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Abstract

This article presents a semigroup approach for the mathematical analysis of the
inverse coefficient problems of identifying the unknown coefficient k(x) in the linear
parabolic equation ug(x, t) = (k(x)ux(x, 1)y with mixed boundary conditions

k(O)ux(0, t) = yro, u(1,t) = yry. The aim of this paper is to investigate the
distinguishability of the input-output mappings ®[-]: K — H'[0, ],

W[.]: K — H'?[0,T] via semigroup theory. In this paper, we show that if the null
space of the semigroup T (t) consists of only zero function, then the input-output
mappings ®[-] and W[-] have the distinguishability property. It is shown that the
types of the boundary conditions and the region on which the problem is defined
have a significant impact on the distinguishability property of these mappings.
Moreover, in the light of measured output data (boundary observations) f(t) := u(0, t)
or/and h(t) = k(1)u,(1,t), the values k(0) and k(1) of the unknown diffusion coefficient
k(x) at x=0and x = 1, respectively, can be determined explicitly. In addition to these,
the values k’(0) and k’(1) of the unknown coefficient k(x) atx=0and x =1,
respectively, are also determined via the input data. Furthermore, it is shown that
measured output data f(t) and h(t) can be determined analytically by an integral
representation. Hence the input-output mappings ®[-] : K — H'2[0,T],

W[.]: K — H'?[0,T] are given explicitly in terms of the semigroup.

1 Introduction

Consider the following initial boundary value problem:

ur(x,2) = (k(x)ux(x, 1)), (x,£) € Qr,
u(x,0)=glx), O0<x<l, 1)
k(0)u,(0, £) = Yo, ull,t)=vy1, 0<t<T,

where Q7 = {(x,£) € R2: 0 <x < 1,0 < t < T}. The left flux v, and the right boundary
condition y; are assumed to be constants. The functions ¢; > k(x) > ¢o > 0 and g(x) satisfy
the following conditions:

(C1) k(x) € HY?[0,1];

(C2) glx) € H2*[0,1], ¢'(0) = o, g(1) = V.

Under these conditions, the initial boundary value problem (1) has the unique solution
u(x,t) € H**[0,11 N H?[0,1] [1-4].
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Consider the inverse problem of determining the unknown coefficient k = k(x) [5-9]

from the following observations at the boundaries x = 0 and x = 1:
u(0,2) =f(t),  k(Dux(1,£) = h(t), te(0,T] (2)

Here u = u(x, t) is the solution of the parabolic problem (1). The functions f(t), h(t) are
assumed to be noisy free measured output data. In this context, the parabolic problem (1)
will be referred to as a direct (forward) problem with the inputs g(x) and k(x). It is assumed
that the functions f(¢) and /(t) belong to H*?[0, T] and satisfy the consistency conditions
£(0) = g(0), (0) = k(1) ().

We denote by K := {k(x) € H?[0,1] : ¢; > k(x) > co > 0,x € [0,1]} C H'2[0,1], the set
of admissible coefficients k = k(x) and introduce the input-output mappings @[] : £ —
HY2[0,T], ¥[]: K — H"[0, T], where

k] = u(x, t; k)|x=05 W] = k(®)uxlx, k) s, k€ KC,f(8), h(t) € H[0,T].  (3)

Then the inverse problem [10] with the measured data f(¢) and /(¢) can be formulated as

the following operator equations:
®kl=f,  Wkl=h, kek,f,heH7?0,T]. (4)

We denote by K := {k(x) € H*?[0,1] : ¢; > k(x) > co > 0,x € [0,1]} C H*?[0,1], the set of
admissible coefficients k = k(x). The monotonicity, continuity and hence invertibility of
the input-output mappings ®[-]: K — H2[0,T] and W¥[-] : K — H'2[0, T] are given in
[3, 4].

The aim of this paper is to study a distinguishability of the unknown coefficient via
the above input-output mappings. We say that the mapping ®[-] : K — H“2[0, T] (or
W[.]: K — HY2[0, T]) has the distinguishability property if ®[k;] # ®[ky] (V[ki] # W[ks])
implies ki (x) # ky(x). This, in particular, means injectivity of the inverse mappings ®~! and
vl

The purpose of this paper is to study the distinguishability of the unknown coefficient
via the above input-output mappings. The results presented here are the first ones, to
the knowledge of authors, from the point of view of semigroup approach [11] to inverse
problems. This approach sheds more light on the identifiability of the unknown coefficient
[12] and shows how much information can be extracted from the measured output data,
in particular in the case of constant flux and boundary data [12-15].

The paper is organized as follows. In Section 2, the analysis of the semigroup approach
is given for the inverse problem with the measured data f(¢). A similar analysis is applied
to the inverse problem with the single measured output data /4(£) given at the point x =
1 in Section 3. The inverse problem with two Neumann measured data f(¢) and A(t) is

discussed in Section 4. Finally, some concluding remarks are given in Section 5.

2 Analysis of the inverse problem with measured output data f(t)
Consider now the inverse problem with one measured output data f(¢) at x = 0. In order

to formulate the solution of the parabolic problem (1) in terms of a semigroup, let us first
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arrange the parabolic equation as follows:
i, 0) = (KO (3, ), = ((K(0) ~ KOs, ), (x,8) € Q.
Then the initial boundary value problem (1) can be rewritten in the following form:

(1) = (k(0)uy(, 1)), = ((k(x) — k(0))ux(x,8)),  (x,2) € Qr,
u(x,0)=g(x), O<x<l, (5)

k(o)ux(ol t) = llfo, M(l, t) = wl’ 0<t<T.

Here we assume that k(0) was known. Later we will determine the value k(0). In order
to formulate the solution of the parabolic problem (5) in terms of a semigroup, we need

to define the following function:

vix, t) = ulx, t) — /:?—Oo)x + Yo -1, x€]0,1] (6)

which satisfies the following parabolic problem:

ve(x, £) +A[v(x, t)] = ((k(x) - k(0)) <Vx(x, )+ %)) , (1) eQr,
V(xO):g(x)—ﬂx+l//—1p O<x<l1 (7)
) k(O) 0 1 ]
k(0)v,(0,¢) =0, v(1,£)=0, O<t<T.
Here A[v(x,1)] := —k(0)d?v(x, t)/dx? is a second-order differential operator, its domain is

Da = {u € H**(0,1) N H*2[0,1] : u,(0) = u(1) = 0}. Since the initial value function g(x) be-
longs to C2[0,1], it is obvious that g(x) € D.

Denote by T'(¢) the semigroup of linear operators generated by the operator —A [5, 6].
Note that we can easily find the eigenvalues and eigenfunctions of the differential opera-
tor A. Furthermore, the semigroup 7'(¢) can be easily constructed by using the eigenvalues
and eigenfunctions of a differential operator A. For this reason, we first consider the fol-

lowing eigenvalue problem:

Ap(x) = 1o (x),
$:(0)=0;  ¢(1)=0.

This problem is called a Sturm-Liouville problem. We can easily determine that the eigen-
values are A, = k(0)(2n—1)272/4 for all n = 1,... and the corresponding eigenfunctions are
$n(x) = V/2cos((2n — 1)xrr /2). In this case, the semigroup T(£) can be represented in the
following way:

o]

TOU®s) =Y (¢al®), Ux,5))e " p(x),

n=0
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where (¢, (x), U(x,s)) = fo1 @u(x)U (x,s) dx. The null space of the semigroup 7'(¢) of the lin-
ear operators can be defined as follows:

N(T) = {U(x,s) : (qﬁn(x), U(x,s)) =0, foralln = 1,2,3,...}.

From the definition of the semigroup 7T'(¢), we can say that the null space of it is an empty
set, i.e., N(T) = {0}. This result is very important for the uniqueness of the unknown co-
efficient k(x).

The unique solution of the initial value problem (7) in terms of a semigroup T'(¢) can be

represented in the following form:

v(x, t) = T(t)v(x,0) + /: T(t- s)((k(x) — k(O)) (vx(x, )+ %)) ds.

Hence, by using identity (6), the solution u(x;, £) of the parabolic problem (5) in terms of a
semigroup can be written in the following form:

(e 1) = %m Y — o + T(t)( (o) %m Yo - m)

+ /t T(t - s)((k(x) - k(0))ut(x,5)), ds. (8)
0

In order to arrange the above solution representation, let us define the following:

() - (g(x) _ %m Vo - wl),

)
E(x,t) = ((k (x) — k(0) )ux(x, S))
2,8 = ) (dulx), £ (%)), (x),
"0 (10)

wix,t,s) = Z(@ (%), € (6, 5))e ™" ¢, ().

n=0

Then we can rewrite the solution representation in terms of ¢ (x) and & (, s) in the following
form:

u(x, t) = %x + Y — Yo+ T()C (%) + /0 T(t - s)&(x,s)ds

Substituting x = 0 into this solution representation yields

u(0,t) =y — Yo + T(£)(0) + /0 T(t-s)E(0,s)ds.

Taking into account the overmeasured data u(0, t) = f(£), we get

f) = (Ih — o+ T(6)s(0) + /0 T(t -5)§(0,5) dS), (11)

which implies that f(¢) can be determined analytically.

Page 4 of 12
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Differentiating both sides of the above identity with respect to x and using semigroup

properties at x = 0 yield

u,(0,t) = I:?—OO) +2(0,¢) + /Otw(O,t—s,s) ds.

Using the boundary condition k(0)u,(0, ) = ¥, we can write k(0) = ¥o/u,(0,¢) forallt > 0

which can be rewritten in terms of a semigroup in the following form:

k(0) = wo/(—lﬁo + Y +2(0,8) + / w(0,t —s,5) ds).
0

Taking limit as £ — 0 in the above identity, we obtain the following explicit formula for
the value k(0) of the unknown coefficient k(x):

k(0) = yro/ (o + Y1 +2(0,0)).

The right-hand side of identity (11) defines explicitly the semigroup representation of the

input-output mapping ®[k] on the set of admissible unknown diffusion coefficients K:

D[k](x) := Y — Yo + T(£)C(0) + /0 T(t-s)£(0,s)ds, Vtel0,T]. (12)

Let us differentiate now both sides of identity (8) with respect to t:

ue(x,t) = T(t)A <g(x) - %x + 10— 1//1) + ((k(x) = k(0)) 1y (, 2))

+ f AT (t - 5)((k(x) — k(0)) s (x, 5))  ds.
0
Using the semigroup property — fot AT (s)u(x,s)ds = T(t)u(x, t) — T(0)u(x, t), we obtain

e, 1) = ~k(O)T()g () ~ 2T(0)((k(x) - k(0))us (5, )),
+ T(0) ((k(®) - k(0))ux(x,0)) .

Taking x = 0 in the above identity, we get

u(0,t) = —-k(0)T(2)g" (0) — T(0)K'(0)u,(0,0)
+ T(0) (K (0)u(0,0)) = T(0) (K (0)u (0, £)).

Since u(0,t) = f(t), we have u,(0, £) = f'(¢). Taking into account this and substituting ¢ = 0
yield

g'(0)
k(0)"

£(0) = —k(0)g"(0) - k'(0)

Page 5 of 12
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Solving this equation for k’(0) and substituting u,(0,0) = g'(0)/k(0), we obtain the follow-
ing explicit formula for the value k’(0) of the first derivative k’(x) of the unknown coeffi-

cientatx =0:

k*(0)g"(0) — k(0)f"(0)
g'(0)

K'(0) = — (13)

Under the determined values k(0) and k’(0), the set of admissible coefficients can be

defined as follows:

2 /" U
Ko = {k € K k(0) = Vo ¥(0) = (070 ~ KO/ (0) }

—Yo + Y1 +2(0,0)’ 2(0)

The following lemma implies the relationship between the diffusion coefficients k; (x),
ka(x) € KC at x = 0 and the corresponding outputs fi(¢) := u(0, £; k), j = 1,2.

Lemma 2.1 Let uy(x,t) = u(x, t; ki) and uy(x, t) = u(x, t; ky) be solutions of the direct prob-
lem (5) corresponding to the admissible coefficients ki(x), ky(x) € KC. Suppose that f(t) =
u(0,t;k;),j = 1,2, are the corresponding outputs and denote by Af (t) = fi(£) —fo(£), A& (x,t) =
E(x, t) — E%(x, t). If the condition

ki(0) = k2(0) := k(0)

holds, then the outputs fi(t), j = 1,2, satisfy the following integral identity:

Af(z) = /T T(t —s)AE(0,s) dsds (14)
0

foreach v €(0,T].

Proof The solutions of the direct problem (5) corresponding to the admissible coefficients

k1(x), k> (x) € IC can be written at x = 0 as follows:

F©) = =0 + T(0)E(0) + fo T(t - £1(0,5)ds,
F(0) = i — o + T(R)E2(0) + fo T(t - )E2(0,5) ds,

respectively, by using representation (11). From identity (9) it is obvious that £1(0,7) =
£%(0, 1) for each 7 € (0, T]. Hence the difference of these formulas implies the desired
result. O

This lemma with identity (14) implies the following.

Corollary 2.1 Let conditions of Lemma 2.1 hold. Then fi(t) = f2(t), Vt € [0, T, if and only
if

(Bn(x), AE(0,9)) = (pn(x), &' (x, 1) — E*(x,8)) =0, Vt€(0,T],n=0,1,...
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Since the Strum-Liouville problem generates a complete orthogonal family of eigenfunc-
tions, the null space of a semigroup contains only zero function, i.e., N(T) = {0}. Thus
Corollary 2.1 states that f; = f; if and only if £!(x,£) — £2(x,£) = O for all (x,£) € Q7. The
definition of & (x, t) implies that k;(x) = ky(x) for all x € [0,1].

The combination of the conclusions of Lemma 2.1 and Corollary 2.1 can be given by
the following theorem which states the distinguishability of the input-output mapping
®[]: Ko — H¥[0, T).

Theorem 2.1 Let conditions (C1) and (C2) hold. Assume that ®[-] : Ko — H“[0,T] is
the input-output mapping defined by (3) and corresponding to the measured output f (t) :=
u(0,t). Then the mapping ®[k] has the distinguishability property in the class of admissible
coefficients Ky, i.e.,

Olk] # Plka] Yk, ko € Ko, ki(x) # ko (x).

3 Analysis of the inverse problem with measured output data h(t)
Consider now the inverse problem with one measured output data /(t) at x = 1. As in the
previous section, let us arrange the parabolic equation as follows:

ut(x’ t) - (k(l)ux(x’ t))x = ((k(x) - k(l))ux(x¢ t))xr (x: t) € S-ZT-
Then the initial boundary value problem (1) can be rewritten in the following form:

us(x, t) — (k(l)ux(x, t))x = ((k(x) - k(l))ux(x, t))x, (x,t) € Qr,
u(x,0)=gx), O<x<l, (15)

k(0)u,(0, ) = Yo, ul,t)=vy1, O<t<T.

In order to formulate the solution of the above parabolic problem in terms of a semi-
group, let us use the same variable v(x,¢) in identity (6), which satisfies the following
parabolic problem:

ve(x, £) +B[V(x, t)] = ((k(x) = k(1)) ux(, t))x, (x,8) € Qr,

v(x,0)=g(x)—%x+%—l/f1, O<x<l, (16)

k(0)v,(0,2) =0, v(1,£)=0, O0<t<T.

Here B[v(x, t)] := —k(1)d?v(x, t)/dx* is a second-order differential operator, its domain is
Dg = {u € H**(0,1) N H“?[0,1] : ,(0) = u(1) = 0}. Since the initial value function g(x) be-
longs to H>2[0,1], it is obvious that g(x) € Dp.

Denote by S(¢) the semigroup of linear operators generated by the operator —A [5, 6].
As in the previous section, we can easily find the eigenvalues and eigenfunctions of the
differential operator B. Furthermore, the semigroup S(¢) can be easily constructed by using
the eigenvalues and eigenfunctions of the differential operator B. For this reason, we first
consider the following eigenvalue problem:

Bp(x)=2g(x),  ¢x(0)=0;  ¢(1)=0.
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This problem is called a Sturm-Liouville problem. We can easily determine that the eigen-
values are A, = k(1)(2n — 1)272/4 for all # = 0,1,... and the corresponding eigenfunctions
become ¢,,(x) = /2 cos((2n — 1) /2x). Hence the semigroup S(£) can be represented in the

following form:

SOUx,5) = Y (¢l Je by ().

n=0

The null space of the semigroup S(¢) of the linear operators can be defined as follows:
N(S) = {U(x,s) : (¢n(x), L[(x,s)> =0, foralln=1,2, 3,...}.

Since the Sturm-Liouville problem generates a complete orthogonal family of eigenfunc-
tions, we can say that the null space of the semigroup S(¢) is an empty set, i.e., N(S) =
This result is very important for the uniqueness of the unknown coefficient k(x).

The unique solution of the initial value problem (16) in terms of a semigroup S(¢) can

be represented in the following form:

V) = S(0)v(x,0) + /0 tS(t—S)<(k(x)—k(1)) <vx(x,s)+ %)) ds.

Hence, by using identity (6), the solution u(x, t) of the parabolic problem (15) in terms of

a semigroup can be written in the following form:

_ W _ Yo, Yo, Yo _
40 = 0T k) ()( ® = k" k) ‘”1)
+ /tS(t—s)((k(x) —k(l))ux(x,s))x ds. 17)
0
Defining the following:
Wo Iﬁo
£) = (g(x) B 0 wl), "
x(6,8) = ((k(x) - kQ))a(,5))
21(%,t) = Y _(pulx), ¢ (0))e ' ), (), (19)
n=0
wi(t,5) = Y (u(x), x (x,9))e ™", (). (20)
n=0

The solution representation of the parabolic problem (17) can be rewritten in the following

form:

_ VYo Yo !
u(x, t) = m + Y — /(0) +S(t)¢(x) +/ S(t—s)x(x,s)ds.

Page 8 of 12
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Differentiating both sides of the above identity with respect to x and substituting x = 1
yield

u(1,8) = % +2(1, t)+/0tw1(1,t—s,s)ds.

Taking into account the overmeasured data k(1)u,(1, £) = h(z), we get

h(t) = k(l)(% +z1(1, ) + /Ot wi(l,t—s,s) ds). (21)

Now we can determine the value k(1). From the overmeasured data k(1)u,(1,¢) = h(¢),
the identity k(1) = h(¢)/u,(1,t) for all £ > 0 can be rewritten in terms of a semigroup in the
following form:

h(t)
(k‘/(’) +z1(1,8) + fo wi(L,t—s,s)ds)

k(1) =
Taking limit as £ — 0 in the above identity yields

k(1) = h(O)/(% + 20, 0))

The right-hand side of the above identity defines the semigroup representation of the
input-output mapping V|k] on the set of admissible unknown diffusion coefficient K:

Wk](x) := (1)( Yo +z1(1,£) + /twl(l,t—s,s)ds), vVt e [0, T]. (22)
k(0) 0

Differentiating both sides of identity (17) with respect to ¢, we get

w(x,) = S(0)B ((x)—%x k‘fg) wl)

- S(O)((k(x) - k(l))ux(x, t))x + /o BS(t-s) ((k(x) - k(l))ux(x, s))x ds
Using semigroup properties, we obtain

(%, £) = =S(Ok(1)g" (x) — S(0) (K’ (e (o, 2) + (k(x) — k(1)) s (x, 1))
+ 5(0) ((k(x) = k(1)) 1 (x, 0)) = S(0) (k) — k(1)) ux(x, 7)) .

Taking x = 1 in the above identity, we get
u(1,8) = =S()k(1)g” (1) — 2S(0)K’ (V) u, (1, ) + S@)K'(1)2,(1, 0).

Since u(1,t) = v, we have u,(1,¢) = 0. Taking into account this and substituting ¢ = 0, we
get

= —k(1)g" (1) - K’ (Dux(1,0).


http://www.boundaryvalueproblems.com/content/2013/1/43

Ozbilge and Demir Boundary Value Problems 2013, 2013:43
http://www.boundaryvalueproblems.com/content/2013/1/43

Solving this equation for k(1) and substituting u,(1,0) = #(0)/k(1), we reach the following

result:

k*(Lg" (1)

k') = O

(23)
Then we can define the admissible set of diffusion coefficients as follows:

2 1"
Ky = {kelC:k(l): MO gy Kk (1)}‘

(75 +21(1,0) h(0)

The following lemma implies the relation between the coefficients ki (x), kx(x) € K at
x =1 and the corresponding outputs 4;(t) := kj(1)u(1, £ k), j = 1,2.

Lemma 3.1 Let u(x,t) = u(x, t; ky) and uy(x, t) = u(x, t; ky) be solutions of the direct prob-
lem (16) corresponding to the admissible coefficients ki (x), ko(x) € K. Suppose that hy(t) =
u(l,t;k;), j = 1,2, are the corresponding outputs and denote by Ah(t) = h(t) — hy(t),
Awi(x,t,8) = wi(x, t,8) — wi(x, t,5). If the condition

k(1) = k(1) := k(1)

holds, then the outputs hj(t), j = 1,2, satisfy the following integral identity:
Ah(t) = k(l)/ Awi(1,T —s,8)dsds (24)
0

foreach v €(0,T].

Proof The solutions of the direct problem (15) corresponding to the admissible coeffi-
cients ky(x), k»(x) € KC can be written at x = 1 as follows:

In(r) =k(1)<% +21,1) + /Otw}(l,r —s,s)ds),
e 2 WLt
hy(7) —k(1)<k(0) +zl(l,r)+/0 wi(l, T s,s)ds),

respectively, by using formula (20). From definition (18), it is obvious that z} (1, T) = z(1, 7)
for each 7 € (0, T']. Hence the difference of these formulas implies the desired result. [

This lemma with identity (23) implies the following conclusion.

Corollary 3.1 Let the conditions of Lemma 3.1 hold. Then hy(t) = hy(t), Vt € [0, T], if and
only if

(d)n(x),)(l(x, ) — x2(x, t)> =0, Vte(0,T],n=0,1,...

hold.

Page 10 of 12
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Since the null space of it consists of only zero function, i.e., N(S) = {0}, Corollary 3.1
states that /1; = h, if and only if x'(x,£) — x%(x,£) = O for all (x,£) € Q7. The definition of
X (x, ) implies that & (x) = ky(x) for all x € (0,1].

Theorem 3.1 Let conditions (C1) and (C2) hold. Assume that W[-]: K1 — C'[0, T] is the
input-output mapping defined by (3) and corresponding to the measured output h(t) :=
k(1)uy(1,t). Then the mapping V|k| has the distinguishability property in the class of ad-
missible coefficients ICy, i.e.,

Vik] #V[k] Vki,k €Ky, ki(x) # ka(x).

4 The inverse problem with mixed output data

Consider now the inverse problem (1)-(2) with two measured output data f(¢) and 4(¢).
As shown before, having these two data, the values k(0) as well as k(1) can be defined by
the above explicit formulas. Based on this result, let us define now the set of admissible
coefficients K, as an intersection:

_ _ e Yo hO)
ICZ = IC() ﬂlCl = {kEICk(O) = —WQ A 1[/1 +Z(0,0)’ (1 = l/f()/k(O) +Zl(1,0)’
oy —k*(0)g7(0) - k(0)f'(0) , - —k*(1)g"(1)
o= O K= "0 }

On this set, both input-output mappings ®[k] and W[k] have distinguishability property.

Corollary 4.1 The input-output mappings ®[-] : Ky — HY[0,T] and V[]: K, —
HY2[0, T distinguish any two functions ky(x) # ky(x) from the set K, i.e.,

Vki(x), ko(x) € Ko, k() # ko (%), &[k] # Dlka], Wik ] # Wk,

5 Conclusion

The aim of this study was to analyze distinguishability properties of the input-output map-
pings ®[-] : Ky — HY?[0, T] and W[-] : Ky — H"*[0, T] which are naturally determined by
the measured output data. In this paper we show that if the null spaces of the semigroups
T(¢) and S(¢) include only zero function then the corresponding input-output mappings
®[-] and W[-] have distinguishability property.

This study shows that boundary conditions and the region on which the problem is
defined have a significant impact on the distinguishability of the input-output mappings
®[-] and W[ -] since these key elements determine the structure of the semigroups 7T'(¢) and
S(t) of linear operators and their null spaces.
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