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Abstract
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1 Introduction and preliminaries
Let X, Y be real Banach spaces. Consider a linear mapping L : domL ⊂ X → Y and a
nonlinear operator N : X → Y . Here we assume that L is a Fredholm operator of index
zero, that is, ImL is closed and dimKerL = codim ImL < ∞. Then the solvability of the
operator equation

Lx =Nx

has been studied bymany researchers in the literature; see [–] and the references therein.
In [], Cremins established a fixed point index for A-proper semilinear operators defined
on cones which includes and improves the results in [, , ]. Using the fixed point in-
dex and the concept of a quasi-normal cone introduced in [], Cremins established a
norm-type existence theorem concerning cone expansion and compression in [], which
generalizes some corresponding results contained in [].
In this paper, we will use the properties of the fixed point index in [] and partial order to

present a new order-type existence theorem concerning cone expansion and compression
which extends the corresponding results in [].We recall that a partial order inX induced
by a cone K ⊂ X is defined by

x ≤ y ⇐⇒ y – x ∈ K .

As applications, we study the first- and second-order periodic boundary problems and ob-
tain new existence results. During the last few decades, periodic boundary value problems
have been studied by many researchers in the literature; see, for example, [–] and the
references therein. Our new results improve those contained in [, ].
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Next we recall some notations and results which will be needed in this paper. Let X
and Y be Banach spaces, D be a linear subspace of X, {Xn} ⊂ D and {Yn} ⊂ Y be the se-
quences of oriented finite dimensional subspaces such that Qny → y in Y for every y and
dist(x,Xn) →  for every x ∈D, whereQn : Y → Yn and Pn : X → Xn are sequences of con-
tinuous linear projections. The projection scheme � = {Xn,Yn,Pn,Qn} is then said to be
admissible for maps from D ⊂ X to Y . A map T : D ⊂ X → Y is called approximation-
proper (abbreviated A-proper) at a point y ∈ Y with respect to an admissible scheme � if
Tn ≡QnT |D∩Xn is continuous for each n ∈N and whenever {xnj : xnj ∈D∩Xnj} is bounded
with Tnjxnj → y, then there exists a subsequence {xnjk } such that xnjk → x ∈ D and Tx = y.
T is simply called A-proper if it is A-proper at all points of Y . L : domL ⊂ X → Y is a
Fredholm operator of index zero if ImL is closed and dimKerL = codim ImL < ∞. As a
consequence of this property, X and Y may be expressed as direct sums; X = X

⊕
X,

Y = Y ⊕ Y with continuous linear projections P : X → KerL = X and Q : Y → Y. The
restriction of L to domL ∩ X, denoted L, is a bijection onto ImL = Y with continuous
inverse L– : Y → domL ∩ X. Since X and Y have the same finite dimension, there
exists a continuous bijection J : Y → X. Let H = L + J–P, then H : domL ⊂ X → Y
is a linear bijection with bounded inverse. Let K be a cone in a Banach space X. Then
K =H(K ∩ domL) is a cone in Y . In [], Petryshyn has shown that an admissible scheme
�L can be constructed such that L is A-proper with respect to�L. The following properties
of the fixed point index indK and two lemmas can be found in [].

Proposition . Let � ⊂ X be open and bounded and ∂�K = ∂� ∩ K . Assume that
QnK ⊂ K, P + JQN + L– (I –Q)N maps K to K , and Lx �=Nx on ∂�K .

(P) (Existence property) If indK ([L,N],�) �= {}, then there exists x ∈ �K such that Lx =Nx.
(P) (Normality) If x ∈ �K , then indK ([L, –J–P + ŷ],�) = {}, where ŷ =Hx and ŷ(y) =

y for every y ∈H�K .
(P) (Additivity) If Lx �= Nx for x ∈ �K\(� ∪ �), where � and � are disjoint relatively

open subsets of �K , then

indK
(
[L,N],�

) ⊆ indK
(
[L,N],�

)
+ indK

(
[L,N],�

)

with equality if either of indices on the right is a singleton.
(P) (Homotopy invariance) If L–N(λ,x) is an A-proper homotopy on �K for λ ∈ [, ] and

(N(λ,x) + J–P)H– : K → K and θ /∈ (L –N(λ,x))(domL ∩ ∂�K ) for λ ∈ [, ], then
indK ([L,N(λ,x)],�) = indK (Tλ,U) is independent of λ ∈ [, ], where Tλ = (N(λ,x) +
J–P)H–.

Lemma . If L : domL → Y is Fredholm of index zero, � is an open bounded set and
�K ∩domL �= ∅, θ ∈ � ⊂ X. Let L–λN beA-proper for λ ∈ [, ].Assume that N is bounded
and P + JQN + L– (I –Q)N maps K to K . If Lx �= μNx – ( –μ)J–Px on ∂�K for μ ∈ [, ],
then

indK
(
[L,N],�

)
= {}.

Lemma . If L : domL → Y is Fredholm of index zero, � is an open bounded set and
�K ∩ domL �= ∅. Let L – λN be A-proper for λ ∈ [, ]. Assume that N is bounded and
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P + JQN + L– (I –Q)N maps K to K . If there exists e ∈ K\{θ} such that

Lx –Nx �= μe,

for every x ∈ ∂�K and all μ ≥ , then

indK
(
[L,N],�

)
= {}.

2 An abstract result
Wewill establish an abstract existence theorem concerning cone expansion and compres-
sion of order type, which reads as follows.

Theorem . If L : domL → Y is Fredholm of index zero, let L – λN be A-proper for λ ∈
[, ]. Assume that N is bounded and P + JQN +L– (I –Q)N maps K to K . Suppose further
that � and � are two bounded open sets in X such that θ ∈ � ⊂ � ⊂ �, � ∩ K ∩
domL �= ∅ and � ∩K ∩ domL �= ∅. If one of the following two conditions is satisfied:
(C) (P + JQN)x+ L– (I –Q)Nx� x for all x ∈ ∂� ∩K and (P + JQN)x+ L– (I –Q)Nx� x

for all x ∈ ∂� ∩K ;
(C) (P + JQN)x+ L– (I –Q)Nx� x for all x ∈ ∂� ∩K and (P + JQN)x+ L– (I –Q)Nx� x

for all x ∈ ∂� ∩K .

Then there exists x ∈ (�\�)∩K such that Lx =Nx.

Proof We assume that (C) is satisfied. First we show that

Lx �= μNx – ( –μ)J–Px, for any x ∈ ∂� ∩K ,μ ∈ [, ]. (.)

In fact, otherwise, there exist x ∈ ∂� ∩K and μ ∈ [, ] such that

Lx = μNx – ( –μ)J–Px,

then we obtain

(
L + J–P

)
x = μ

(
N + J–P

)
x.

Therefore,

x = μ
(
L + J–P

)–(N + J–P
)
x

= μ
[
(P + JQN)x + L– (I –Q)Nx

]
≤ (P + JQN)x + L– (I –Q)Nx,

which contradicts condition (C). From (.) and Lemma ., we have

indK
(
[L,N],�

)
= {}. (.)

http://www.boundaryvalueproblems.com/content/2013/1/37
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Choosing an arbitrary e ∈ K\{θ}, next we prove that

Lx –Nx �= μe. (.)

In fact, otherwise, there exist x ∈ ∂� ∩K and μ ≥  such that

Lx –Nx = μe,

then we obtain

(
L + J–P

)
x =

(
N + J–P

)
x +μe ≥

(
N + J–P

)
x,

in which the partial order is induced by the cone K in Y . So,

x ≥ (
L + J–P

)–(N + J–P
)
x = (P + JQN)x + L– (I –Q)Nx,

which is a contradiction to condition (C). Hence (.) holds, and then by Lemma ., we
have

indK
(
[L,N],�

)
= {}. (.)

It follows therefore from (.), (.) and the additivity property (P) of Proposition . that

indK
(
[L,N],�\�

)
= indK

(
[L,N],�

)
– indK

(
[L,N],�

)
= {} – {}
= {–}. (.)

Since the index is nonzero, the existence property (P) of Proposition . implies that there
exists x ∈ (�\�)∩K such that Lx =Nx.
Similarly, when (C) is satisfied, instead of (.), (.) and (.), we have

indK
(
[L,N],�

)
= {}, indK

(
[L,N],�

)
= {},

and therefore

indK
(
[L,N],�\�

)
= {}.

Also, we can assert that there exists x ∈ (�\�)∩K such that Lx =Nx. �

3 Applications
3.1 First-order periodic boundary value problems
We consider the following first-order periodic boundary value problem:

⎧⎨
⎩
x′(t) = f (t,x(t)), t ∈ (, ),

x() = x(),
(.)

where f : [, ]× [, +∞)→R is continuous and f (,x) = f (,x) for all x ∈R.

http://www.boundaryvalueproblems.com/content/2013/1/37
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Consider the Banach spaces X = Y = C[, ] endowed with the norm ‖x‖ =
maxt∈[,] |x(t)|. Define the cone K in X by

K =
{
x ∈ X : x(t)≥ , t ∈ [, ]

}
.

Let L be the linear operator from domL ⊂ X to Y with

domL =
{
x ∈ X : x′ ∈ C[, ],x() = x()

}
,

and

Lx(t) = x′(t), x ∈ domL, t ∈ [, ].

Let us define N : X → Y by

Nx(t) = f
(
t,x(t)

)
, t ∈ [, ].

Then (.) is equivalent to the equation

Lx =Nx.

It is obvious that L is a Fredholm operator of index zero with

KerL =
{
x ∈ domL : x(t)≡ c on [, ], c ∈ R

}
,

ImL =
{
y ∈ Y :

∫ 


y(s)ds = 

}
,

dimKerL = codim ImL = .

Next we define the projections P : X → X, Q : Y → Y by

Px =
∫ 


x(s)ds,

Qy =
∫ 


y(s)ds,

and the isomorphism J : ImQ → ImP as Jy = y. Note that for y ∈ ImL, the inverse operator

L– : ImL → domL∩KerP

of

L|domL∩KerP : domL∩KerP → ImL

is given by

(
L– y

)
(t) =

∫ 


K(t, s)y(s)ds,

http://www.boundaryvalueproblems.com/content/2013/1/37
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where

K(t, s) =

⎧⎨
⎩
s + , ≤ s < t ≤ ,

s, ≤ t ≤ s ≤ .

Set

G(t, s) =  +K(t, s) –
∫ 


K(t, s)ds.

We can verify that

G(t, s) =

⎧⎨
⎩


 – (t – s), ≤ s < t ≤ ,

 + (s – t), ≤ t ≤ s ≤ ,

and




≤ G(t, s)≤ 

, t, s ∈ [, ].

To state the existence result, we introduce two conditions:

(H) f (t,b) <  for all t ∈ [, ],
(H) f (t,x) >  for all (t,x) ∈ [, ]× [,a].

Theorem . Assume that there exist two positive numbers  < a < b such that (H), (H)
and

(H) f (t,x)≥ –
x for all (t,x) ∈ [, ]× [,b]

hold. Then (.) has at least one positive periodic solution x* ∈ K with a ≤ ‖x*‖ ≤ b.

Proof First, we note that L, as defined, is Fredholm of index zero, L– is compact by the
Arzela-Ascoli theorem and thus L – λN is A-proper for λ ∈ [, ] by [, Lemma (a)].
For each x ∈ K , then by condition (H),

Px + JQNx + L– (I –Q)Nx

=
∫ 


x(s)ds +

∫ 


f
(
s,x(s)

)
ds

+
∫ 


K(t, s)

(
f
(
s,x(s)

)
–

∫ 


f
(
s,x(s)

)
ds

)
ds

=
∫ 


x(s)ds +

∫ 


G(t, s)f

(
s,x(s)

)
ds

≥
∫ 



(
 –



G(t, s)

)
x(s)ds≥ .

Thus (P + JQN + L– (I –Q)N)(K)⊂ K .
Let

� =
{
x ∈ X : ‖x‖ < a

}
, � =

{
x ∈ X : ‖x‖ < b

}
.

http://www.boundaryvalueproblems.com/content/2013/1/37
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Clearly, � and � are bounded open sets and

θ ∈ � ⊂ � ⊂ �.

We now show that

(P + JQN)x + L– (I –Q)Nx� x for any x ∈ ∂� ∩K . (.)

In fact, if there exists x ∈ ∂� ∩K such that

(P + JQN)x + L– (I –Q)Nx ≥ x.

Then

x′
(t) ≤ f

(
t,x(t)

)
, t ∈ [, ].

Let t ∈ [, ] be such that x(t) = b. Clearly, the function x attains a maximum on [, ]
at t = t. Therefore x(t)x′

(t) = . As a consequence,

 = bx′
(t) ≤ bf

(
t,x(t)

)
= bf (t,b),

which is a contradiction to (H). Therefore (.) holds.
On the other hand, we claim that

(P + JQN)x + L– (I –Q)Nx� x for any x ∈ ∂� ∩K . (.)

In fact, if not, there exists x ∈ ∂� ∩K such that

(P + JQN)x + L– (I –Q)Nx ≤ x.

For any x ∈ ∂� ∩K , we have ‖x‖ = a, then  ≤ x(t)≤ a for t ∈ [, ]. By condition (H),
we have

x(t) ≥ (P + JQN)x(t) + L– (I –Q)Nx(t)

=
∫ 


x(s)ds +

∫ 


G(t, s)f

(
s,x(s)

)
ds

>
∫ 


x(s)ds, for any t ∈ [, ],

which is a contradiction. As a result, (.) is verified.
It follows from (.), (.) and Theorem . that there exists x* ∈ K ∩ (�\�) such that

Lx* =Nx* with a ≤ ‖x*‖ ≤ b. �

http://www.boundaryvalueproblems.com/content/2013/1/37
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Remark . In [], the following condition is required instead of (H):

(H*) there exist a ∈ (,b), t ∈ [, ], r ∈ (, ], and continuous functions g : [, ]→ [,∞),
h : (,a] → [,∞) such that f (t,x) ≥ g(t)h(x) for all t ∈ [, ] and x ∈ (,a], h(x)/xr is
nonincreasing on (,a] with

h(a)
r–

∫ 


G(t, s)g(s)ds≥ a.

Obviously, our condition (H) is muchweaker and less strict comparedwith (H*).More-
over, (H) is easier to check than (H*). So, our result generalizes and improves [, Theo-
rem ].

Remark . From the proof of Theorem ., we can see that condition (H) can be re-
placed by one of the following two relatively weaker conditions:

(H*
) f (t,x) ≥  for all (t,x) ∈ [, ]× [,a] and f (t, ·) is positive for almost everywhere on

[,a].
(H**

 ) limx→+ mint∈[,] f (t,x) > .

Remark . Finally in this section, we note that conditions (H) and (H) can be replaced
by the following asymptotic conditions:

(H′
) limx→+∞ f (t,x)

x <  uniformly for t;
(H′

) limx→+
f (t,x)
x >  uniformly for t.

Example . Let the nonlinearity in (.) be

f (t,x) = c(t)xα +μd(t)xβ – kx,

where  < α <  < β , c(t),d(t) ∈ C[, ] are positive -periodic functions, k ∈ (, /) and
μ >  is a positive parameter. Then (.) has at least one positive -periodic solution for
each  < μ < μ*, here μ* is some positive constant.

Proof We will apply Theorem . with f (t,x) = c(t)xα + μd(t)xβ – kx. Since k ∈ (, /), it
is easy to see that (H) holds. Set

T(x) =
kx – c*xα

d*xβ
,

where

c* =max
t

c(t), d* =max
t

d(t).

Since  < α <  < β , we have

T
(
+

)
= –∞, T(+∞) = .

One may easily see that there exists b >  such that

T(b) =
kb – c*bα

d*bβ
= sup

x>
T(x) > .

http://www.boundaryvalueproblems.com/content/2013/1/37
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Let

μ* =
kb – c*bα

d*bβ
.

Then, for each μ ∈ (,μ*), we have

f (t,b) = c(t)bα +μd(t)bβ – kb

< c*bα +μ*d*bβ – kb

= ,

which implies that (H) holds.
On the other hand, we have

lim
x→+

f (t,x)
x

= lim
x→+

(
c(t)
x–α

+μd(t)xβ–
)
– k > ,

which implies that (H′
) holds. Now we have the desired result. �

3.2 Second-order periodic boundary value problems
Let f : [, ]× [, +∞) →R be continuous and f (,x) = f (,x) for all x ∈ R. We will discuss
the existence of positive solutions of the second-order periodic boundary value problem

⎧⎨
⎩
–x′′(t) = f (t,x), t ∈ (, ),

x() = x(), x′() = x′().
(.)

Since some parts of the proof are in the same line as that of Theorem ., we will outline
the proof with the emphasis on the difference.
Let X, Y be Banach spaces and the cone K be as in Section .. In this case, we may

define

domL =
{
x ∈ X : x′′ ∈ C[, ],x() = x(),x′() = x′()

}
,

and let the linear operator L : domL → Y be defined by

Lx = –x′′, for x ∈ domL.

Then L is Fredholm of index zero,

KerL =
{
x ∈ domL : x(t)≡ constants

}
,

and

ImL =
{
y ∈ Y :

∫ 


y(s)ds = 

}
.

Define N : X → Y by

Nx(t) = f
(
t,x(t)

)
.

http://www.boundaryvalueproblems.com/content/2013/1/37
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Thus it is clear that (.) is equivalent to

Lx =Nx.

We use the same projections P, Q as in Section . and define the isomorphism J :
ImQ → ImP as

Jy = βy,

where β = 
 . It is easy to verify that the inverse operator L– : ImL → domL ∩ KerP of

L|domL∩KerP : domL∩KerP → ImL is

(
L– y

)
(t) =

∫ 


	(t, s)y(s)ds,

where

	(t, s) =

⎧⎨
⎩

s
 ( – t + s),  ≤ s < t ≤ ,

 ( – s)(t – s),  ≤ t ≤ s ≤ .

Set

H(t, s) =


+	(t, s) –

∫ 


	(t, s)ds.

We can verify that

H(t, s) =

⎧⎨
⎩


 +

s
 ( – t + s) + t

 – t
 , ≤ s < t ≤ ,


 +


 ( – s)(t – s) + t

 + t
 , ≤ t ≤ s ≤ ,

and




≤ H(t, s)≤ 

, t, s ∈ [, ].

Theorem . Assume that there exist two positive numbers  < a < b such that (H), (H)
and

(H) f (t,x)≥ –x for all (t,x) ∈ [, ]× [,b]

hold. Then (.) has at least one positive periodic solution x* ∈ K with a ≤ ‖x*‖ ≤ b.

Proof It is again easy to show that L – λN is A-proper for λ ∈ [, ] by [, Lemma (a)].
For each x ∈ K , then by condition (H),

Px + JQNx + L– (I –Q)Nx

=
∫ 


x(s)ds +




∫ 


f
(
s,x(s)

)
ds

+
∫ 


	(t, s)

(
f
(
s,x(s)

)
–

∫ 


f
(
s,x(s)

)
ds

)
ds

http://www.boundaryvalueproblems.com/content/2013/1/37
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=
∫ 


x(s)ds +

∫ 


H(t, s)f

(
s,x(s)

)
ds

≥
∫ 



(
 – H(t, s)

)
x(s)ds≥ .

Thus (P + JQN + L– (I –Q)N)(K)⊂ K .
Let

� =
{
x ∈ X : ‖x‖ < a

}
, � =

{
x ∈ X : ‖x‖ < b

}
.

Clearly, � and � are bounded and open sets and

θ ∈ � ⊂ � ⊂ �.

Next, we show that

(P + JQN)x + L– (I –Q)Nx� x, for any x ∈ ∂� ∩K . (.)

On the contrary, suppose that there exists x ∈ ∂� ∩K such that

(P + JQN)x + L– (I –Q)Nx ≥ x.

Then

–x′′
(t) ≤ f

(
t,x(t)

)
, t ∈ [, ].

Let t ∈ [, ] such that x(t) =maxt∈[,] x(t) = b. Using the boundary conditions, we have
t ∈ (, ). In this case, x′

(t) = , x′′
(t) ≤ . This gives

 ≤ –x′′
(t) ≤ f

(
t,x(t)

)
= f (t,b),

which is a contradiction to condition (H). Therefore (.) holds.
Finally, similar to the proof of (.), it follows from condition (H) that

(P + JQN)x + L– (I –Q)Nx� x, for any x ∈ ∂� ∩K .

Consequently all conditions of Theorem . are satisfied. Therefore, there exists x* ∈
K ∩ (�\�) such that Lx* =Nx* with x* ∈ K and a ≤ ‖x*‖ ≤ b and the assertion follows.

�
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