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Abstract
Sufficient conditions are established guaranteeing the existence of a positive
ω-periodic solution to the equation

u′′ + f (u)u′ + g(u) = h(t,u),

where f ,g : (0, +∞) →R are continuous functions with possible singularities at zero
and h : [0,ω]×R → R is a Carathéodory function. The results obtained are rewritten
for the equation of the type

u′′ +
cu′

uμ
+
g1
uν

–
g2
uγ

= h0(t)uδ ,

where g1, g2, δ are non-negative constants, c, μ, ν , γ are real numbers, and
h0 ∈ L([0,ω];R). The last equation also covers the so-called Rayleigh-Plesset equation,
frequently used in fluid mechanics to model the bubble dynamics in liquid. In the
paper, the case when ν > γ , i.e., the case which covers the attractive singularity of the
function g, is studied. The results obtained assure that there exists a positive
ω-periodic solution to the above-mentioned equation if the power μ or ν is
sufficiently large.
MSC: 34C25; 34B16; 34B18; 76N15

Keywords: Rayleigh-Plesset equation; singular equation; periodic solution; upper
and lower function

1 Introduction
The topic of singular boundary value problems has been of substantial and rapidly grow-
ing interest for many scientists and engineers. The importance of such investigation is
emphasized by the fact that numerical simulations of solutions to such problems usually
break down near singular points.
On the other hand, problems of this type arise frequently in applied science. Namely, in

fluid mechanics, since  the physicists have used the Rayleigh equation,

ρ

[
RR̈ +



Ṙ

]
= p(R) – p∞,

to model the bubble dynamics in liquid, where R(t) is the ratio of the bubble at the time t,
ρ is the liquid density, p∞ is the pressure in the liquid at a large distance from the bubble,
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and p(R) is the pressure in the liquid at the bubble boundary. In , Plesset proposed
to use a more exact equation involving the surface-tension constant S and the coefficient
of the liquid viscosity μ*, which was finally improved by adding a term with polytropic
coefficient k in , nowadays known as a Rayleigh-Plesset equation (see [])

ρ

[
RR̈ +



Ṙ

]
=

[
Pv – p∞(t)

]
+ Pg

(
R

R

)k

–
S
R

–
μ*Ṙ
R

.

The transformation R = u

 in the previous equation leads to the equation

ü =
[Pv – p∞(t)]

ρ
u


 +

(
PgRk



ρ

)


u
k–


–
S

u


– μ*

u̇

u


.

Consequently, the class of equations

u′′(t) +
cu′(t)
uμ(t)

+
g

uν(t)
–

g
uγ (t)

= h(t)uδ(t) for a.e. t ∈ [,ω], (.)

with non-negative constants g, g, δ, real numbers c, μ, ν , γ , and h ∈ L([,ω];R), plays
an important role in fluid mechanics. Therefore, the equation

u′′(t) + f
(
u(t)

)
u′(t) + g

(
u(t)

)
= h

(
t,u(t)

)
for a.e. t ∈ [,ω], (.)

subjected to the periodic conditions

u() = u(ω), u′() = u′(ω), (.)

is investigated in the presented paper. Here, f , g : (, +∞) → R are continuous, hav-
ing possible singularities at zero, and h : [,ω] × R → R is a Carathéodory function,
i.e., h(·,x) : [,ω] → R is measurable for all x ∈ R, h(t, ·) : R → R is continuous for a.e.
t ∈ [,ω], and for every r > , there exists a non-negative function qr ∈ L([,ω];R) such
that |h(t,x)| ≤ qr(t) for a.e. t ∈ [,ω] and all |x| ≤ r. By a solution to (.), (.) we un-
derstand a function u : [,ω] → R which is positive, absolutely continuous together with
its first derivative, satisfies (.) almost everywhere on [,ω], and verifies (.). In spite of
the fact that the problem (.), (.) was investigated by many mathematicians (see, e.g.,
[–]), most of the mentioned works deal with the repulsive case and/or when f has no
singularity. However, the physical model, covered by equation (.), justifies considering
the types of equations with a singular friction-like term.
A particular case of (.) is the equation

u′′ +

uν

= h(t) (.)

studied by Lazer and Solimini. Their results were published in  (see []) and they
proved, among others, that (.), (.) has at least one solution if and only if h > , pro-
vided h is bounded. Recently, we have proved (see []) that this result cannot be ex-
tended to the case when h is a general integrable (and so unbounded) function unless
some additional conditions are introduced. In particular, (.), (.) is solvable for any
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h ∈ L([,ω];R) with h >  if ν ≥ ; and, moreover, for any ν ∈ (, ), there exists a func-
tion h ∈ L([,ω];R) with h >  such that (.), (.) has no solution. At this point, we
would like to emphasize the important fact that the condition ν ≥  can be weakened if
(.) is generalized to equation (.), see Remark . below.
The structure of the paper is as follows. After the introduction and basic notation, we

recall the definition of lower and upper functions to the problem (.), (.), and we for-
mulate the classical theorem on the existence of a solution to (.), (.) in the case when
there exists a couple of well-ordered lower and upper functions. In Section , we estab-
lish our main results and their consequences. Sections  and  are devoted to auxiliary
propositions and proofs of the main results, respectively.
For convenience, we finish the introduction with a list of notations which are used

throughout the paper:
N is the set of all natural numbers, R is the set of all real numbers, R+ = (,+∞), [x]+ =

max{x, }, [x]– =max{–x, }.
C([,ω];R) is the Banach space of continuous functions u : [,ω] →R with the norm

‖u‖∞ =max
{∣∣u(t)∣∣ : t ∈ [,ω]

}
.

C(R+;R), resp. C(R+;R+), is the set of continuous functions u :R+ → R, resp. u :R+ →
R

+.
C(R+;R+) is the set of functions u :R+ →R

+ which are continuous together with their
first derivative.
AC([,ω];R) is a set of all functions u : [,ω] → R such that u and u′ are absolutely

continuous.
L([,ω];R) is the Banach space of the Lebesgue integrable functions p : [,ω] → R en-

dowed with the norm

‖p‖ =
∫ ω



∣∣p(s)∣∣ds.
For a given p ∈ L([,ω];R), its mean value is defined by

p =

ω

∫ ω


p(s)ds.

Given ϕ,ψ ∈ L([,ω];R), then

	+ =
∫ ω



[
ϕ(s)

]
+ ds, 	– =

∫ ω



[
ϕ(s)

]
– ds,


+ =
∫ ω



[
ψ(s)

]
+ ds, 
– =

∫ ω



[
ψ(s)

]
– ds.

The following definitions of lower and upper functions are suitable for us. For more
general definitions, one can see, e.g., [, Definition .].

Definition . A function α ∈ AC([,ω];R) is called a lower function to the problem (.),
(.) if α(t) >  for every t ∈ [,ω] and

α′′(t) + f
(
α(t)

)
α′(t) + g

(
α(t)

) ≥ h
(
t,α(t)

)
for a.e. t ∈ [,ω],

α() = α(ω), α′()≥ α′(ω).
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Definition . A function β ∈ AC([,ω];R) is called an upper function to the problem
(.), (.) if β(t) >  for every t ∈ [,ω] and

β ′′(t) + f
(
β(t)

)
β ′(t) + g

(
β(t)

) ≤ h
(
t,β(t)

)
for a.e. t ∈ [,ω],

β() = β(ω), β ′() ≤ β ′(ω).

The following theorem is well known in the theory of differential equations (see, e.g.,
[, Theorem .]).

Theorem . Let α and β be lower and upper functions to the problem (.), (.) such that

α(t)≤ β(t) for t ∈ [,ω]. (.)

Then there exists a solution u to the problem (.), (.) such that

α(t)≤ u(t) ≤ β(t) for t ∈ [,ω].

2 Main results
Theorem . Let ρ ∈ C(R+;R+) and ρ ∈ C(R+;R+) be non-decreasing functions,
h,h ∈ L([,ω];R), and x >  be such that

h(t)ρ(x)≤ h(t,x)≤ h(t)ρ(x) for a.e. t ∈ [,ω],x≥ x, (.)

and let there exist c, c ∈R such that

g(x)
ρ(x)

≤ c < h for x ≥ x, (.)

g(x)
ρ(x)

≤ c ≤ h for x≥ x. (.)

Let,moreover, there exist λ ∈ [, ] such that

∫ 



ds
ρλ
 (s)

< +∞, (.)

lim
x→+

g(x)
ρλ
(x)

= +∞, (.)

and let either

∫ 



(
[f (s)]+
ρλ
 (s)

+
[g(s)]+
ρλ
 (s)

)
ds = +∞,

∫ 



[f (s)]–
ρλ
 (s)

ds < +∞ (.)

or

∫ 



(
[f (s)]–
ρλ
 (s)

+
[g(s)]+
ρλ
 (s)

)
ds = +∞,

∫ 



[f (s)]+
ρλ
 (s)

ds < +∞. (.)

Furthermore, let us suppose that ρ fulfills at least one of the following conditions:
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(a) there exists a sequence {yn}+∞
n= of positive numbers such that

lim
n→+∞ yn = +∞, lim

n→+∞
ρ–λ
 (yn)
σ (yn)

= , (.)

and there exist ε > , ε ∈ (, ε], and n ∈N such that

ρ–λ
 (( + ε)yn)

ρ–λ
 (yn)

	– ≤ 	+ – ε for n ≥ n, (.)

( + ε)σ (yn) ≤ σ
(
( + ε)yn

)
for n≥ n, (.)

where ϕ(t) = h(t) – c for almost every t ∈ [,ω] and

σ (x) =
∫ x



ds
ρλ
 (s)

; (.)

(b) the function ρ–λ
 (x)
σ (x) is non-increasing and

ω


	+	–

ρ–λ
 (x)
σ (x)

< 	+ –	–, (.)

where ϕ(t) = h(t) – c for almost every t ∈ [,ω] and σ is given by (.).
Besides, let us suppose that ρ fulfills at least one of the following conditions:
(c) there exists a sequence {zn}+∞

n= of positive numbers such that

lim
n→+∞ zn = +∞, lim

n→+∞
ρ(zn)
zn

= ,

and there exist ε >  and n ∈N such that

ρ(zn( + ε))
ρ(zn)


– ≤ 
+ for n≥ n,

where ψ(t) = h(t) – c for almost every t ∈ [,ω];
(d) the function ρ(x)

x is non-increasing and

ω



+
–

ρ(x)
x

≤ 
+ –
–,

where ψ(t) = h(t) – c for almost every t ∈ [,ω].
Then there exists at least one solution to the problem (.), (.).

Remark . Note that there exists a suitable ε such that (.) holds, e.g., if

lim sup
x→+∞

ρλ
 (( + ε)x)

ρλ
 (x)

<  + ε.

For equation (.), from Theorem . we get the following assertion.

http://www.boundaryvalueproblems.com/content/2013/1/47
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Corollary . Let g > , g ≥ ,  ≤ δ < , ν > γ , ν + δ >  and

either (μ + δ) sgn |c| ≥  or ν + δ ≥ .

If

h > – lim
x→+∞

g
xγ+δ

,

then (.), (.) has at least one solution.

Remark . In [], it is proved, among others, that the equation

u′′ +

uν

= h(t), (.)

with h ∈ L([,ω];R) and h > , has a positive ω-periodic solution if ν ≥ . More-
over, there is also an example introduced showing that for any ν ∈ (, ), there exists
h ∈ L([,ω];R) with h >  such that (.), (.) has no positive solution.
Corollary . says that if a friction-like term or sub-linear term are added to (.), the

condition ν ≥  can be weakened. For example,

u′′ +
u′

uμ
+


uν

= h(t)

has a positive solution satisfying (.) for any ν >  if μ ≥ , provided h > . Also, the
equation

u′′ +

uν

= h(t)uδ

subjected to the boundary conditions (.) is solvable for any ν >  if δ ∈ [/, ), provided
h > .

Example . As it was mentioned in the introduction, the particular case of (.) is the
so-called Rayleigh-Plesset equation frequently used in fluid mechanics. This equation has
the following form:

u′′ +
cu′

u


+

g
u



–

g
uγ

= h(t)u

 , (.)

where h ∈ L([,ω];R), c, g, g are positive constants and γ ∈R (see [, ]).
The results dealing with the existence of positive ω-periodic solutions of (.) were

established in [] provided h is bounded from above (see [, Theorems ., ., .]).
However, Corollary . says that in the case when γ < /, the problem (.), (.) is solv-
able if one of the following items is fulfilled:
. γ > –/ and h > ;
. γ = –/ and h > –g;
. γ < –/.

Thus, Corollary . assures that the boundedness of h is not necessary.

http://www.boundaryvalueproblems.com/content/2013/1/47
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Corollary . Let g > , g ≥ , ν > γ , ν +  > . Let,moreover, either g* = –∞ or

h > g* > –∞,
ω


	+	– < 	+ –	–, (.)

where ϕ(t) = h(t) – g* for almost every t ∈ [,ω], and

g* = – lim
x→+∞

g
xγ+ .

Then the problem (.), (.) with δ =  has at least one solution.

Remark . According to [] and Theorem ., it can be easily verified that the problem

u′′ +
g
uν

= h(t)u; u() = u(ω), u′() = u′(ω), (.)

with g >  and ν > , has a positive solution if and only if the inclusion L[,–h] ∈ V–

holds (see notation in []).
Indeed, according to [, Definition .], the inclusion L[,–h] ∈ V– implies the exis-

tence of a positive solution v to the problem

v′′ = h(t)v – g; u() = u(ω), u′() = u′(ω).

Therefore there exist constants x >  and y >  such that x+ν ≤ v(t) ≤ y+ν for t ∈ [,ω].
By setting

α(t) def=
v(t)
yν

, β(t) def=
v(t)
xν

for t ∈ [,ω],

one can easily realize that α and β are, respectively, lower and upper functions to (.)
satisfying (.).Now, the existence of a positive solution to (.) follows fromTheorem..
On the other hand, the existence of a positive solution to (.) implies the inclusion

L[,–h] ∈ V– (see [, Theorem .]).
However, one of the optimal effective conditions guaranteeing such an inclusion is h 	≡

 and

ω



∫ ω



[
h(s)

]
+ ds

∫ ω



[
h(s)

]
– ds≤

∫ ω



[
h(s)

]
+ ds –

∫ ω



[
h(s)

]
– ds

(see [, Corollary .]). Therefore, the condition (.) is natural in a certain sense.

When the right-hand side of equation (.) does not depend on u, i.e., when h(t,x) ≡
h(t), then (.) has the form

u′′(t) + f
(
u(t)

)
u′(t) + g

(
u(t)

)
= h(t) for a.e. t ∈ [,ω]. (.)

From Theorem ., for equation (.) we get the following assertion.

Corollary . Let there exist x >  and c ∈R such that

g(x)≤ c < h for x ≥ x

http://www.boundaryvalueproblems.com/content/2013/1/47
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and let

lim
x→+

g(x) = +∞.

Let,moreover, either

∫ 



([
f (s)

]
+ +

[
g(s)

]
+

)
ds = +∞,

∫ 



[
f (s)

]
– ds < +∞

or

∫ 



([
f (s)

]
– +

[
g(s)

]
+

)
ds = +∞,

∫ 



[
f (s)

]
+ ds < +∞.

Then there exists at least one solution to the problem (.), (.).

In the following result, the assumptions do not depend on the friction-like term. On the
other hand, a certain smallness of oscillation of the primitive to h is supposed. Clearly,
Theorems . and . are independent.

Theorem . Let ρ ∈ C(R+;R+) and ρ ∈ C(R+;R+) be non-decreasing functions,
h,h ∈ L([,ω];R), and  < x ≤ x < +∞ be such that

h(t,x)≤ h(t)ρ(x) for a.e. t ∈ [,ω],  < x ≤ x, (.)

h(t,x)≥ h(t)ρ(x) for a.e. t ∈ [,ω],x≥ x. (.)

Let,moreover,

ω


‖h – h‖ <

∫ x



ds
ρ(s)

< +∞, (.)

g(x)
ρ(x)

≥ h for  < x≤ x, (.)

and let there exist c ∈R such that

g(x)
ρ(x)

≤ c ≤ h for x≥ x. (.)

Besides, let us suppose that ρ fulfills at least one of the conditions (c) or (d) of Theorem ..
Then there exists at least one solution to the problem (.), (.).

In the particular case, when equation (.) has the form (.), the following assertion
immediately follows from Theorem ..

Corollary . Let  ≤ δ < , and let  < x ≤ x < +∞ be such that

( – δ)
ω


‖h – h‖ < x–δ

 .

http://www.boundaryvalueproblems.com/content/2013/1/47
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Let,moreover,

g
xν+δ

–
g
xγ+δ

≥ h if  < x≤ x,

g
xν+δ

–
g
xγ+δ

≤ h if x≥ x.

Then the problem (.), (.) has at least one solution.

Remark . The consequence of Theorem . for the problem (.), (.) coincides with
the result obtained in [, Theorem .].

3 Auxiliary propositions
In what follows, we will show the existence of a solution to the equation

u′′(t) + f
(
u(t)

)
u′(t) + g

(
u(t)

)
= h(t)ρ

(
u(t)

)
for a.e. t ∈ [,ω], (.)

satisfying the boundary conditions (.). Here, ρ ∈ C(R+;R+) is a non-decreasing func-
tion, h ∈ L([,ω];R), and f , g ∈ C(R+;R). Together with (.), for every k ∈ N, consider
the auxiliary equation

u′′(t) + f
(
u(t)

)
u′(t) + g

(
u(t)

)
= hk(t)ρ

(
u(t)

)
for a.e. t ∈ [,ω], (.)

where

hk(t) =

⎧⎨
⎩k if h(t) > k,

h(t) if h(t) ≤ k
for a.e. t ∈ [,ω],k ∈N. (.)

Obviously,

hk(t) ≤ hm(t) ≤ h(t) for a.e. t ∈ [,ω],k ≤ m, (.)

and

lim
k→+∞

hk = h. (.)

The following three results can be found in [].

Lemma . (see [, Corollary .]) Let x >  and c ∈R be such that

g(x)
ρ(x)

≤ c≤ h for x ≥ x. (.)

Let,moreover, there exist a sequence {yn}+∞
n= of positive numbers such that

lim
n→+∞ yn = +∞, lim

n→+∞
ρ(yn)
yn

= , (.)

http://www.boundaryvalueproblems.com/content/2013/1/47
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and let there exist ε >  and n ∈N such that

ρ(( + ε)yn)
ρ(yn)

	– ≤ 	+ for n ≥ n,

where ϕ(t) = h(t) – c for almost every t ∈ [,ω]. Then there exists an upper function β to
the problem (.), (.) satisfying

β(t)≥ x for t ∈ [,ω]. (.)

Lemma . (see [, Corollary .]) Let x >  and c ∈ R be such that (.) holds. If ρ(x)
x

is a non-increasing function such that

ω


	+	–

ρ(x)
x

≤ 	+ –	–,

where ϕ(t) = h(t) – c for almost every t ∈ [,ω], then there exists an upper function β to
the problem (.), (.) satisfying (.).

Lemma . (see [, Corollary .]) Let x > ω
 ‖h – h‖ be such that

g(x)≥ h for  < x≤ x.

Then there exists a lower function α to the problem (.), (.) with

 < α(t)≤ x for t ∈ [,ω]. (.)

Lemma . Let x >  and c ∈ R be such that (.) holds. Let, moreover, there exist a
sequence {yn}+∞

n= of positive numbers such that (.) is fulfilled, and let there exist ε >  and
n ∈N such that

ρ(( + ε)yn)
ρ(yn)

	– ≤ 	+ – ε for n≥ n, (.)

where ϕ(t) = h(t) – c for almost every t ∈ [,ω]. Then there exist k ∈ N and an upper
function β to the problems (.), (.) for k ≥ k satisfying (.).

Proof Put

ϕk(t) = hk(t) – c for a.e. t ∈ [,ω], (.)

	k+ =
∫ ω



[
ϕk(s)

]
+ ds, 	k– =

∫ ω



[
ϕk(s)

]
– ds. (.)

Then, obviously, in view of (.), we have

lim
k→+∞

	k+ = 	+, lim
k→+∞

	k– = 	– (.)

http://www.boundaryvalueproblems.com/content/2013/1/47
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and, consequently, on account of (.), (.), (.), and (.), there exists k ∈ N such
that

g(x)
ρ(x)

≤ c ≤ hk ≤ h for x ≥ x, (.)

ρ(( + ε)yn)
ρ(yn)

	k– ≤ 	k+ for n≥ n. (.)

Therefore, according to Lemma ., there exists an upper function β to (.), (.) with
k = k satisfying (.). Obviously, in view of (.) and the non-negativity of ρ, it follows
that β is also an upper function to (.), (.) for k ≥ k. �

Lemma . Let x >  and c ∈ R be such that (.) holds. If ρ(x)
x is a non-increasing

function such that

ω


	+	–

ρ(x)
x

<	+ –	–, (.)

where ϕ(t) = h(t) – c for almost every t ∈ [,ω], then there exist k ∈ N and an upper
function β to the problems (.), (.) for k ≥ k satisfying (.).

Proof Define ϕk , 	k+, and 	k– by (.) and (.). Then, obviously, in view of (.), we
have that (.) holds and, consequently, on account of (.), (.), (.), and (.), there
exists k ∈N such that (.) is valid and

ω


	k+	k–

ρ(x)
x

≤ 	k+ –	k–. (.)

Therefore, according to Lemma ., there exists an upper function β to (.), (.) with
k = k satisfying (.). Obviously, in view of (.) and the non-negativity of ρ, it follows
that β is also an upper function to (.), (.) for k ≥ k. �

Lemma . Let

lim inf
x→+

g(x) > –∞, (.)

and let either

∫ 



[
f (s)

]
+ ds < +∞ (.)

or

∫ 



[
f (s)

]
– ds < +∞. (.)

Then, for every K > , there exists a constant K >  such that for any k ∈N and any positive
solution u of (.), (.) with

‖u‖∞ ≤ K , (.)

http://www.boundaryvalueproblems.com/content/2013/1/47
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we have the estimate

∥∥u′∥∥∞ ≤ K. (.)

Proof Assume that (.) is fulfilled. Let u be a positive solution to (.), (.) satisfying
(.). Then there exist t, t ∈ [,ω] such that

u(t) =min
{
u(t) : t ∈ [,ω]

}
, u(t) =max

{
u(t) : t ∈ [,ω]

}
. (.)

Define the operator ϑ of ω-periodic prolongation by

ϑ(v)(t) =

⎧⎨
⎩v(t) if t ∈ [,ω],

v(t –ω) if t ∈ (ω, ω].
(.)

Then, obviously, from (.) and (.) it follows that

ϑ(u)′′(t) + f
(
ϑ(u)(t)

)
ϑ(u)′(t) + g

(
ϑ(u)(t)

)
= ϑ(hk)(t)ρ

(
ϑ(u)(t)

)
for a.e. t ∈ [, ω]. (.)

The integration of (.) from t to t, on account of (.), yields

ϑ(u)′(t) = –
∫ t

t
f
(
ϑ(u)(s)

)
ϑ(u)′(s)ds –

∫ t

t
g
(
ϑ(u)(s)

)
ds

+
∫ t

t
ϑ(hk)(s)ρ

(
ϑ(u)(s)

)
ds for t ∈ [t, t +ω]. (.)

From (.), (.), and (.) it follows that

 < ϑ(u)(t) ≤ ϑ(u)(t)≤ K for t ∈ [t, t +ω]. (.)

Put

μ = sup
{[
g(s)

]
– : s ∈ (,K]

}
. (.)

According to (.), we have

 ≤ μ < +∞. (.)

Thus, using (.), (.), (.), and (.)-(.) in (.), we arrive at

ϑ(u)′(t) ≤
∫ K



[
f (s)

]
– ds +ωμ + ‖h‖ρ(K) for t ∈ [t, t +ω]. (.)

Put

K =
∫ K



[
f (s)

]
– ds +ωμ + ‖h‖ρ(K).

http://www.boundaryvalueproblems.com/content/2013/1/47
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Then, on account of (.) and (.), we have

u′(t)≤ K for t ∈ [,ω]. (.)

On the other hand, the integration of (.) from t to t +ω, with respect to (.), results
in

ϑ(u)′(t) =
∫ t+ω

t
f
(
ϑ(u)(s)

)
ϑ(u)′(s)ds +

∫ t+ω

t
g
(
ϑ(u)(s)

)
ds

–
∫ t+ω

t
ϑ(hk)(s)ρ

(
ϑ(u)(s)

)
ds for t ∈ [t, t +ω]. (.)

Now, using (.), (.), (.), and (.)-(.) in (.), we obtain

–ϑ(u)′(t) ≤ K for t ∈ [t, t +ω]. (.)

Therefore, in view of (.), from (.) we get

–u′(t)≤ K for t ∈ [,ω]. (.)

Consequently, (.) and (.) result in (.).
Now, suppose that (.) is fulfilled. Put

v(t) = u(ω – t) for t ∈ [,ω]. (.)

Then, according to (.), we have

v′′(t) – f
(
v(t)

)
v′(t) + g

(
v(t)

)
= h̃k(t)ρ

(
v(t)

)
for a.e. t ∈ [,ω], (.)

where

h̃k(t) = hk(ω – t) for a.e. t ∈ [,ω].

Analogously to the above-proved, using (.) instead of (.), we obtain

∥∥v′∥∥∞ ≤ K (.)

with

K =
∫ K



[
f (s)

]
+ ds +ωμ + ‖h‖ρ(K).

Thus, (.) and (.) yield (.). �

Lemma . Let

lim
x→+

g(x) = +∞ (.)

http://www.boundaryvalueproblems.com/content/2013/1/47


Hakl and Zamora Boundary Value Problems 2013, 2013:47 Page 14 of 20
http://www.boundaryvalueproblems.com/content/2013/1/47

and let either

∫ 



([
f (s)

]
+ +

[
g(s)

]
+

)
ds = +∞,

∫ 



[
f (s)

]
– ds < +∞ (.)

or

∫ 



([
f (s)

]
– +

[
g(s)

]
+

)
ds = +∞,

∫ 



[
f (s)

]
+ ds < +∞. (.)

Then, for every K > , there exists a constant a >  such that for any k ∈N and any positive
solution u of (.), (.) satisfying (.), we have the estimate

a ≤ u(t) for t ∈ [,ω]. (.)

Proof Let u be a positive solution to (.), (.) satisfying (.). Thus, the integration of
(.) from  to ω, in view of (.) and (.), yields

∫ ω


g
(
u(s)

)
ds≤ ‖h‖ρ(K). (.)

On the other hand, (.) implies the existence of x ∈ (, +∞) such that

g(x) >
‖h‖ρ(K)

ω
≥  for x ∈ (,x). (.)

Let tm ∈ [,ω] be such that

u(tm) =min
{
u(t) : t ∈ [,ω]

}
. (.)

Obviously, either

u(tm) ≥ x

or

u(tm) < x. (.)

Obviously, it is sufficient to show the estimate (.) is valid just in the case when (.) is
fulfilled. Let, therefore, (.) hold.
If u(t) < x for t ∈ [,ω], then applying (.) in (.) we obtain a contradiction. Thus,

there exist points t, t ∈ (tm, tm +ω) such that

ϑ(u)(t) < x for t ∈ [tm, t),ϑ(u)(t) = x, (.)

ϑ(u)(t) < x for t ∈ (t, tm +ω],ϑ(u)(t) = x, (.)

where ϑ is the operator defined by (.). Obviously, (.) holds.
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Assume that (.) holds. Then, according to Lemma ., there exists K >  such that
(.) holds. The integration of (.) from tm to t, in view of (.), (.), (.), (.),
(.), (.), and (.), results in

ϑ(u)′(t) +
∫ x

ϑ(u)(tm)

[
f (s)

]
+ ds +


K

∫ x

ϑ(u)(tm)

[
g(s)

]
+ ds

≤
∫ x



[
f (s)

]
– ds + ‖h‖ρ(K). (.)

Note that in view of (.), we have ϑ(u)′(t) ≥ . Consequently, from (.) we obtain

∫ x

ϑ(u)(tm)

([
f (s)

]
+ +

[
g(s)

]
+

)
ds≤ K, (.)

where

K = (K + )
(∫ x



[
f (s)

]
– ds + ‖h‖ρ(K)

)
.

Note that K does not depend on k. Therefore, if we apply (.) in (.), it can be easily
seen, with respect to (.), that there exists a constant a >  such that (.) holds.
If (.) holds, we integrate (.) from t to tm + ω and apply similar steps as above,

just using (.) instead of (.). Finally, we arrive at

∫ x

ϑ(u)(tm+ω)

([
f (s)

]
– +

[
g(s)

]
+

)
ds≤ K

with

K = (K + )
(∫ x



[
f (s)

]
+ ds + ‖h‖ρ(K)

)
.

Therefore, also in this case, there exists a constant a >  such that (.) holds. �

Lemma. Let x >  and c ∈R be such that (.) holds. Let,moreover, (.) be fulfilled,
and let either (.) or (.) be valid. Let, in addition, there exist a sequence {yn}+∞

n= of
positive numbers such that (.) holds, and let there exist ε >  and n ∈N such that (.)
is fulfilled, where ϕ(t) = h(t) – c for almost every t ∈ [,ω]. Then there exists a positive
solution u to (.), (.).

Proof According to Lemma ., there exist k ∈ N and an upper function β to the prob-
lems (.), (.) for k ≥ k satisfying (.). On the other hand, in view of (.) and (.),
there exists xk ∈ (,x] for k ≥ k such that

g(xk) ≥ hk(t)ρ(xk) for a.e. t ∈ [,ω].

Thus, if we put αk(t) = xk for t ∈ [,ω], according to Theorem ., there exists a solution
uk to (.), (.) for k ≥ k satisfying

 < αk(t) ≤ uk(t) ≤ β(t) for t ∈ [,ω]. (.)
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Moreover, according to Lemmas . and ., in view of (.), there exist constants K > ,
K > , and a > , not depending on k, such that

‖uk‖∞ ≤ K ,
∥∥u′

k
∥∥∞ ≤ K for k ≥ k, (.)

a ≤ uk(t) for t ∈ [,ω],k ≥ k, (.)∣∣u′′
k (t)

∣∣ ≤ fK + g +
∣∣h(t)∣∣ρ(K) for a.e. t ∈ [,ω],k ≥ k, (.)

where

f =max
{∣∣f (x)∣∣ : x ∈ [a,K]

}
, g =max

{∣∣g(x)∣∣ : x ∈ [a,K]
}
.

Therefore, according to the Arzelà-Ascoli theorem, there exist u ∈ C([,ω];R) and v ∈
C([,ω];R) such that

lim
k→+∞

‖uk – u‖∞ = , lim
k→+∞

∥∥u′
k – v

∥∥∞ = . (.)

Moreover, since uk are solutions to (.), (.), in view of (.), (.), and (.), we have
u ∈ AC([,ω];R), u′

 ≡ v, and u is a positive solution to (.), (.). �

The following assertion can be proved analogously to Lemma ., just Lemma . is used
instead of Lemma ..

Lemma. Let x >  and c ∈R be such that (.) holds. Let,moreover, (.) be fulfilled,
and let either (.) or (.) be valid. Let, in addition, ρ(x)

x be a non-increasing function
and let (.) be fulfilled,where ϕ(t) = h(t)–c for almost every t ∈ [,ω].Then there exists
a positive solution u to (.), (.).

Lemma . Let ρ ∈ C(R+;R+) be non-decreasing, x > , and c ∈R be such that (.)
holds. Let,moreover, there exist λ ∈ [, ] such that (.) and (.) are valid, and let either
(.) or (.) be fulfilled. Let, in addition, there exist a sequence {yn}+∞

n= of positive numbers
such that (.) holds and let there exist ε > , ε ∈ (, ε], and n ∈ N such that (.) and
(.) are fulfilled,where ϕ(t) = h(t)– c for almost every t ∈ [,ω] and σ is given by (.).
Then there exists a lower function α to the problem (.), (.).

Proof Because ρ is a positive function, from (.) and (.) we obtain that σ is a positive
increasing function. Therefore, there exists an inverse function σ – to σ which is also
increasing. Moreover, in view of (.) and (.), it follows that

lim
x→+

σ (x) = , lim
x→+

σ –(x) = ,

lim
x→+∞σ (x) = +∞, lim

x→+∞σ –(x) = +∞.
(.)

Consider the auxiliary equation

u′′(t) + f
(
σ –(u(t)))u′(t) +

g(σ –(u(t)))
ρλ
(σ –(u(t)))

= h(t)ρ–λ


(
σ –(u(t))) for a.e. t ∈ [,ω]. (.)
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Put z = σ (x), z = σ (x). Then from (.) we get

g(σ –(z))
ρ(σ –(z))

≤ c < h for z ≥ z (.)

and, in view of (.), from (.) we have

lim
z→+

g(σ –(z))
ρλ
 (σ –(z))

= +∞. (.)

Furthermore, the substitution r = σ (s) in (.), resp (.), with respect to (.) yields

∫ 



([
f
(
σ –(r)

)]
+ +

[g(σ –(r))]+
ρλ
(σ –(r))

)
dr = +∞,

∫ 



[
f
(
σ –(r)

)]
– dr < +∞, (.)

resp.

∫ 



([
f
(
σ –(r)

)]
– +

[g(σ –(r))]+
ρλ
 (σ –(r))

)
dr = +∞,

∫ 



[
f
(
σ –(r)

)]
+ dr < +∞. (.)

Moreover, put zn = σ (yn) for n ∈N. Then from (.), in view of (.), we get

lim
n→+∞ zn = +∞, lim

n→+∞
ρ–λ
 (σ –(zn))

zn
= . (.)

Finally, (.) results in

σ –(( + ε)zn
) ≤ ( + ε)yn for n≥ n,

and so, since ρ is a non-decreasing function, from (.) we obtain

ρ–λ
 (σ –(( + ε)zn))

ρ–λ
 (σ –(zn))

	– ≤ 	+ – ε for n≥ n. (.)

Therefore, applying Lemma ., according to (.)-(.), there exists a positive solution
u to the problem (.), (.).
Now, we put α(t) = σ –(u(t)) for t ∈ [,ω], i.e., in view of (.),

u(t) =
∫ α(t)



ds
ρλ
 (s)

for t ∈ [,ω].

Obviously, α ∈ AC([,ω];R) is a positive function and

u′(t) =
α′(t)

ρλ
 (α(t))

for t ∈ [,ω],

u′′(t) =
α′′(t)

ρλ
 (α(t))

–
λα′(t)ρ ′

(α(t))
ρ+λ
 (α(t))

≤ α′′(t)
ρλ
 (α(t))

for a.e. t ∈ [,ω].

Thus, it can be easily seen that α is a lower function to the problem (.), (.). �

Analogously to the proof of Lemma ., one can prove the following assertion applying
Lemma . instead of Lemma ..
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Lemma . Let ρ ∈ C(R+;R+) be non-decreasing, x > , and c ∈ R be such that (.)
holds. Let,moreover, there exist λ ∈ [, ] such that (.) and (.) are valid, and let either
(.) or (.) be fulfilled. Let, in addition, ρ–λ

 (x)
σ (x) be a non-increasing function and let (.)

be fulfilled, where ϕ(t) = h(t) – c for almost every t ∈ [,ω] and σ is given by (.). Then
there exists a lower function α to the problem (.), (.).

4 Proofs of themain results
Proof of Theorem . According to Lemmas ., ., ., and ., the conditions of the
theorem guarantee a well-ordered couple of lower and upper functions, therefore the re-
sult is a direct consequence of Theorem .. �

Proof of Corollary . It follows from Theorem . with h ≡ h, ρ(x) = ρ(x) = xδ , λ = ,
and c = c such that

h > c > – lim
x→+∞

g
xγ+δ

.

Then items (a) and (c) of Theorem . are fulfilled. �

Proof of Corollary . It follows from Theorem . with h ≡ h, ρ(x) = ρ(x) = x, and
λ <  such that ν + λ > , ν + λ ≥ . Then items (b) and (d) of Theorem . are fulfilled.

�

Proof of Corollary . It immediately follows from Theorem . with h ≡ h, ρi(x) ≡ 
(i = , ). �

Proof of Theorem . Put

σ (x) =
∫ x



ds
ρ(s)

for x ≥ . (.)

Because ρ is a positive function, from (.) and (.) we obtain that σ is an increasing
function. Therefore, there exists an inverse function σ – to σ which is also increasing.
Consider the auxiliary equation

u′′(t) + f
(
σ –(u(t)))u′(t) +

g(σ –(u(t)))
ρ(σ –(u(t)))

= h(t) for a.e. t ∈ [,ω]. (.)

Put z = σ (x), z = σ (x). Then from (.) and (.), in view of (.), we get

ω


‖h – h‖ < z,

g(σ –(z))
ρ(σ –(z))

≥ h for  < z ≤ z.

Therefore, according to Lemma ., there exists a lower function w to the problem (.),
(.) satisfying

 < w(t)≤ σ (x) for t ∈ [,ω]. (.)
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Now, we put α = σ –(w(t)) for t ∈ [,ω], i.e., in view of (.),

w(t) =
∫ α(t)



ds
ρ(s)

for t ∈ [,ω].

Obviously, with respect to (.), α ∈ AC([,ω];R) is a positive function satisfying (.),
and

w′(t) =
α′(t)

ρ(α(t))
for t ∈ [,ω],

w′′(t) =
α′′(t)

ρ(α(t))
–

α′(t)ρ ′
(α(t))

ρ
(α(t))

≤ α′′(t)
ρ(α(t))

for a.e. t ∈ [,ω].

Thus, on account of (.), (.), and (.), it can be easily seen that α is a lower function
to the problem (.), (.).
The existence of an upper function β to (.), (.) satisfying

β(t)≥ x for t ∈ [,ω] (.)

follows from (.) and Lemma ., resp. ..
Obviously, in view of (.) and (.), we have that (.) holds. Thus the theorem follows

from Theorem .. �

Proof of Corollary . It follows from Theorem . with h ≡ h, ρ(x) = ρ(x) = xδ , and
c = h. �
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