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Abstract
In the present paper, we consider the abstract Cauchy problem for the fractional
differential equation

du(t)
dt

+ D
1
2
t u(t) + A(t)u(t) = f (t), 0 < t < 1, u(0) = 0 ()

in an arbitrary Banach space E with the strongly positive operators A(t). The
well-posedness of this problem in spaces of smooth functions is established. The
coercive stability estimates for the solution of problems for 2mth order
multidimensional fractional parabolic equations and one-dimensional fractional
parabolic equations with nonlocal boundary conditions in a space variable are
obtained. The stable difference scheme for the approximate solution of this problem
is presented. The well-posedness of the difference scheme in difference analogues of
spaces of smooth functions is established. In practice, the coercive stability estimates
for the solution of difference schemes for the fractional parabolic equation with
nonlocal boundary conditions in a space variable and the 2mth order
multidimensional fractional parabolic equation are obtained.
MSC: 65M12; 65N12

Keywords: fractional parabolic equation; Basset problem; well-posedness; coercive
stability

1 Introduction
It is known that differential equations involving derivatives of noninteger order have
shown to be adequate models for various physical phenomena in areas like rheology,
damping laws, diffusion processes, etc. Methods of solutions of problems for fractional
differential equations have been studied extensively by many researchers (see, e.g., [–]
and the references given therein).
The role played by coercive stability inequalities (well-posedness) in the study of bound-

ary value problems for parabolic partial differential equations is well known (see, e.g., [–
]). In the present paper, the initial value problem

du(t)
dt

+D


t u(t) +A(t)u(t) = f (t),  < t < , u() =  ()

for the fractional differential equation in an arbitrary Banach space E with the linear (un-
bounded) operators A(t) is considered. Here u(t) and f (t) are the unknown and the given
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functions, respectively, defined on [,T] with values in E. The derivative u′(t) is under-
stood as the limit in the norm of E of the corresponding ratio of differences. A(t) is a given
closed linear operator in E with the domain D(A(t)) =D, independent of t and dense in E.
Finally, u() = .
Here D



t = D



+ is the standard Riemann-Liouville derivative of order 

 . This fractional
differential equation corresponds to the Basset problem []. It represents a classical prob-
lem in fluid dynamics where the unsteady motion of a particle accelerates in a viscous
fluid due to the gravity of force. Recently, fractional Basset equations with independent in
t operator coefficients A(t) = A have been studied extensively (see, e.g., [–] and the
references given therein).
In the present paper, the well-posedness of problem () with dependent in t operator

coefficients A(t) in spaces of smooth functions is established. In practice, the coercive sta-
bility estimates for the solution of problems for mth order multidimensional fractional
parabolic equations and one-dimensional fractional parabolic equations with nonlocal
boundary conditions in a space variable are obtained. The stable difference scheme for
the approximate solution of initial value problem ()

⎧⎨
⎩

τ–(uk – uk–) +Akuk + √
π

∑k
m=

�(k–m+ 
 )

(k–m)!
um–um–

τ



= fk ,

fk = f (tk), Ak = A(tk), tk = kτ ,  ≤ k ≤ N , Nτ = , u = 
()

is presented. Here �(k –m + 
 ) =

∫ ∞
 tk–m– 

 e–t dt.
The paper is organized as follows. The well-posedness of problem () in spaces of

smooth functions is established in Section . In Section  the coercive stability estimates
for the solution of problems for mth order multidimensional fractional parabolic equa-
tions and one-dimensional fractional parabolic equations with nonlocal boundary condi-
tions are obtained. The well-posedness of () in difference analogues of spaces of smooth
functions is established and the coercive stability estimates for the solution of difference
schemes for the fractional parabolic equation with nonlocal boundary conditions in a
space variable and the mth order multidimensional fractional parabolic equation are ob-
tained in Section .

2 The well-posedness of problem (2)
A function u(t) is called a solution of problem () if the following conditions are satisfied:
(i) u(t) is continuously differentiable on the segment [, ]. The derivatives at the end-

points of the segment are understood as the appropriate unilateral derivatives.
(ii) The element u(t) belongs to D(A(t)) for all t ∈ [, ] and the function A(t)u(t) is con-

tinuous on the segment [, ].
(iii) u(t) satisfies the equation and the initial condition ().
A solution of problem () defined in this manner will from now on be referred to as

a solution of problem () in the space C(E) = C([, ],E) of all continuous functions ϕ(t)
defined on [, ] with values in E equipped with the norm

‖ϕ‖C(E) = max
≤t≤

∥∥ϕ(t)
∥∥
E . ()

http://www.boundaryvalueproblems.com/content/2013/1/31
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In this paper, positive constants, which can differ in time, are indicated with an M. On
the other hand,M(α,β , . . .) is used to focus on the fact that the constant depends only on
α,β , . . . .
The well-posedness in C(E) of boundary value problem () means that the coercive in-

equality

∥∥u′∥∥
C(E) +

∥∥A(·)u∥∥
C(E) ≤ M‖f ‖C(E) ()

is true for its solution u(t) ∈ C(E).
Suppose that for each t ∈ [, ] the operator –A(t) generates an analytic semigroup

exp{–sA(t)} (s ≥ ) with an exponentially decreasing norm, when s → +∞, i.e., the fol-
lowing estimates

∥∥exp(–sA(t))∥∥E→E ,
∥∥sA(t) exp(–sA(t))∥∥E→E ≤ Me–δs (s > ) ()

hold for someM ∈ [, +∞), δ ∈ (, +∞). From this inequality it follows the operator A–(t)
exists and is bounded, and hence A(t) is closed in C(E).
Suppose that the operator A(t)A–(s) is Hölder continuous in t in the uniform operator

topology for each fixed s, that is,

∥∥[
A(t) –A(τ )

]
A–(s)

∥∥
E→E ≤ M|t – τ |ε ,  < ε ≤ , ≤ t, s, τ ≤ . ()

An operator-valued function v(t, s), defined and strongly continuous jointly in t, s for
 ≤ s < t ≤ , is called a fundamental solution of () if
() the operator v(t, s) is strongly continuous in t and s for  ≤ s < t ≤ T ,
() the following identity holds:

v(t, s) = v(t, τ )v(τ , s), v(t, t) = I for  ≤ s≤ τ ≤ t ≤ ,

() the operator v(t, s)maps the region D into itself. The operator
u(t, s) = A(t)v(t, s)A–(s) is bounded and strongly continuous in t and s for
 ≤ s < t ≤ ,

() on the region D the operator v(t, s) is strongly differentiable relative to t and s, while

∂v(t, s)
∂t

= –A(t)v(t, s) ()

and

∂v(t, s)
∂s

= v(t, s)A(s). ()

Now, let us obtain the representation for the solution of problem (). The initial value
problem

du
dt

+A(t)u(t) = F(t),  < t < , u() = u ()

http://www.boundaryvalueproblems.com/content/2013/1/31
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has a unique solution [] and the following formula holds:

u(t) = v(t, )u +
∫ t


v(t, s)F(s)ds. ()

Using u() =  and the formula F(s) = f (s) –D


s u(s), we get

u(t) = –
∫ t


v(t, s)D



s u(s)ds +

∫ t


v(t, s)f (s)ds. ()

Now,wewill give a series of interesting lemmas and estimates concerning the fundamental
solution v(t, s) of () which will be useful in the sequel.

Lemma . For any  ≤ s < t ≤  and u ∈D, the following identities hold:

v(t, s)u = exp
{
–(t – s)A(s)

}
u ()

+
∫ t

s
v(t, z)

[
A(s) –A(z)

]
A–(s) exp

{
–(z – s)A(s)

}
A(s)udz, ()

v(t, s)u = exp
{
–(t – s)A(t)

}
u ()

+
∫ t

s
exp

{
–(t – z)A(t)

}[
A(z) –A(t)

]
v(z, s)udz. ()

Lemma . For any  ≤ s < t ≤ t + r ≤ ,  ≤ α ≤  and  ≤ ε ≤ , the following estimates
hold:

∥∥v(t, s)∥∥E→E ≤ M, ()∥∥A(t)v(t, s)A–(s)
∥∥
E→E ≤ M, ()∥∥v(t, s) – exp

{
–(t – s)A(t)

}∥∥
E→E ≤ M(t – s)ε , ()∥∥A(t)[v(t, s) – exp

{
–(t – s)A(t)

}]∥∥
E→E ≤ M(t – s)ε–, ()∥∥A(t)v(t, s)∥∥E→E ≤ M(t – s)–. ()

Theorem . Let A(t) be a strongly positive operator in a Banach space E and f (t) ∈ C(E).
Then for the solution u(t) in C(E) of initial value problem (), the following stability in-
equality holds:

∥∥D 

t u

∥∥
C(E) +

∥∥u′ +A(·)u∥∥
C(E) ≤ M‖f ‖C(E). ()

Proof Using formula (), we get

u′(t) = –D


t u(t) + f (t) +

∫ t


A(t)v(t, s)D



s u(s)ds –

∫ t


A(t)v(t, s)f (s)ds. ()

Applying formula () and the formula

D


t u(t) =

∫ t



u′(p)dp
√

π (t – p) 
, ()

http://www.boundaryvalueproblems.com/content/2013/1/31
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we obtain

D


t u(t) =

∫ t




√

π (t – s) 
(
–D



s u(s) + f (s)

)
ds

+
∫ t



∫ t

s


√

π (t – p) 
A(p)v(p, s)dpD



s u(s)ds

–
∫ t



∫ t

s


√

π (t – p) 
A(p)v(p, s)dpf (s)ds. ()

Let us first obtain the estimate

∥∥∥∥
∫ t

s


√

π (t – p) 
A(p)v(p, s)dp

∥∥∥∥
E→E

≤ M√
t – s

()

for any  ≤ s < t ≤ . We have that

∫ t

s


√

π (t – p) 
A(p)v(p, s)dp =

∫ t

t+s



√

π (t – p) 
A(p)v(p, s)dp ()

+
∫ t+s



s


√

π (t – p) 
A(p)v(p, s)dp = J + J. ()

Applying estimate (), we get

‖J‖E→E ≤ M
∫ t

t+s



√

π (t – p) 


p – s
dp≤ M

t – s

∫ t

t+s



√

π (t – p) 
dp =

M√
t – s

. ()

Now, we will estimate J. We have that

J =
√

π
√
t – s

I – v
(
t + s


, s
) √

√
π

√
t – s

+
∫ t+s



s


√

π (t – p) 
v(p, s)dp. ()

Applying estimate (), we get

‖J‖E→E ≤ √
t – s

+M
√
√

t – s
+M

∫ t+s


s



√

π (t – p) 
dp≤ M√

t – s
. ()

Estimate () follows from estimates () and ().
Now, let us first estimate z(t) = ‖D 


t u(t)‖E . Applying the triangle inequality and estimate

(), we get

z(t) ≤ M
∫ t



√
t – s

z(s)ds +M
∫ t



√
t – s

∥∥f (s)∥∥E ds ()

for any t ∈ [, ]. Applying the above inequality and the integral inequality, we obtain

max
≤t≤

z(t) ≤ M max
≤t≤

∥∥f (t)∥∥E . ()

http://www.boundaryvalueproblems.com/content/2013/1/31
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Using the triangle inequality and equation (), we get

max
≤t≤

∥∥ut +A(t)u(t)
∥∥
E ≤

[
max
≤t≤

∥∥f (t)∥∥E + max
≤t≤

∥∥D 

t u(t)

∥∥
E

]
()

≤ M max
≤t≤

∥∥f (t)∥∥E . ()

Estimate () follows from estimates () and (). Theorem . is proved. �

With the help ofA(t), we introduce the fractional spaces Eα(E,A(t)),  < α < , consisting
of all v ∈ E for which the following norms are finite:

‖v‖Eα = sup
z>

z–α
∥∥A(t) exp{–zA(t)}v∥∥E . ()

From () and () it follows that

Theorem . Eα(E,A(t)) = Eα(E,A()) for all  < α <  and  ≤ t ≤ .

Problem () is not well posed in C(E) for arbitrary E. It turns out that a Banach space
E can be restricted to a Banach space E′ in such a manner that the restricted problem ()
in E′ will be well posed in C(E′). The role of E′will be played here by the fractional spaces
Eα = Eα(A(t),E) ( < α < ).

Theorem . Suppose f (t) ∈ C(Eα) ( < α < ). Suppose that assumptions () and () hold
and  < α ≤ ε < . Then for the solution u(t) in C(Eα) of problem (), the coercive inequal-
ity

∥∥u′∥∥
C(Eα )

+
∥∥A(·)u∥∥

C(Eα )
≤ Mα–( – α)–‖f ‖C(Eα ) ()

holds.

Proof By Theorem .,

∥∥D 

t u

∥∥
C(Eα )

≤ M‖f ‖C(Eα ) ()

for the solution of initial value problem (). The proof of the estimate

∥∥A(·)u∥∥
C(Eα )

≤ Mα–( – α)–‖f ‖C(Eα ) ()

for the solution of initial value problem () is based on formula (), estimate () and the
following estimates []:

max
≤t≤

∥∥∥∥
∫ t


A(t)v(t, s)f (s)ds

∥∥∥∥
Eα

≤ Mα–( – α)–‖f ‖C(Eα ), ()

max
≤t≤

∥∥∥∥
∫ t


A(t)v(t, s)D



s u(s)ds

∥∥∥∥
Eα

≤ Mα–( – α)–
∥∥D 


t u

∥∥
C(Eα )

. ()

http://www.boundaryvalueproblems.com/content/2013/1/31
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Using equation () and the triangle inequality, we get

max
≤t≤

∥∥u′(t)
∥∥
Eα

≤
[
max
≤t≤

∥∥f (t)∥∥Eα
+ max

≤t≤

∥∥A(t)u(t)∥∥Eα
+ max

≤t≤

∥∥D 

t u(t)

∥∥
Eα

]
≤ Mα

–( – α)– max
≤t≤

∥∥f (t)∥∥Eα
. ()

Estimate () follows from estimates () and (). Theorem . is proved. �

Let us give, without proof, the following result.

Theorem . Suppose that assumption () holds. Suppose that the operator A(t)A–(s) is
Hölder continuous in t in the uniform operator topology for each fixed s, that is,

∥∥[
A(t) –A(τ )

]
A–(s)

∥∥
Eα→Eα

≤ M|t – τ |ε ,  < ε ≤ , ()

where M and ε are positive constants independent of t, s and τ for  ≤ t, s, τ ≤ T . Suppose
f (t) ∈ C(Eα) ( < α < ). Then for the solution u(t) in C(Eα) of problem (), the coercive
inequality

∥∥u′∥∥
C(Eα )

+
∥∥A(·)u∥∥

C(Eα )
≤ Mα–( – α)–‖f ‖C(Eα ) ()

holds.

3 Applications
Now, we consider the applications of Theorems ., . and ..
First, the Cauchy problem on the range { ≤ t ≤ ,x ∈ R

n} for the m-order multidi-
mensional fractional parabolic equation is considered:

⎧⎨
⎩

∂v(t,x)
∂t +D



t v(t,x) +

∑
|r|=m ar(t,x) ∂ |r|v(t,x)

∂xr ··· ∂xrnn
+ σv(t,x) = f (t,x),  < t < ,

v(,x) = , x ∈R
n, |r| = r + · · · + rn,

()

where ar(t,x) and f (t,x) are given as sufficiently smooth functions. Here, σ is a sufficiently
large positive constant.
Let us consider a differential operator with constant coefficients of the form

B =
∑

|r|=m
br

∂r+···+rn

∂xr
· · · ∂xrnn

, ()

acting on functions defined on the entire space Rn. Here r ∈R
n is a vector with nonnega-

tive integer components, |r| = r + · · · + rn. If ϕ(y) (y = (y, . . . , yn) ∈ R
n) is an infinitely dif-

ferentiable function that decays at infinity together with all its derivatives, then by means
of the Fourier transformation, one establishes the equality

F(Bϕ)(ξ ) = B(ξ )F(ϕ)(ξ ). ()

http://www.boundaryvalueproblems.com/content/2013/1/31
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Here the Fourier transform operator is defined by the following rule:

F(ϕ)(ξ ) = (π )–n/
∫
Rn

exp
{
–i(y, ξ )

}
ϕ(y)dy, ()

(y, ξ ) = yξ + · · · + ynξn. ()

The function B(ξ ) is called the symbol of the operator B and is given by

B(ξ ) =
∑

|r|=m
br(iξ)r · · · (iξn)rn . ()

We will assume that the symbol

Bt,x(ξ ) =
∑

|r|=m
ar(t,x)(iξ)r · · · (iξn)rn , ξ = (ξ, . . . , ξn) ∈R

n ()

of the differential operator of the form

Bt,x =
∑

|r|=m
ar(t,x)

∂ |r|

∂xr · · · ∂xrnn
()

acting on functions defined on the space Rn, satisfies the inequalities

 <M|ξ |m ≤ (–)mBt,x(ξ )≤ M|ξ |m < ∞ ()

for ξ 
= . Problem () has a unique smooth solution. This allows us to reduce problem
() to the abstract Cauchy problem () in a Banach space E = Cμ(Rn) of all continuous
bounded functions defined on R

n satisfying the Hölder condition with the indicator μ ∈
(, ) with a strongly positive operator At,x = Bt,x + δI defined by () (see [, ]).

Theorem . For the solution of boundary problem (), the following estimates are sat-
isfied:

∥∥D 

t v

∥∥
C(Cμ(Rn)) ≤ M(μ)‖f ‖C(Cμ(Rn)),  ≤ μ ≤ , ()

‖vt‖C(Cμ+mα (Rn)) ≤ M(α,μ)‖f ‖C(Cμ+mα (Rn)),  < mα +μ < . ()

The proof of Theorem . is based on the abstract Theorems ., ., . and the coer-
civity inequality for an elliptic operator At,x in Cμ(Rn) and on the following theorem on
the structure of the fractional spaces Eα(Cμ(Rn),At,x).

Theorem . Eα(Cμ(Rn),At,x) = Cmα+μ(Rn) for all  < mα +μ <  and  ≤ t ≤  [].

Second, we consider the mixed boundary value problem for the fractional parabolic
equation

⎧⎪⎪⎨
⎪⎪⎩

∂v(t,x)
∂t +D



t v(t,x) – a(t,x) ∂v(t,x)

∂x + σv(t,x) = f (t,x),  < t < ,  < x < ,

v(,x) = , ≤ x ≤ ,

u(t, ) = u(t, ), ux(t, ) = ux(t, ),  ≤ t ≤ ,

()

http://www.boundaryvalueproblems.com/content/2013/1/31
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where a(t,x) and f (t,x) are given sufficiently smooth functions and a(t,x) ≥ a > . Here,
σ is a sufficiently large positive constant.
We introduce the Banach spaces Cβ [, ] ( < β < ) of all continuous functions ϕ(x)

satisfying the Hölder condition for which the following norms are finite:

‖ϕ‖Cβ [,] = ‖ϕ‖C[,] + sup
≤x<x+τ≤

|ϕ(x + τ ) – ϕ(x)|
τβ

, ()

where C[, ] is the space of all continuous functions ϕ(x) defined on [,] with the usual
norm

‖ϕ‖C[,] = max
≤x≤

∣∣ϕ(x)∣∣. ()

It is known that the differential expression []

At,xv = –a(t,x)v′′(t,x) + σv(t,x) ()

defines a positive operator At,x acting in Cβ [, ] with the domain Cβ+[, ] and satisfying
the conditions v(t, ) = v(t, ), vx(t, ) = vx(t, ). Therefore, we can replace the mixed prob-
lem () by the abstract boundary value problem (). Using the results of Theorems .,
., ., we can obtain the following theorem.

Theorem . For the solution of mixed problem (), the following estimates are valid:

∥∥D 

t v

∥∥
C(Cμ[,]) ≤ M(μ)‖f ‖C(Cμ[,]), ≤ μ ≤ , ()

‖vt‖C(Cμ+mα [,]) ≤ M(α,μ)‖f ‖C(Cμ+mα [,]),  < mα +μ < . ()

The proof of Theorem . is based on abstract Theorems ., ., . and on the follow-
ing theorem on the structure of the fractional spaces Eα(C[, ],At,x).

Theorem . Eα(C[, ],At,x) = Cα[, ] for all  < α < 
 ,  ≤ t ≤  [].

4 The well-posedness of problem (3)
Let us first obtain the representation for the solution of problem (). It is clear that the
first order of accuracy difference scheme

τ–(uk – uk–) +Akuk = Fk ,  ≤ k ≤ N , Nτ = , u =  ()

has a solution and the following formula holds:

uk =
k∑
s=

uτ (k, s)Fsτ ,  ≤ k ≤ N , ()

where

uτ (k, j) =

⎧⎨
⎩Rk · · ·Rj+, k > j,

I, k = j.
()

http://www.boundaryvalueproblems.com/content/2013/1/31
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Here Rk = (I + τAk)–. Denote that

D


τ uk =

√
π

k∑
m=

�(k –m + 
 )

(k –m)!
um – um–

τ



. ()

Applying the formula Fk = fk –D


τ uk , we get

uk = –
k∑
s=

uτ (k, s)D


τ usτ +

k∑
s=

uτ (k, s)fsτ ,  ≤ k ≤ N . ()

So, formula () gives the representation for the solution of problem ().
Let Fτ (E) be the linear space of mesh functions ϕτ = {ϕk}N with values in the Banach

space E. Next on Fτ (E) we introduce the Banach space Cτ (E) = C([, ]τ ,E) with the norm

∥∥ϕτ
∥∥
Cτ (E)

= max
≤k≤N

‖ϕk‖E . ()

Theorem . Let A(t) be a strongly positive operator in a Banach space E. Then for the
solution uτ = {uk}N in Cτ (E) of initial value problem (), the stability inequality

∥∥{
D



τ uk

}N


∥∥
Cτ (E)

+
∥∥{

τ–(uk – uk–) +Akuk
}N


∥∥
Cτ (E)

≤ M
∥∥f τ

∥∥
Cτ (E)

()

holds.

Proof Using formula (), we get

τ–(uk – uk–) = –D


τ uk +

k∑
s=

Akuτ (k, s)D


τ usτ + fk –

k∑
s=

Akuτ (k, s)fsτ . ()

Applying formulas () and (), we obtain

D


τ uk =

√
π

k∑
m=

�(k –m + 
 )

(k –m)!
τ



[
–D



τ um + fm

]

+
√
π

k∑
m=

�(k –m + 
 )

(k –m)!

[ m∑
s=

Akuτ (k, s)D


τ usτ


 –

m∑
s=

Akuτ (k, s)fsτ



]

=
√
π

k∑
m=

�(k –m + 
 )

(k –m)!
τ



[
–D



τ um + fm

]

+
√
π

k∑
s=

k∑
m=s

�(k –m + 
 )

(k –m)!
Amuτ (m, s)D



τ usτ




–
√
π

k∑
s=

k∑
m=s

�(k –m + 
 )

(k –m)!
Amuτ (m, s)fsτ


 . ()

Let us first obtain the estimate∥∥∥∥∥ √
π

k∑
m=s

�(k –m + 
 )

(k –m)!
Amuτ (m, s)τ




∥∥∥∥∥
E→E

≤ M√
(k – s)τ

()
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for any  ≤ s < k ≤ N . We have that

√
π

k∑
m=s

�(k –m + 
 )

(k –m)!
Amuτ (m, s)τ




=
√
π

k∑
m=[ s+k ]

�(k –m + 
 )

(k –m)!
Amuτ (m, s)τ




+
√
π

[ s+k ]–∑
m=s

�(k –m + 
 )

(k –m)!
Amuτ (m, s)τ


 = J + J. ()

Using estimates

∥∥Akuτ (k, s)
∥∥
E→E ≤ M

(k – s + )τ
,

∥∥uτ (k, s)
∥∥
E→E ≤ M,  ≤ k ≤ N ()

and the following elementary inequality:

�(k –m + 
 )

(k –m)!
≤ √

k –m
,  ≤ m < k, ()

we obtain

‖J‖E→E ≤ √
π

k∑
m=[ s+k ]

�(k –m + 
 )

(k –m)!
∥∥Amuτ (m, s)

∥∥
E→Eτ


 ()

≤ M
√
π

k∑
m=[ s+k ]

�(k –m + 
 )

(k –m)!


(m – s + )τ
τ


 ()

≤ M
(k – s)τ

√
π

k∑
m=[ s+k ]

τ√
(k –m)τ

≤ M√
(k – s)τ

. ()

Now, we will estimate J. We have that

J =
√
π

�(k – s + 
 )

(k – s)!
τ– 

 –
√
π

�(k – [ s+k ] + 
 )

(k – [ s+k ] + )!
uτ

([
s + k


]
, s

)
τ– 

 ()

+
√
π

[ s+k ]–∑
m=s+

[
�(k –m + 

 )
(k –m)!

–
�(k –m + 

 )
(k –m + )!

]
uτ (m – , s)τ– 

 . ()

Applying estimates () and (), we get

‖J‖E→E ≤ √
π

√
(k – s)τ

+
√
π

∥∥∥∥uτ

([
s + k


]
, s

)∥∥∥∥
E→E

√
(k – [ s+k ] + )τ

()

+
√
π

[ s+k ]–∑
m=s+

∣∣∣∣�(k –m + 
 )

(k –m)!
–

�(k –m + 
 )

(k –m + )!

∣∣∣∣∥∥uτ (m – , s)
∥∥
E→Eτ

– 
 ()

http://www.boundaryvalueproblems.com/content/2013/1/31


Ashyralyev Boundary Value Problems 2013, 2013:31 Page 12 of 18
http://www.boundaryvalueproblems.com/content/2013/1/31

≤ √
π

√
(k – s)τ

+
√
π
M

√
√

(k – s)τ
()

+M

√
π

[ s+k ]–∑
m=s+

τ

(k –m + )τ
√
(k –m)τ

≤ M√
(k – s)τ

. ()

Estimate () follows from estimates () and ().
Now, let us first estimate zk = ‖D 


τ uk‖E . Applying the triangle inequality and estimate

(), we get

zk ≤ √
π

k∑
m=

�(k –m + 
 )

(k –m)!
τ



[
zm + ‖fm‖E

]
()

+
√
π

k∑
s=

∥∥∥∥∥
k∑

m=s

�(k –m + 
 )

(k –m)!
Amuτ (m, s)

∥∥∥∥∥
E→E

zsτ

 ()

+
√
π

k∑
s=

∥∥∥∥∥
k∑

m=s

�(k –m + 
 )

(k –m)!
Amuτ (m, s)

∥∥∥∥∥
E→E

‖fs‖Eτ 
 ()

≤ M

k–∑
s=

√
(k – s)τ

τ
[
zs + ‖fs‖E

]
+M

[
zk + ‖fk‖E

]
τ


 ()

for any k = , . . . ,N . Applying the above inequality and the difference analogue of the in-
tegral inequality, we obtain

∥∥{
D



τ uk

}N


∥∥
Cτ (E)

≤ M
∥∥{fk}N

∥∥
Cτ (E)

. ()

Using the triangle inequality and equation (), we get

∥∥{
τ–(uk – uk–) +Akuk

}N


∥∥
Cτ (E)

≤ [∥∥{fk}N
∥∥
Cτ (E)

+
∥∥{

D


τ uk

}N


∥∥
Cτ (E)

]
≤ M

∥∥f τ
∥∥
Cτ (E)

. ()

Estimate () follows from estimates () and (). Theorem . is proved. �

With the help of A(t), we introduce the fractional spaces E′
α = E′

α(E,A(t)),  < α < ,
consisting of all v ∈ E for which the following norms are finite:

‖v‖E′
α
= sup

λ>
λα

∥∥A(t)(λ +A(t)
)–v∥∥E . ()

From () it follows that

Theorem . E′
α(E,A(t)) = E′

α(E,A()) for all  < α <  and  ≤ t ≤ .

Problem () is not well posed in Cτ (E) for arbitrary E. It turns out that a Banach space
E can be restricted to a Banach space E′ in such a manner that the restricted problem ()
in E′ will be well posed in C(E′). The role of E′ will be played here by the fractional spaces
Eα = Eα(A(t),E) ( < α < ).

http://www.boundaryvalueproblems.com/content/2013/1/31


Ashyralyev Boundary Value Problems 2013, 2013:31 Page 13 of 18
http://www.boundaryvalueproblems.com/content/2013/1/31

Theorem . Suppose that assumptions () and () hold and  < α ≤ ε < . Then for the
solution uτ = {uk}N in Cτ (E′

α) of initial value problem (), the coercive stability inequality

∥∥{
τ–(uk – uk–)

}N


∥∥
Cτ (E′

α )
+

∥∥{Akuk}N
∥∥
Cτ (E′

α )

≤ Mα–( – α)–
∥∥f τ

∥∥
Cτ (E′

α )
()

holds.

Proof By Theorem .,

∥∥{
D



τ uk

}N


∥∥
Cτ (E′

α )
≤ M

∥∥f τ
∥∥
Cτ (E′

α )
()

for the solution of initial value problem (). The proof of the estimate

∥∥{Akuk}N
∥∥
Cτ (E′

α )
≤ Mα–( – α)–

∥∥f τ
∥∥
Cτ (E′

α )
()

for the solution of initial value problem () is based on estimate () and the following
estimates []:

max
≤k≤N

∥∥∥∥∥
k∑
s=

Akuτ (k, s)fsτ

∥∥∥∥∥
E′

α

≤Mα–( – α)–
∥∥f τ

∥∥
C(E′

α )
, ()

max
≤k≤N

∥∥∥∥∥
k∑
s=

Akuτ (k, s)D


τ usτ

∥∥∥∥∥
E′

α

≤ Mα–( – α)–
∥∥{

D


τ uk

}N


∥∥
C(E′

α )
. ()

Using the triangle inequality and equation (), we get

∥∥{
τ–(uk – uk–)

}N


∥∥
Cτ (E′

α )

≤ [∥∥f τ
∥∥
C(E′

α )
+

∥∥{Akuk}N
∥∥
Cτ (E′

α )
+

∥∥{
D



τ u

}N


∥∥
C(E′

α )

]
≤ Mα

–( – α)–
∥∥f τ

∥∥
C(E′

α )
. ()

Estimate () follows from estimates () and (). Theorem . is proved. �

Let us give, without proof, the following result.

Theorem . Suppose that assumptions () and () hold. Then for the solution uτ =
{uk}N in Cτ (E′

α) of initial value problem (), the coercive stability inequality

∥∥{
τ–(uk – uk–)

}N


∥∥
Cτ (E′

α )
+

∥∥{Akuk}N
∥∥
Cτ (E′

α )

≤ Mα–( – α)–
∥∥f τ

∥∥
Cτ (E′

α )
()

holds.

Note that by passing to the limit for τ → , one can recover Theorems .-. and ..
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5 Applications
Now, we consider the applications of Theorems ., . and ..
First, initial value problem () is considered. The discretization of problem () is car-

ried out in two steps. In the first step, the grid space Rn
h ( < h ≤ h) is defined as the set

of all points of the Euclidean space Rn whose coordinates are given by

xk = skh, sk = ,±,±, . . . ,k = , . . . ,n. ()

The difference operatorAt,x
h = Bt,x

h +σ Ih is assigned to the differential operatorAx = Bx+σ I ,
defined by (). The operator

Bt,x
h = h–m

∑
m≤|s|≤S

bt,xs �
s
–�

s
+ · · ·�sn–

n– �sn
n+ ()

acts on functions defined on the entire spaceRn
h . Here s ∈R

n is a vector with nonnegative
integer coordinates,

�k±f h(x) = ±(
f h(x± ekh) – f h(x)

)
, ()

where ek is the unit vector of the axis xk .
An infinitely differentiable function ϕ(x) of the continuous argument x ∈R

n that is con-
tinuous and bounded together with all its derivatives is said to be smooth. We say that the
difference operator At,x

h is a λth order (λ > ) approximation of the differential operator
At,x if the inequality

sup
x∈Rn

h

∣∣At,x
h ϕ(x) –At,xϕ(x)

∣∣ ≤ M(ϕ)hλ ()

holds for any smooth function ϕ(x). The coefficients bt,xs are chosen in such a way that the
operator At,x

h approximates in a specified way the operator At,x. It will be assumed that
the operator At,x

h approximates the differential operator At,x with any prescribed order
[, ].
The function At,x(ξh,h) is obtained by replacing the operator �k± in the right-hand

side of equality () with the expression ±(exp{±iξkh} – ), respectively, and is called the
symbol of the difference operator Bt,x

h .
It will be assumed that for |ξkh| ≤ π and fixed x, the symbol At,x(ξh,h) of the operator

Bt,x
h = At,x

h – σ Ih satisfies the inequalities

(–)mAt,x(ξh,h)≥ M|ξ |m, ∣∣argAt,x(ξh,h)
∣∣ ≤ φ < φ ≤ π


. ()

Suppose that the coefficient bxs of the operator B
t,x
h = At,x

h –σ Ih is bounded and satisfies the
inequalities

∣∣bt,x+ekhs – bt,xs
∣∣ ≤ Mhε , x ∈R

n
h, ε ∈ (, ]. ()

http://www.boundaryvalueproblems.com/content/2013/1/31
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With the help of At,x
h , we arrive at the nonlocal boundary value problem

⎧⎨
⎩

dvh(t,x)
dt +D



t vh(t,x) +At,x

h vh(t,x) = f h(t,x),  < t < ,x ∈ R
n
h,

vh(,x) = , x ∈R
n
h

()

for an infinite system of ordinary differential equations.
In the second step, problem () is replaced by the difference scheme

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uhk (x)–u
h
k–(x)

τ
+ √

π

∑k
m=

�(k–m+ 
 )

(k–m)!
uhm–uhm–

τ



+Ak,x
h uhk = f hk (x),

f hk (x) = f h(tk ,x), tk = kτ ,  ≤ k ≤ N – , Nτ = , x ∈ R
n
h,

uh(x) = , x ∈R
n
h.

()

Based on the number of corollaries of the abstract theorems given in the above, to for-
mulate the result, one needs to introduce the spaces Ch = C(Rn

h) and Cβ

h = Cβ (Rn
h) of all

bounded grid functions uh(x) defined on R
n
h , equipped with the norms

∥∥uh∥∥Ch
= sup

x∈Rn
h

∣∣uh(x)∣∣, ()

∥∥uh∥∥Cβ
h
= sup

x∈Rn
h

∣∣uh(x)∣∣ + sup
x,y∈Rn

h

|uh(x) – uh(x + y)|
|y|β . ()

Theorem . Suppose that assumptions () and () for the operator Ak,x
h hold. Then,

the solutions of difference scheme () satisfy the following stability estimates:

max
≤k≤N

∥∥D 

τ uhk

∥∥
Cμ
h

≤ M(μ) max
≤k≤N

∥∥f hk ∥∥
Cμ
h
,  ≤ μ ≤ ,

∥∥{
τ–(uhk – uhk–

)}N


∥∥
Cτ (C

μ+mα
h ) +

∥∥{Akuk}N
∥∥
Cτ (C

μ+mα
h )

≤ M(α,μ) max
≤k≤N

∥∥f hk ∥∥
Cμ+mα
h

,  < mα +μ < .

()

The proof of Theorem . is based on the abstract Theorems ., ., . and the strong
positivity of the operator Ax

h defined by () in Cμ

h and on the following two theorems on
the coercivity inequality for the solution of the elliptic difference equation in Cβ

h and on
the structure of the fractional space E′

α(Ch,Ax
h).

Theorem . Suppose that assumptions () and () for the operator Ak,x
h hold. Then

for the solutions of the elliptic difference equation

Ak,x
h uh(x) = ωh(x), x ∈ R

n
h, ()

the estimates []

∑
m≤|s|≤S

h–m
∥∥�

s
–�

s
+ · · ·�sn–

n– �sn
n+ u

h∥∥
Cβ
h

≤ M(σ ,β)
∥∥ωh∥∥

Cβ
h

()

are valid.
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Theorem . Suppose that assumptions () and () for the operator Ak,x
h hold. Then

for any  < α < 
m , the norms in the spaces E′

α(Ch,Ax
h) and Cmα

h are equivalent uniformly
in h [].

Second, we considermixed boundary value problem (). The discretization of problem
() is carried out in two steps. In the first step, let us define the grid space

[, ]h = {x : xr = rh,  ≤ r ≤ K ,Kh = }. ()

We introduce the Banach space Cβ

h = Cβ ([, ]h) ( < β < ) of the grid functions ϕh(x) =
{ϕr}K–

 defined on [, ]h, equipped with the norm

∥∥ϕh∥∥
Cβ
h
=

∥∥ϕh∥∥
Ch

+ sup
≤k<k+τ≤K–

|ϕk+r – ϕk|
τβ

, ()

where Ch = C([, ]h) is the space of the grid functions ϕh(x) = {ϕr}K–
 defined on [, ]h,

equipped with the norm

∥∥ϕh∥∥
Ch

= max
≤k≤K–

|ϕk|. ()

To the differential operatorA generated by problem (), we assign the difference operator
Ax
h by the formula

At,x
h ϕh(x) =

{
–
(
a(t,x)ϕ–

x
)
x,r + δϕr

}K–
 , ()

acting in the space of grid functions ϕh(x) = {ϕr}K satisfying the conditions ϕ = ϕK , ϕ –
ϕ = ϕK – ϕK–. With the help of Ax

h, we arrive at the initial boundary value problem⎧⎨
⎩

dvh(t,x)
dt +D



t vh(t,x) +At,x

h vh(t,x) = f h(t,x),  < t < ,x ∈ [, ]h,

vh(,x) = , x ∈ [, ]h
()

for an infinite system of ordinary fractional differential equations. In the second step, we
replace problem () by difference scheme ()

uhk (x) – uhk–(x)
τ

+
√
π

k∑
m=

�(k –m + 
 )

(k –m)!
uhm(x) – uhm–(x)

τ



+Ak,x
h uhk (x) = f hk (x),

f hk (x) =
{
f (tk ,xr)

}K–
 , ()

tk = kτ ,  ≤ k ≤ N – , Nτ = ; uh(x) = , x ∈ [, ]h.

Theorem . Let τ and h be sufficiently small numbers. Then, the solutions of difference
scheme () satisfy the following stability estimates:

max
≤k≤N

∥∥D 

τ uhk

∥∥
Cμ
h

≤ M(μ) max
≤k≤N

∥∥f hk ∥∥
Cμ
h
,  ≤ μ ≤ ,

∥∥{
τ–(uhk – uhk–

)}N


∥∥
Cτ (C

μ+α
h ) +

∥∥{Akuk}N
∥∥
Cτ (C

μ+α
h )

≤ M(α,μ) max
≤k≤N

∥∥f hk ∥∥
Cμ+α
h

,  < α +μ < .

()
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The proof of Theorem . is based on the abstract Theorems ., ., . and the strong
positivity of the operator At,x

h defined by () in Cμ

h and on the following theorem on the
structure of the fractional space E′

α(Ch,At,x
h ).

Theorem . For any  < α < 
 , the norms in the spaces E′

α(Ch,At,x
h ) and Cα

h are equiva-
lent uniformly in h and t ∈ [, ] [].
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