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1 Introduction
Let ω be a fixed positive number. In this paper, we are concerned with the existence of
positive solutions for the following boundary value problem (BVP) with impulses:

–
(
p(t)u′(t)

)′ + q(t)u(t) = λf
(
t,u(t)

)
, t �= ti, t ∈ J , (.a)

–�
(
u[](ti)

)
= Ii

(
u(ti)

)
, i = , , . . . ,m, (.b)

u() = u(ω), u[]() = u[](ω). (.c)

Here, u[](t) = p(t)u′(t) denotes the quasi-derivative of u(t). The condition (.c) is called
a non-separated periodic boundary value condition for (.a).
We assume throughout, and with further mention, that the following conditions hold.
(H) Let J = [,ω], and  < t < t < · · · < tm < ω, f ∈ C(J × R+,R+), Ii ∈ C(R+,R+),

R+ = [,+∞). �(u[](ti)) = u[](t+i ) – u[](t–i ), where u[](t+i ) (respectively u[](t–i )) denotes
the right limit (respectively, the left limit) of u[](t) at t = ti.
(H)

∫ ω




p(t)

dt < ∞,
∫ ω


q(t)dt < ∞,

p > ,q ≥  and q �≡  a.e. on [,ω].

A function u(t) defined on J– = J\{t, t, . . . , tm} is called a solution of BVP (.) ((.a)-
(.c)) if its first derivative u′(t) exists for each t ∈ J–, p(t)u′(t) is absolutely continuous on
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each close subinterval of J–, there exist finite values u[](t±i ), the impulse conditions (.b)
and the boundary conditions (.c) are satisfied, and the equation (.a) is satisfied almost
everywhere on J–.
For the case of Ii =  (i = , , . . . ,m), the problem (.) is related to a non-separated peri-

odic boundary value problem of ODE. Atici and Guseinov [] have proved the existence of
a positive and twin positive solutions to BVP (.) by applying a fixed point theorem for the
completely continuous operators in cones. In [], Graef and Kong studied the following
periodic boundary value problem:

⎧⎨
⎩–(p(t)u′)′ + q(t)u = h(t)f (t,u), t ∈ (,ω),

u() = u(ω), u[]() = u[](ω),
(.)

where h(t) > . Based upon the properties of Green’s function obtained in [], the authors
extended and improved the work of [] by using topological degree theory. They derived
new criteria for the existence of non-trivial solutions, positive solutions and negative solu-
tions of the problem (.) when f is a sign-changing function and not necessarily bounded
from below even over [,ω]×R+. Very recently, He et al. [] studied BVP (.) without im-
pulses and generalized the results of [, ] via the fixed point index theory. The problem
(.) in the case of p ≡ , the usual periodic boundary value problem, has been extensively
investigated; see [–] for some results.
On the other hand, impulsive differential equations are a basic tool to study processes

that are subjected to abrupt changes in their state. There has been a significant develop-
ment in the last two decades. Boundary problems of second-order differential equations
with impulse have received considerable attention andmuch literature has been published;
see, for instance, [–] and their references. However, there are fewer results about pos-
itive solutions for second-order impulsive differential equations. To our best knowledge,
there is no result about nonlinear impulsive differential equations with non-separated pe-
riodic boundary conditions.
Motivated by the work above, in this paper we study the existence of positive solutions

for the boundary value problem (.). By using fixed point theorems in a cone, criteria are
established under some conditions on f (t,u) concerning the first eigenvalue correspond-
ing to the relevant linear operator.More important, the impulsive terms are different from
those of papers [, ].

2 Preliminaries
In this section, we collect some preliminary results that will be used in the subsequent sec-
tion.We denote by ϕ(t) andψ(t) the unique solutions of the corresponding homogeneous
equation

–
(
p(t)u′(t)

)′ + q(t)u(t) = , t ∈ J , (.)

under the initial boundary conditions

ϕ() = , ϕ[]() = ; ψ() = , ψ []() = . (.)

Put D = ϕ(ω) +ψ [](ω) – , then by [, Lemma .], D > .

http://www.boundaryvalueproblems.com/content/2013/1/3
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Definition . For two differential functions y and z, we define their Wronskian by

Wt(y, z) = y(t)z[](t) – y[](t)z(t) = p(t)
[
y(t)z′(t) – y′(t)z(t)

]
.

Theorem . The Wronskian of any two solutions for equations (.) is constant. Espe-
cially,Wt(ϕ,ψ) ≡ .

Proof Suppose that y and z are two solutions of (.), then

{
Wt(y, z)

}′ =
{
p(t)

[
y(t)z′(t) – y′(t)z(t)

]}′

= y(t)
[
p(t)z′(t)

]′ –
[
p(t)y′(t)

]′z(t) = ;

therefore, the Wronskian is constant. Further, from the initial conditions (.), we have
Wt(ϕ,ψ) ≡ . The proof is complete. �

Consider the following equation:

⎧⎨
⎩–(p(t)u′(t))′ + q(t)u(t) = , t ∈ J ,

u() = u(ω), u[]() = u[](ω).
(.)

From Theorem . in [], equation (.) has a Green function G(t, s) >  for all s, t ∈ J ,
which has the following properties:

(G) G(t, s) is continuous in t and s for all t, s ∈ J .
(G) If A =min≤t,s≤ω G(t, s) and B =max≤t,s≤ω G(t, s), then B > A > .
(G)

G(t, s) =
ψ(ω)
D

ϕ(t)ϕ(s) –
ϕ[](ω)

D
ψ(t)ψ(s)

+

⎧⎨
⎩

ψ [](ω)–
D ϕ(t)ψ(s) – ϕ(ω)–

D ϕ(s)ψ(t),  ≤ s ≤ t ≤ ω,
ψ [](ω)–

D ϕ(s)ψ(t) – ϕ(ω)–
D ϕ(t)ψ(s),  ≤ t ≤ s ≤ ω.

Combining with Theorem ., we can also prove that

(G)

G(, s) =G(ω, s), p(t)
∂G
∂t

∣∣∣∣
(,s)

= p(t)
∂G
∂t

∣∣∣∣
(ω,s)

,
∫ ω


q(t)G(t, s)ds = .

Remark  From paper [], we can get G(t, s) when q(t) = c
p(t) (c > ) and p(t) > ,

G(t, s) =


c(ec
∫ ω
 (dx/p(x)) – )

⎧⎨
⎩ec

∫ t
s (dx/p(x)) + ec[

∫ ω
 (dx/p(x))+

∫ s
t (dx/p(x))], ≤ s ≤ t ≤ ω,

ec
∫ s
t (dx/p(x)) + ec[

∫ ω
 (dx/p(x))+

∫ t
s (dx/p(x))], ≤ t ≤ s ≤ ω,

A =
ec/

∫ ω
 (dx/p(x))

c[ec
∫ ω
 (dx/p(x)) – ]

, B =
 + ec

∫ ω
 (dx/p(x))

c[ec
∫ ω
 (dx/p(x)) – ]

.
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Especially, in the case of p(t) ≡ , q(t) ≡ c (c > ), Green’s function G(t, s) has the form

G(t, s) =


c(ecω – )

⎧⎨
⎩ec(t–s) + ec(ω+s–t),  ≤ s ≤ t ≤ ω,

ec(s–t) + ec(ω+t–s),  ≤ t ≤ s ≤ ω,

A =
e(cω/)

c(ecω – )
, B =

 + ecω

c(ecω – )
.

Define an operator

(Tu)(t) =
∫ ω


G(t, s)u(s)ds,

then it is easy to check that T : C(J) → C(J) is a completely continuous operator. By virtue
of the Krein-Rutman theorem, the authors in [] got the following result.

Lemma . The spectral radius r(T) >  and T has a positive eigenfunction corresponding
to its first eigenvalue λ = (r(T))–.

In what follows, we denote the positive eigenfunction corresponding to λ by φ and
maxt∈J φ(t) = . Define a mapping 	 and a cone K in a Banach space C(J) by

(	u)(t) = λ

∫ ω


G(t, s)f

(
s,u(s)

)
ds +

m∑
i=

G(t, ti)Ii
(
u(ti)

)
, t ∈ J ,

K =
{
u ∈ C(J),u(t) ≥ δ‖u‖},

where δ = A
B , ‖u‖ =maxt∈J |u(t)|.

Lemma . The fixed point of the mapping 	 is a solution of (.).

Proof Clearly, 	u is continuous in t. For t �= tk ,

(	u)′(t) = λ

∫ ω



∂G
∂t

f
(
s,u(s)

)
ds +

m∑
i=

∂G
∂t

(t, ti)Ii
(
u(ti)

)
.

Using (G) and (G), we have (	u)() = (	u)(ω), (	u)[]() = (	u)[](ω) and

�(	u)[](tk) = p
(
t+k

)
(	u)′

(
t+k

)
– p(tk)(	u)′(tk)

=
[

ψ [](ω) – 
D

+
ϕ(ω) – 

D

](
p(tk)ϕ′(tk)ψ(tk) – p(tk)ϕ(tk)ψ ′(tk)

)
Ik

(
u(tk)

)

= –
ψ [](ω) + ϕ(ω) – 

D
Ik

(
u(tk)

)
= –Ik

(
u(tk)

)
,

(
p(t)(	u)′(t)

)′ =

(
λ

∫ ω


p(t)

∂G
∂t

f
(
s,u(s)

)
ds +

m∑
i=

p(t)
∂G
∂t

(t, ti)Ii
(
u(ti)

))′

http://www.boundaryvalueproblems.com/content/2013/1/3


Liang and Shen Boundary Value Problems 2013, 2013:3 Page 5 of 11
http://www.boundaryvalueproblems.com/content/2013/1/3

= q(t)λ
∫ ω


G(t, s)f

(
s,u(s)

)
ds – λf

(
t,u(t)

)
+ q(t)

m∑
i=

G(t, ti)Ii
(
u(ti)

)

= q(t)(	u)(t) – λf
(
t,u(t)

)
,

which implies that the fixed point of 	 is the solution of (.). The proof is complete. �

The proofs of the main theorems of this paper are based on fixed point theory. The
following two well-known lemmas in [] are needed in our argument.

Lemma . [] Let X be a Banach space and K be a cone in X. Suppose � and � are
open subsets of X such that  ∈ � ⊂ �̄ ⊂ �, and suppose that

	 : K ∩ (�̄\�) → K

is a completely continuous operator such that
• infu∈K∩∂� ‖	u‖ > , u �= μ	u for u ∈ K ∩ ∂� and μ ≥ , and u �= μ	u for
u ∈ K ∩ ∂� and  < μ ≤ , or

• infu∈K∩∂� ‖	u‖ > , u �= μ	u for u ∈ K ∩ ∂� and μ ≥ , and u �= μ	u for
u ∈ K ∩ ∂� and  < μ ≤ .

Then 	 has a fixed point in K ∩ (�̄\�).

Lemma . [] Let X be a Banach space and K be a cone in X. Suppose � and � are
open subsets of X such that  ∈ � ⊂ �̄ ⊂ �, and suppose that

	 : K ∩ (�̄\�) → K

is a completely continuous operator such that
• There exists u ∈ K\{} such that u �= 	u +μu for u ∈ K ∩ ∂� and μ > ,

‖	u‖ ≤ ‖u‖ for u ∈ K ∩ ∂�, or
• There exists u ∈ K\{} such that u �= 	u +μu for u ∈ K ∩ ∂� and μ > ,

‖	u‖ ≤ ‖u‖ for u ∈ K ∩ ∂�.
Then 	 has a fixed point in �̄\�.

3 Main results
Recalling that δ was defined after Lemma ., for convenience, we introduce the following
notations. Assume that the constant r >  and γ is some positive function on J ,

f̄ rγ = sup

{
f (t,u)
γ (t)u

, t ∈ J ,u ∈ [δr, r]
}
,

f rγ = inf

{
f (t,u)
γ (t)u

, t ∈ J ,u ∈ [δr, r]
}
,

f̄ γ = lim
r→+

f̄ rγ , f γ = lim
r→+

f rγ , f̄ ∞
γ = lim

r→+∞ f̄ rγ , f ∞
γ = lim

r→+∞ f rγ ,

Īri = sup

{
Ii(u)
u

,u ∈ [δr, r]
}
, Iri = inf

{
Ii(u)
u

,u ∈ [δr, r]
}
,

Īi = lim
r→+

Īri , Ii = lim
r→+

Iri , Ī∞i = lim
r→+∞ Īri , I∞i = lim

r→+∞ Iri .

http://www.boundaryvalueproblems.com/content/2013/1/3
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Theorem . Assume that there exist positive constants α, β such that f α
q ≥ , f̄ β

q ≥ ,
Iαi ≥ , Iβi ≥  and

 < λ ∈
(
 –A

∑m
i= Iαi

f α
q

,
 – B

∑m
i= Ī

β

i

f̄ β
q

)
. (.)

Then (.) has at least one positive solution u such that min{α,β} ≤ ‖u‖ ≤ max{α,β}.

Proof Clearly, α �= β , let α =min{α,β}, β =max{α,β}. Define the open sets

�α =
{
u ∈ C(J) : ‖u‖ < α

}
, �β =

{
u ∈ C(J) : ‖u‖ < β

}
.

Then 	 : K ∩ (�̄β\�α) is completely continuous. By (.) and the definition of f α
q , Iαi , f̄

β
q ,

Īβi , there exists ε >  such that

 – ( – ε)A
∑m

i= Iαi
( – ε)f α

q
≤ λ ≤  – ( + ε)B

∑m
i= Ī

β

i

( + ε)f̄ β
q

, (.)

f (t,u) ≥ ( – ε)f α
q q(t)u, Ii(u) ≥ ( – ε)Iαi u, i = , , . . . ,m, δα ≤ u≤ α, (.)

and

f (t,u) ≤ ( + ε)f̄ β
q q(t)u, Ii(u) ≤ ( + ε)Īβi u, i = , , . . . ,m, δβ ≤ u ≤ β . (.)

Let u ≡ . We show that

u �= 	u +μ, ∀u ∈ K ∩ ∂�α and μ > . (.)

If not, there exist u ∈ K ∩∂�α andμ >  such that u = 	u +μ. Let u(ρ) =mint∈J u(t).
Noting that δα ≤ u ≤ α for any t ∈ J , we obtain that for t ∈ J ,

u(t) = (	u)(t) +μ

= λ

∫ ω


G(t, s)f

(
s,u(s)

)
ds +

m∑
i=

G(t, ti)Ii
(
u(ti)

)
+μ

≥ ( – ε)λf α
q

∫ ω


G(t, s)q(s)u(s)ds +A( – ε)

m∑
i=

Iαi u(ti) +μ

≥ ( – ε)λf α
q u(ρ)

∫ ω


G(t, s)q(s)ds +Au(ρ)( – ε)

m∑
i=

Iαi +μ

≥ ( – ε)

(
λf α

q +A
m∑
i=

Iαi

)
u(ρ) +μ

≥ u(ρ) +μ,

which implies that u(ρ) > u(ρ), a contradiction.

http://www.boundaryvalueproblems.com/content/2013/1/3
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On the other hand, for ∀u ∈ K ∩ ∂�β , δβ ≤ u(t)≤ β , we have

(	u)(t) = λ

∫ ω


G(t, s)f

(
s,u(s)

)
ds +

m∑
i=

G(t, ti)Ii
(
ui(t)

)

≤ ( + ε)λf̄ β
q

∫ ω


G(t, s)q(s)u(s)ds + B( + ε)

m∑
i=

Īβi u(ti)

≤ ( + ε)λf̄ β
q ‖u‖

∫ ω


G(t, s)q(s)ds + B( + ε)‖u‖

m∑
i=

Īβi

≤ ( + ε)

(
λf̄ β

q + B
m∑
i=

Īβi

)
‖u‖ ≤ ‖u‖.

From Lemma . it follows that 	 has a fixed point u ∈ K ∩ (�̄β\�α). Furthermore, α ≤
‖u‖ ≤ β and u(t) ≥ δα > , which means that u(t) is a positive solution of Eq. (.). The
proof is complete. �

In the next theorem, wemake use of the eigenvalue λ and the corresponding eigenfunc-
tion φ introduced in Lemma ..

Theorem . Assume that there exist positive constants α, β such that f α
γ ≥ , f β

γ ≥ ,
Iαi ≥ , Iβi ≥  and

 < λ ∈
(

λ
∫ ω

 φ(s)ds – δ
∑m

i= Iαi φ(ti)
δf α

γ

∫ ω

 φ(s)ds
,
δλ

∫ ω

 φ(s)ds – δ
∑m

i= Ī
β

i φ(ti)
δf̄ β

γ

∫ ω

 φ(s)ds

)
, (.)

here γ ≡  on J . Then (.) has at least one positive solution u such thatmin{α,β} ≤ ‖u‖ ≤
max{α,β}.

Proof Obviously, α �= β , put α =min{α,β}, β =max{α,β}. Define the open sets

�α =
{
u ∈ C(J) : ‖u‖ < α

}
, �β =

{
u ∈ C(J) : ‖u‖ < β

}
.

At first, we show that	 : K ∩ (�̄β\�α) → K . For any u ∈ K ∩ (�̄β\�α), from (G), we have

 < (	u)(t)≤ B

(
λ

∫ ω


f
(
s,u(s)

)
ds +

m∑
i=

Ii
(
u(ti)

))
< ∞.

On the other hand,

(	u)(t)≥ A

(
λ

∫ ω


f
(
s,u(s)

)
ds +

m∑
i=

Ii
(
u(ti)

)) ≥ A
B

‖	u‖.

It is easy to check that 	 : K ∩ (�̄β\�α) → K is completely continuous.
Next, we show that

μ	u �= u, ∀u ∈ K ∩ ∂�β and  < μ ≤ . (.)

http://www.boundaryvalueproblems.com/content/2013/1/3
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If not, there exist μ ∈ (, ] and u ∈ K ∩ ∂�β such that μ	u = u. Hence,

⎧⎪⎪⎨
⎪⎪⎩
–(p(t)u′

(t))′ + q(t)u(t) = μλf (t,u(t)), t ∈ J–,

–�(u[] (tk)) = μIk(u(tk)), k = , . . . ,m,

u() = u(ω), u[] () = u[] (ω).

(.)

Multiplying the first equation of (.) by φ and integrating from  to ω, we obtain that

–
∫ ω



(
p(t)u′

(t)
)′
φ(t)dt +

∫ ω


q(t)u(t)φ(t)dt = μλ

∫ ω


f
(
s,u(s)

)
φ(s)ds. (.)

One can find that
∫ ω



(
p(t)u′

(t)
)′
φ(t)dt = μ

m∑
i=

Ii
(
u(ti)

)
φ(ti) +

∫ ω



(
q(t) – λ

)
φ(t)u(t)dt. (.)

Substituting (.) into (.), we get

–μ

m∑
i=

Ii
(
u(ti)

)
φ(ti) + λ

∫ ω


φ(t)u(t)dt = μλ

∫ ω


f
(
t,u(t)

)
φ(t)dt.

Noting that δ‖u‖ ≤ u ≤ ‖u‖, therefore,

–‖u‖
m∑
i=

Īβi φ(ti) + λδ‖u‖
∫ ω


φ(t)dt ≤ λf̄ β

γ

∫ ω


φ(t)dt‖u‖,

which implies that

λ ≥ δλ
∫ ω

 φ(s)ds –
∑m

i= Ī
β

i φ(ti)
f̄ β
γ

∫ ω

 φ(s)ds
,

a contradiction.
Finally, we show that

inf
u∈K∩∂�α

‖	u‖ > , μ	u �= u, ∀u ∈ K ∩ ∂�α and μ ≥ .

Since f (t,u) and Ii(u) are negative for u ∈ [δα,α] and t ∈ J , the condition (.) implies that
f α
γ > . Hence,

∫ ω

 f (s,u(s))ds >  for u ∈ K ∩ ∂�α and for any u ∈ K ∩ ∂�α ,

(	u)(t) = λ

∫ ω


G(t, s)f

(
s,u(s)

)
ds +

m∑
i=

G(t, ti)Ii
(
u(ti)

)

≥ Aλ

∫ ω


f
(
s,u(s)

)
ds > .

Suppose that there exist μ ≥  and u ∈ K ∩ ∂�α such that μ	u = u, that is,

⎧⎪⎪⎨
⎪⎪⎩
–(p(t)u′

(t))′ + q(t)u(t) = μλf (t,u(t)), t ∈ J–,

–�(u[] (tk)) = μIk(u(tk)), k = , . . . ,m,

u() = u(ω), u[] () = u[] (ω).

(.)

http://www.boundaryvalueproblems.com/content/2013/1/3
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Multiplying the first equation of (.) by φ and integrating from  to ω, we obtain that

–
∫ ω



(
p(t)u′

(t)
)′
φ(t)dt +

∫ ω


q(t)u(t)φ(t)dt = μλ

∫ ω


f
(
s,u(s)

)
φ(s)ds. (.)

One can get that

∫ ω



(
p(t)u′

(t)
)′
φ(t)dt = μ

m∑
i=

Ii
(
u(ti)

)
φ(ti) +

∫ ω



(
p(t)φ′(t)

)′u(t)dt

= μ

m∑
i=

Ii
(
u(ti)

)
φ(ti) +

∫ ω



(
q(t) – λ

)
φ(t)u(t)dt. (.)

Substituting (.) into (.), we get

–μ

m∑
i=

Ii
(
u(ti)

)
φ(ti) + λ

∫ ω


φ(t)u(t)dt = μλ

∫ ω


f
(
t,u(t)

)
φ(t)dt.

Noting that δ‖u‖ ≤ u ≤ ‖u‖, therefore,

–δ‖u‖
m∑
i=

Iαi φ(ti) + λ‖u‖
∫ ω


φ(t)dt ≥ μλ

∫ ω


f
(
s,u(s)

)
ds

≥ λδf α
γ

∫ ω


u(s)φ(s)ds

≥ λδf α
γ

∫ ω


φ(s)ds‖u‖ > .

It is impossible for λ
∫ ω

 φ(s)ds–δ
∑m

i= Iαi φ(ti) ≤ .When λ
∫ ω

 φ(s)ds–δ
∑m

i= Iαi φ(ti) > ,

λ <
λ

∫ ω

 φ(s)ds – δ
∑m

i= Iαi φ(ti)
δf α

γ

∫ ω

 φ(s)ds
,

a contradiction.
From Lemma . it follows that 	 has a fixed point u ∈ K ∩ (�̄β\�α). Furthermore,

α ≤ ‖u‖ ≤ β and u ≥ δα > , which means that u(t) is a positive solution of Eq. (.). The
proof is complete. �

Corollary . Assume that f γ > , f ∞
γ > , Ii > , I∞i >  and

 < λ ∈
(

λ
∫ ω

 φ(s)ds – δ
∑m

i= Ii φ(ti)
δf γ

∫ ω

 φ(s)ds
,
δλ

∫ ω

 φ(s)ds –
∑m

i= Ī∞i φ(ti)
f̄ ∞
γ

∫ ω

 φ(s)ds

)

or

 < λ ∈
(

λ
∫ ω

 φ(s)ds – δ
∑m

i= I∞i φ(ti)
δf ∞

γ

∫ ω

 φ(s)ds
,
δλ

∫ ω

 φ(s)ds –
∑m

i= Īi φ(ti)
f̄ γ

∫ ω

 φ(s)ds

)
,

here γ ≡  on J . Then (.) has at least one positive solution.
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Corollary . Assume that there exists a constant α such that f ρ
γ > , Iρi >  (ρ = , α and

∞) and

f̄ α
γ

∫ ω

 φ(s)ds +
∑m

i= Īαi φ(ti)
δ
∫ ω

 φ(s)ds
< λ <min

{
δf γ +

δ
∑m

i= Ii φ(ti)∫ ω

 φ(s)ds
, δf ∞

γ +
δ
∑m

i= I∞i φ(ti)∫ ω

 φ(s)ds

}
,

here γ ≡  on J . Then there exists one open interval � :  ∈ � such that (.) has at least
two positive solutions for λ ∈ �.

Example  Consider the equation

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + u(t) = λf (t,u), t ∈ J , t �= ti,

–�u′(t) = Ii(u(ti)), i = , , . . . ,m,

u() = u(), u′() = u′(),

(.)

where p(t) = , q(t) =  and

f (t,u) =

⎧⎨
⎩uρ , u≤ ,

, u > ,
Ii(u) =

⎧⎨
⎩, u ≤ ,


√
u, u > ,

here ρ >  and i = , , . . . ,m. Since Ii = +∞, Ī∞i =  and f̄ ∞
q = , by Theorem ., (.) has

at least one positive solution for any λ > .

Example  Consider the equation

⎧⎪⎪⎨
⎪⎪⎩
–u′′(t) + u(t) = λf (t,u), t ∈ J , t �= ti,

–�u′(ti) = Ii(u(ti)), i = , , . . . ,m,

u() = u(), u′() = u′(),

(.)

where f (t,u) = e–u
 , Ii(u) = u

(m+i) .
It is well known that, for the problem consisting of the equation –u′′ = λu, t ∈ (, ), and

the boundary condition

u() = u(), u′() = u′(), (.)

the first eigenvalue is  (see, for example, [, p.]). It follows that the first eigenvalue is
λ =  for the problem consisting of the equation

–u′′ + u = λu, t ∈ (, ),

and the boundary condition (.). Meanwhile, we can obtain the positive eigenfunction
φ(t) ≡  corresponding to λ. It is also easy to check that δ = 

√
e

+e , f

γ = +∞, f ∞

γ =  and
I∞i = +∞ (here γ = ). So, the right-hand side of the inequality in Corollary . is obviously
satisfied. Considering the monotonicity of f (t,u) and Ii, we can choose a sufficiently small
positive constant α such that the left-hand side of the inequality is true. Therefore, by a
direct application of Corollary ., there exists one open interval� :  ∈ � such that (.)
has at least two positive solutions for λ ∈ �.
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