.250 –0.00292969 –0.002929685 2.19 ∗ 10–9

0.375 –0.0123596 –0.012359615 3.61 ∗ 10–9

0.500 –0.03125 –0.0312499 5.73 ∗ 10–9

0.625 –0.0572205 –0.057220453 5.40 ∗ 10–9

0.750 –0.0791016 –0.07910156 2.47 ∗ 10–9

0.875 –0.0732727 –0.073272705 2.61 ∗ 10–11

1 0 0 0

Table 4 Numerical results for L = 5,M = 5

x Exact solution Approx. sol. (SGM) Approx. sol. (CS) Error (SGM) Error (CS) (h = 1/8)

0 0 0 0 0 0
0.125 –0.000213623 0.0000672651 –2.21∗10–3 2.80 ∗ 10–4 1.99 ∗ 10–3

0.250 –0.00292969 0.00179474 –7.01∗10–3 4.72 ∗ 10–3 4.08 ∗ 10–3

0.375 –0.0123596 –0.00807839 –1.81∗10–2 4.28 ∗ 10–3 5.83 ∗ 10–3

0.500 –0.03125 –0.0282408 –3.81∗10–2 3.00 ∗ 10–3 6.85 ∗ 10–3

0.625 –0.0572205 –0.0540496 –6.40∗10–1 3.17 ∗ 10–3 5.83 ∗ 10–1

0.750 –0.0791016 –0.0772466 –8.46∗10–2 1.85 ∗ 10–3 5.56 ∗ 10–3

0.875 –0.0732727 –0.0763662 –7.65∗10–2 3.09 ∗ 10–3 3.26 ∗ 10–3

1 0 0 0 0 0

problem is y(x) = x(x– ). The numerical solutions which are obtained by using the sinc-
Galerkin method (SGM) for this problem are presented in Table . In addition to this, in
Table , the solutions are compared with the numerical solutions computed by using the
Cubic splines (CS) in []. Also, graphs of exact and approximate solutions for different
values of L andM are presented in Figure .

Example . Consider the linear fractional boundary value problem

y′′(x) – xy′(x) + C
D

.
x y(x) = f (x),

subject to the nonhomogeneous boundary conditions

y() = , y() = ,

where f (x) = –x – x + x++ 
�(.) (.x

. + .x.). The exact solution of this prob-
lem is y(x) = x(x + ). First we convert the nonhomogeneous boundary conditions to ho-

http://www.boundaryvalueproblems.com/content/2013/1/281
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Figure 4 Graphs of exact and approximate solutions for different values of L andM.

Table 5 Numerical results for L = 5,M = 5

x Exact solution Approx. sol. Error

0 0 0 0
0.1 0.011 0.0161428 5.14 ∗ 10–3

0.2 0.048 0.0460293 1.97 ∗ 10–3

0.3 0.117 0.1116584 5.34 ∗ 10–3

0.4 0.224 0.2208625 3.13 ∗ 10–3

0.5 0.375 0.374859 1.40 ∗ 10–4

0.6 0.576 0.5760087 8.77 ∗ 10–6

0.7 0.833 0.8300524 2.94 ∗ 10–3

0.8 1.152 1.1473504 4.64 ∗ 10–3

0.9 1.539 1.540036 1.03 ∗ 10–3

1 0 0 0

Table 6 Numerical results for L = 50,M = 100

x Exact solution Approx. sol. Error

0 0 0 0
0.1 0.011 0.0109568 4.32 ∗ 10–5

0.2 0.048 0.0479142 8.58 ∗ 10–5

0.3 0.117 0.11687 1.30 ∗ 10–4

0.4 0.224 0.223831 1.69 ∗ 10–4

0.5 0.375 0.374798 2.01 ∗ 10–4

0.6 0.576 0.575775 2.24 ∗ 10–4

0.7 0.833 0.832751 2.48 ∗ 10–4

0.8 1.152 1.15176 2.40 ∗ 10–4

0.9 1.539 1.53884 1.61 ∗ 10–4

1 0 0 0

mogeneous conditions by considering the transformation u(x) = y(x) – x. This change of
variable yields the following boundary value problem:

u′′(x) – xu′(x) + C
D

.
x u(x) = –x – x + x +  +


�(.)

(
.x. + .x. – x.

)

with the homogeneous boundary conditions

u() = u() = .

The numerical solutions which are obtained by using the sinc-Galerkinmethod (SGM) for
this problem are presented in Table  and Table . Also, graphs of exact and approximate
solutions for different values of L andM are presented in Figure .

http://www.boundaryvalueproblems.com/content/2013/1/281
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5 Conclusion
In this paper the sinc-Galerkin method has been employed to obtain approximate solu-
tions of a general fractional order two-point boundary value problem. The method uses
typical techniques of the Galerkin method such as series expansion but exploits the ad-
vantages of the sinc functions which make it much more efficient than the traditional
interpolation-based numerical techniques. In order to illustrate the applicability and ac-
curacy of themethod to the real scientific problems, themethod has been applied to some
special examples, and simulations of the approximate solutions have been provided. The
computational results have been compared with the ones obtained by the Cubic splines.
Experimental results indicate the strength of the present method. In the future we plan
to extend the present numerical solution algorithm to some other linear and nonlinear
fractional boundary value problems.
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