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Abstract
The aim of this paper is to give not only the matrix representation of partial
Hecke-type operators by means of Bernoulli polynomials and Euler polynomials, but
also functional equations and differential equations related to partial Hecke-type
operators and special polynomials. By using these functional equations and
differential equations, we derive some identities associated with special polynomials
and partial Hecke-type operators. Moreover, we find several useful identities and
relations using the partial Hecke operators.
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1 Introduction
Recently, there have been many applications of Bernoulli polynomials and Euler polyno-
mials in differential equations, in analytic number theory and in engineering. High-order
linear differential-difference equations have also been solved in terms of Bernoulli poly-
nomials. These polynomials are also related to several linear operators. In this paper, we
investigate and derive several new identities related to the Hecke-type operators and gen-
erating functions for special polynomials.
Recently, many authors introduced and investigated the following generating functions

which give us the Bernoulli polynomials Bn(x) and the Euler polynomials En(x), respec-
tively:

text

et – 
=

∞∑
n=

Bn(x)
tn

n!
(|t| < π

)
, ()

and

ext

et + 
=

∞∑
n=

En(x)
tn

n!
(|t| < π

)
. ()

For x = , () and () are reduced to the generating functions for the Bernoulli numbers
Bn and the Euler numbers En, respectively (cf. [–]), and see also the references cited in
each of these earlier works.
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Themultiplication formulas for theBernoulli andEuler polynomials are given as follows:

m–∑
k=

Bn

(
x + k
m

)
=m–nBn(x), ()

and for oddm,

m–∑
k=

(–)kEn

(
x + k
m

)
=m–nEn(x) ()

(cf. [–]), and see also the references cited in each of these earlier works.
The Bernoulli polynomials satisfy the following well-known identity:


m

m–∑
k=

f
(
x +

k
m

)
=m–nf (mx),

wherem and n are positive integers (cf. [, , ]).
Bayad et al. [] introduced and systematically studied the following family of partial

Hecke-type operators on C[x].
Throughout this paper, we use the following notations: a ≡ (N). Let N = {, , , , . . .}

and Z
+ = {, , , . . .}.

For fixed a,N ∈ Z
+ and  ≤ k ≤ a – , we have

Tχa,N

(
P(x)

)
=

a–∑
k=

χa,N (k)P
(
x + k
a

)
,

where

χa,N (k) =

{
ξ k
N = e

π ik
N if N ≥ ,


a if N = .

Lemma . [, p., Lemma ] For any a,N ∈ Z
+ such that a ≡ (N),we have the follow-

ing properties:
(i) Tχa,N preserves the degree in C[x].
(ii) By induction,

Tχa,N

(
xm

)
=

{
S =  ifm = ,
a–mxm + a–m

∑m–
v=

(m
v
)
Sm–v(χa,N )xv ifm≥ ,

where

Sm–v(χa,N ) =
a–∑
k=

χa,N (k)km–v.

(iii) For anym ∈ Z
+, let βm = (,x,x, . . . ,xm) be the canonical C-basis of

Cm[x] =
{
P(x) ∈C[x] : degP(x) ≤ m

}
.
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Then the matrixMβm (Tχa,N ) corresponding to the operator Tχa,N (restricted to
Cm[x]) in the basis βm is represented by:

Mβm (Tχa,N ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S(χa,N ) a–S(χa,N ) a–S(χa,N ) · · · a–mSm(χa,N )
 a–S(χa,N ) a–S(χa,N ) · · · a–m

(m


)
Sm–(χa,N )

  a–S(χa,N ) · · · a–m
(m


)
Sm–(χa,N )

   · · · a–m
(m


)
Sm–(χa,N )

...
...

...
...

   · · · a–mS(χa,N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

()

for all  ≤ l ≤ m – .
(iv) Let a,b≥  such that a ≡ b≡ (N), then

Tχa,NTχb,N = Tχb,NTχa,N .

Consequently, for a given integer n, there is only one monic polynomial Pn,N with degree
n in x satisfying the functional equation ().

The operator Tχa,N satisfies the following equation:

Tχa,N

(
Pn,N (x)

)
= a–nPn,N (x). ()

For a ≡ (N), from () and Lemma ., we know that Pn,N (x) is a monic polynomial (cf.
[]).

Remark . Equations () and () are closely related to the functional equation of (). For
N =  andN = , equation () is reduced to Pn,(x) = Bn(x) and Pn,(x) = En(x), respectively.
For fixed a,N ∈ Z

+, we know that there is only one monic polynomial satisfying () by
Lemma ., and there already exist the functional equations as () and ().

The total Hecke-type operators, associated with partial Hecke-type operators, are de-
fined by Bayad et al. [, p., Eq. (.)] as follows:

TN =
∑

a≡(N)

Tχa,N .

Theorem . [] Polynomials Pn,N (x) are eigenfunctions for the operators TN with eigen-
values N–nζ (n, 

N ), that is,

TN
(
Pn,N (x)

)
=N–nζ

(
n,


N

)
Pn,N (x),

where ζ (s,x) is the Hurwitz zeta function defined by

ζ (s,x) =
∑
k≥


(x + k)s

(cf. [, ]).
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2 Differential equations related to the partial Hecke-type operators and
special polynomials

In this section, we derive some ordinary and partial differential equations not only for a
generating function, but also for partial Hecke-type operators. We also give a functional
equation for the generating function. We set

FN (t,x) =
∞∑
n=

Pn,N (x)
tn

n!
.

We now give an explicit formula of the generating function FN (t,x) as follows.

Theorem . [] Generating functions for the polynomials Pn,N (x) are given by

FN (t,x) =

{
tetx
et– if N = ,
(ξN–)etx
ξNet– if N ≥ .

The polynomials Pn,N (x) are the so-called Bernoulli-Euler-type polynomials.
We derive the following partial differential equation for FN (t,x) as follows:

∂v

∂xv
FN (t,x) = tvFN (t,x). ()

Theorem . Let v ∈N. Then

dv

dxv
Pn,N (x) =

{
(n)vBn–v(x) if N = ,
(n)vPn–v,N (x) if N ≥ ,

where (n)v = n(n – )(n – ) · · · (n – v + ).

Proof By using (), for N ≥ , we obtain

∞∑
n=

(
dv

dxv
Pn,N (x)

)
tn

n!
=

∞∑
n=v

(n)vPn–v,N (x)
tn

n!
. ()

Therefore, by comparing the coefficients of tn
n! on both sides of equation (), we have the

desired result.
For N = , we apply the same process. So, we omit it. �

We set the following differential equation:

ξNet(x+y)

(ξNet – )
= (x + y – )

et(x+y–)

(ξNet – )
–

d
dt

et(x+y–)

(ξNet – )
. ()

Theorem .

ξN

ξN – 

n∑
k=

(
n
k

)
Pk,N (x)Pn–k,N (y) = (x + y – )Pn,N (x + y – ) – nPn+,N (x + y – ).
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Proof We make some arrangement () and obtain

ξN

(ξN – )

[(
ξN – 

ξNet – 

)

et(x+y)
]
=
x + y – 
ξN – 

(
(ξN – )et(x+y–)

(ξNet – )

)

–
d
dt


ξN – 

(ξN – )et(x+y–)

(ξNet – )
.

Therefore,

ξN

(ξN – )

(
ξN – 

ξNet – 
etx

)(
ξN – 

ξNet – 
ety

)
=

ξN

(ξN – )

( ∞∑
n=

Pn,N (x)
tn

n!

)( ∞∑
n=

Pn,N (y)
tn

n!

)
.

From the above equation, we get

ξN

(ξN – )

∞∑
n=

n∑
k=

((
n
k

)
Pk,N (x)Pn–k,N (y)

)
tn

n!

=
x + y – 
ξN – 

∞∑
n=

(
Pn,N (x + y – ) –

n
ξN – 

Pn+,N (x + y – )
)
tn

n!
.

By comparing the coefficients of tn
n! on both sides of the above equation, we have the

desired result. �

Remark. InTheorem., we obtain a convolution formula for the polynomialsPn,N (x).
If we substitute x = y =  into Theorem ., then we get a convolution formula for the
Eulerian-type numbers (cf. [, ]).

Higher-order partial differential equation forTχa,N (Pn,N (x)) is given by the following the-
orem.

Theorem . Let N ≥  and v ∈N. Then

∂v

∂xv
Tχa,N

(
Pn,N (x)

)
=
(n)v
av

Tχa,N

(
Pn–v,N (x)

)
,

where

(n)v = n(n – )(n – ) · · · (n – v + ).

Proof Taking vth derivative of the operator Tχa,N (Pn,N (x)), with respect to x, we obtain the
following higher-order partial differential equation:

∂v

∂xv
Tχa,N

(
Pn,N (x)

)
=

a–∑
k=

χa,N (k)
∂v

∂xv
Pn,N

(
x + k
a

)
.

Using Theorem ., we get

∂v

∂xv
Tχa,N

(
Pn,N (x)

)
=
(n)v
av

a–∑
k=

χa,N (k)Pn–v,N

(
x + k
a

)
.

Thus, we get the desired result. �
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3 Matrix representations of partial Hecke-type operators
In this section, we give some numerical examples for the matrix representations of the
operator Tχa,N . For the basis βm = {,x,x, . . . ,xm}, our matrix representations contain
Bernoulli polynomials and Euler polynomials for the operators Tχa, and Tχa, , respec-
tively. Therefore, we need the following lemmas.

Lemma . Let m,n ∈N and n≥ . Then

n–∑
k=

km =
Bm+(n) – Bm+()

m + 
.

Lemma . Let m,n ∈N and n≥ . Then

n–∑
k=

(–)kkm =
Em – (–)nEm(n)


.

Proofs of Lemma . and Lemma . have been given by many authors (among others)
(cf. [, , , ]).
In a special case, substituting N =  into (iii) in Lemma . and using Lemma ., we get

Sl,(a) =
a–∑
k=

χa,(k)kl

=
Bl+(a) – Bl+()

a(l + )
.

According to the above equation, we are ready to give the main result of this section by
the following theorem.

Theorem . The matrix Mβm (Tχa, ) corresponding to the operator Tχa, (restricted to
Cm[x]) in the basis βm is represented by Bernoulli polynomials as follows:

Mβm (Tχa, ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B(a)–B()
a

B(a)–B()
a

B(a)–B()
a · · · Bm+(a)–Bm+()

am+(m+)

 B(a)–B()
a

B(a)–B()
a · · · (m


)Bm(a)–Bm()

am+m

  B(a)–B()
a · · · (m


)Bm–(a)–Bm–()

am+(m–)

   · · · (m

)Bm–(a)–Bm–()

am+(m–)
...

...
...

...
   · · · B(a)–B()

am+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Setting N =  (iii) in Lemma . and using Lemma ., we obtain

Sl,(a) =
a–∑
k=

χa,(k)kl

=
El() – (–)aEl(a)


.

If a≡ (), then we obtain another main result by the following theorem.
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Theorem . Let a be an odd number. The matrix Mβm (Tχa, ) corresponding to the op-
erator Tχa, (restricted to Cm[x]) in the basis βm is represented by Euler polynomials as
follows:

Mβm (Tχa, ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E()+E(a)


E()+E(a)
a

E()+E(a)
a · · · Em()+Em(a)

am

 E()+E(a)
a

E()+E(a)
a · · · (m


) Em–()+Em–(a)

am

  E()+E(a)
a · · · (m


) Em–()+Em–(a)

am

   · · · (m

) Em–()+Em–(a)

am
...

...
...

...
   · · · E()+E(a)

am

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

4 Some applications of total Hecke-type operators
In this section, we give some applications related to eigenvalues for the total Hecke-type
operators of T and T. We derive many new identities which are related not only to the
total Hecke-type operators, but also to the Riemann zeta function, the Hurwitz zeta func-
tion, Bernoulli and Euler numbers, Euler identities and the convolution of Bernoulli and
Euler numbers and polynomials.
Throughout this section, we use the following notation:

ζ ′(a) =
d
ds

ζ (s)
∣∣∣∣
s=a

.

The partial zeta function H(s,a,F) is defined by

H(s,a,F) =
∑

n≡a(F)


ns
,

where �(s) > , n >  and  < a < F (F ∈ Z
+) (cf. [, , , , ]).

Theorem . The polynomials Pn,N (x) are eigenfunctions for the operators TN with eigen-
values H(n, ,N), that is,

TN
(
Pn,N (x)

)
=H(n, ,N)Pn,N (x),

where H(s,a,F) is a partial zeta function.

Proof

∑
n≡a(F)


ns

=

Fs ζ

(
s,
a
F

)
.

Therefore,

ζ

(
s,
a
F

)
= FsH(s,a,F).

Substituting F =N , s = n and a =  into the above equation, after using Theorem ., we
arrive at the desired result. �
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Theorem . Let n ∈ Z
+ with n > . Then we have

T
(
En(x)

)
=
(–)n( – –n)(π )n

(n + )(n)!
En(x)

n–∑
k=

(
n
k

)
BkBn–k . ()

Proof Putting N =  in Theorem . and using

Pn,(x) = En(x),

we have

T
(
En(x)

)
= –nζ

(
n,




)
En(x). ()

We recall from the definition of ζ (n,  ) and ζ (n) that we have

–nζ
(
n,




)
=

(
 – –n

)
ζ (n), ()

(cf. [, p.]). Combining () and (), we get

T
(
En(x)

)
= ζ (n)

(
 – –n

)
En(x). ()

If we replace n by n in the above equation, we obtain

T
(
En(x)

)
= ζ (n)

(
 – –n

)
En(x). ()

From the work of Srivastava and Choi [, p.], we recall that

ζ (n) =


n + 

n–∑
k=

ζ (k)ζ (n – k), ()

where n ∈ Z
+ with n >  and

ζ (n) =
(–)n+(π )nBn

(n)!
. ()

By substituting () and () into (), after some elementary calculations, we arrive at the
desired result. �

Theorem . Let n ∈ N. Then

T
(
En(x)

)
=
(–)n+(n – )πn

(n)!
BnEn(x). ()

Proof Combining () and (), we easily complete the proof of the theorem, that is,

T
(
En(x)

)
= ζ (n)

(
 – –n

)
En(x) =

(–)n+(n – )πn

(n)!
BnEn(x). �

By using () and (), we obtain a convolution formula (Euler identity) for Bernoulli
numbers.
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Theorem . Let n > . Then

Bn = –


n + 

n–∑
k=

(
n
k

)
BkBn–k . ()

Proof Since the left-hand sides of () and () are equal, the right-hand sides of () and
() must be equal. Thus, we obtain

(–)n+(n – )πn

(n)!
Bn =

(–)n(n – )πn

(n + )(n)!

n–∑
k=

(
n
k

)
BkBn–k .

After some elementary calculation in the above equation, we get the desired result. �

Observe that the proof of () is also given in [].

Theorem . Let n ∈N. Then

T
(
En(x)

)
=

eπ inπn

(n – )!
En–()En(x).

Proof For all n ∈N, we have

En–() =
(–)n

(π )n
(n – )!

(
n – 

)
ζ (n) ()

(cf. [, p.]). By using () and (), we obtain

T
(
En(x)

)
= ζ (n)

(
 – –n

)
En(x)

=
(

(π )nEn–()
(–)n(n – )!(n – )

)(
 – –n

)
En(x).

Thus, the proof is completed. �

Theorem . Let n ∈N. Then we have

T
(
En+(x)

)
=
(–)n+( – –n–)(π )n+En+(x)

(n + )!

∫ 


Bn+(t) cot(π t)dt. ()

Proof Consider that n is replaced by n +  in (), we have

T
(
En+(x)

)
= ζ (n + )

(
 – –n–

)
En+(x). ()

For all n ∈N, one can easily get

ζ (n + ) =
(–)n+(π )n+

(n + )!

∫ 


Bn+(t) cot(π t)dt ()

http://www.boundaryvalueproblems.com/content/2013/1/46
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(cf. [, p., Eq. ()]). Hence, we have

T
(
En+(x)

)
= ζ (n + )

(
 – –n–

)
En+(x)

=
(
(–)n+( – –n–)(π )n+

(n + )!

∫ 


Bn+(t) cot(π t)dt

)
En+(x).

Thus, the proof is completed. �

Theorem . Let n ∈N. Then we have

T
(
En+(x)

)
=
(–)n(π )n( – –n–)

(n)!
ζ ′(–n)En+(x). ()

Proof Note that, for all n ∈N, we have

ζ ′(–n) = (–)n
(n)!

(π )n
ζ (n + ) ()

(cf. [, p., Eq. ()]). By using () and (), we have

T
(
En+(x)

)
= ζ (n + )

(
 – –n–

)
En+(x)

=
(
(–)nζ ′(–n)(π )n

(n)!

)(
 – –n–

)
En+(x).

Thus, the proof is completed. �

Theorem . Let n ∈N. Then

T
(
Bn(x)

)
=
(–)n+n–πn

(n)!
BnBn(x).

Proof Substituting N =  into Theorem . and by Pn,(x) = Bn(x), we have

T
(
Bn(x)

)
= ζ (n, )Bn(x) = ζ (n)Bn(x). ()

If n is replaced by n in the above equation, we get

T
(
Bn(x)

)
= ζ (n)Bn(x). ()

By using (), we have

T
(
Bn(x)

)
=
(–)n+(π )nBn

(n)!
Bn(x). ()

Thus, the proof is completed. �

Theorem . Let n ∈ Z
+ with n > . Then we have

T
(
Bn(x)

)
=

(–)n(π )n

(n + )(n)!
Bn(x)

n–∑
k=

(
n
k

)
BkBn–k .

http://www.boundaryvalueproblems.com/content/2013/1/46
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Proof By using (), () and (), we have

T
(
Bn(x)

)
= ζ (n)Bn(x)

=

(


n + 

n–∑
k=

ζ (k)ζ (n – k)

)
Bn(x)

=


n + 

( n–∑
k=

(–)k+(π )kBk

(k)!
(–)n–k+(π )n–kBn–k

(n – k)!

)
Bn(x)

=
(–)n(π )nBn(x)

(n + )(n)!

n–∑
k=

(
n
k

)
BkBn–k .

Thus, the proof is completed. �

Theorem . Let n ∈ N. Then

T
(
Bn(x)

)
=

(–)n(π )n

(n – )!(n – )
En–()Bn(x).

Proof By using () and (), we have

T
(
Bn(x)

)
= ζ (n)Bn(x)

=
(

(π )nEn–()
(–)n(n – )!(n – )

)
Bn(x).

Thus, the proof is completed. �

Theorem . Let n ∈N. Then

T
(
Bn+(x)

)
=
(–)n+(π )n+

(n + )!
Bn+(x)

∫ 


Bn+(t) cot(π t)dt. ()

Proof By replacing n by n +  in (), we have

T
(
Bn+(x)

)
= ζ (n + )Bn+(x). ()

By substituting () into (), we get

T
(
Bn+(x)

)
=
(–)n+(π )n+

(n + )!
Bn+(x)

∫ 


Bn+(t) cot(π t)dt.

Thus, the proof is completed. �

Theorem . Let n ∈N. Then we have

T
(
Bn+(x)

)
=
(–)n(π )n

(n)!
ζ ′(–n)Bn+(x). ()
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Proof By using () and (), we have

T
(
Bn+(x)

)
= ζ (n + )Bn+(x)

=
(
(–)nζ ′(–n)(π )n

(n)!

)
Bn+(x).

Thus, the proof is completed. �

By comparing () and () or () and (), we arrive at the following result.

Corollary .

∫ 


Bn+(t) cot(π t)dt = –

(n + )
π

ζ ′(–n).
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