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Abstract
In this paper, we are concerned with an inverse problem for the Sturm-Liouville
operator with Coulomb potential using a new kind of spectral data that is known as
nodal points. We give a reconstruction of q as a limit of a sequence of functions
whose nth term is dependent only on eigenvalue and its associated nodal data. It is
mentioned that this method is based on the works of Law and Yang, but we have
applied the method to the singular Sturm-Liouville problem.
MSC: 34L05; 45C05
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1 Introduction
Inverse problems of spectral analysis imply the reconstruction of a linear operator from
some or other of its spectral characteristics. Such characteristics are spectra (for different
boundary conditions), normalizing constants, spectral functions, scattering data, etc. An
early important result in this direction, which gave vital impetus for further development
of inverse problem theory, was obtained in []. At present, inverse problems are studied
for certain special classes of ordinary differential operators. Inverse problems from two
spectra are the most simple in their formulation and well studied in [, ]. An effective
method of constructing a regular and singular Sturm-Liouville operator from a spectral
function or from two spectra is given in [–].
We note that the details of the inverse problem for singular equations are given in the

monographs [–] and references therein.
In some recent interesting works [, ], Hald and McLaughlin and Browne and Slee-

man have taken a new approach to inverse spectral theory for the Sturm-Liouville prob-
lem. The novelty of these works lies in the use of nodal points as the given spectral data.
In recent years, inverse nodal problems have been studied by several authors [–] etc.
In this paper, we deal with an inverse nodal problem for the Sturm-Liouville operator

with Coulomb potential. We have reconstructed the potential function q from the nodal
points of eigenfunctions, provided q is smooth enough. The method is based on a series
of works by Law and Yang [, ].
Before giving the main results, we mention some physical properties of the Sturm-

Liouville operator with Coulomb potential. Learning about the motion of electrons mov-
ing under the Coulomb potential is of significance in quantum theory. Solving these types
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of problems allows us to find energy levels not only for a hydrogen atom but also for sin-
gle valence electron atoms such as sodium. For hydrogen atom, the Coulomb potential is
given by U = –e

r , where r is the radius of the nucleus, e is electronic charge. According to
this, we use the time-dependent Schrödinger equation

i�
∂�

∂t
= –

�


m
∂�

∂x
+U(x, y, z)� ,

∫
R

|�| dxdydz = ,

where � is the wave function, � is Planck’s constant andm is the mass of electron. In this
equation, if the Fourier transform is applied

�̃ =
√
π

∫ ∞

–∞
e–iλt� dt,

it will convert to energy equation dependent on the situation as follows:

�


m
� �̃ + Ũ�̃ = E�̃.

Therefore, energy equation in the field with the Coulomb potential becomes

–
�


m
� �̃ +

(
E +

e

r

)
�̃ = .

If this hydrogen atom is substituted to other potential area, then the energy equation be-
comes

–
�


m
� �̃ +

(
E +

e

r
+ q(x, y, z)

)
�̃ = .

If wemake the necessary transformation, then we can get a Sturm-Liouville equation with
Coulomb potential

–y′′ +
[
A
x
+ q(x)

]
y = λy,

where λ is a parameter which corresponds to the energy [].
We consider the singular Sturm-Liouville problem

–y′′ +
[
A
x
+ q(x)

]
y = λy ( < x ≤ π ),λ = s, (.)

y() = , (.)

y′(π ) –Hy(π ) = , (.)

in which the function q(x) ∈ L[,π ], A, H are finite numbers and y(x)
x ∈ C[,π ]. Next, we

denote by ϕ(x, s) the solution of (.) satisfying the initial condition

ϕ(, s) = , ϕ′(, s) = s. (.)

Let λn be the nth eigenvalue and  < xn < xn < · · · < xni < π , i = , , . . . ,n–  be nodal points
of the nth eigenfunction. Also, let Ini = [xni ,xni+] be the ith nodal domain of the nth eigen-
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function and let lni = |lni | = xni+ – xni be the associated nodal length. We also define the
function jn(x) by jn(x) =max{i : xni < x}.

2 Main results
In this section, we try to obtain some asymptotic results and a reconstruction formula for
the potential q, which has been obtained as a solution of an inverse nodal problem.

Lemma . The solution of problem (.)-(.) has the following form:

ϕ(x, s) = sin sx +
∫ x



sin s(x – t)
s

{
A
t
+ q(t)

}
ϕ(t, s)dt, (.)

where ϕ(t,s)
t ∈ C[,π ].

Proof Because ϕ(x, s) satisfies equation (.), we get

∫ x


sin s(x – t)

{
A
t
+ q(t)

}
ϕ(t, s)dt

=
∫ x


sin s(x – t)ϕ′′(t, s)dt + s

∫ x


sin s(x – t)ϕ(t, s)dt.

By integrating the first term twice on the right-hand side by parts and taking the conditions
into account (.), we find that

ϕ(x, s) = sin sx +
∫ x



sin s(x – t)
s

{
A
t
+ q(t)

}
ϕ(t, s)dt,

where ϕ(t,s)
t ∈ C[,π ]. �

Lemma . The eigenvalues of problem (.)-.) are the roots of (.). This spectral char-
acteristic satisfies the following asymptotic expression []:

sn =
√

λn = n +


+

A
π

ln(n + 
 )

(n + 
 )

+
c

(n + 
 )

+O
(
lnn
n

)
, (.)

where

c =

π

(
AM –H +

A lnπ


+



∫ π


q(t)dt

)
, β(x) = AM +




∫ x


q(t)dt,

M =M +
sin


and M =
∫ 



sin ξ

ξ
dξ .

Lemma . Assume that q ∈ L(,π ). Then, as n→ ∞,

xni =
π i
sn

+

sn

∫ xni


( – cossnt)

{
A
t
+ q(t)

}
dt + o

(

sn

)
, (.)

lni =
π

sn
+


sn

∫ xni+

xni
( – cossnt)

{
A
t
+ q(t)

}
dt + o

(

sn

)
. (.)
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Proof By using some iterations and trigonometric calculations in (.), we obtain

ϕ(x, s) = sin sx +
sin sx
s

∫ x


sinst

{
A
t
+ q(t)

}
dt

–
cos sx
s

∫ x


( – cosst)

{
A
t
+ q(t)

}
dt + o

(

s

)
.

If ϕ(x, s) is equal to zero and cosλx is not close to zero, then

tan sx =

s

∫ x


( – cosst)

{
A
t
+ q(t)

}
dt –

tan sx
s

∫ x


sinst

{
A
t
+ q(t)

}
dt + o

(

s

)
,

tan sx =

s

∫ x


( – cosst)

{
A
t
+ q(t)

}
dt + o

(

s

)
.

Now, we take s = sn and x = xni . Because Taylor’s expansion for the arctangent function is
given by

arctanx = π i –
∞∑
k=

(–)k+xk+

k + 

for some integer i, then

snxni = π i +

sn

∫ xni


( – cosst)

{
A
t
+ q(t)

}
dt + o

(

sn

)
.

Therefore

xni =
π i
sn

+

sn

∫ xni


( – cosst)

{
A
t
+ q(t)

}
dt + o

(

sn

)
.

The nodal length is

lni = xni+ – xni , lni =
π

sn
+


sn

∫ xni+

xni
( – cosst)

{
A
t
+ q(t)

}
dt + o

(

sn

)
.

This completes the proof of Lemma .. �

Lemma . Suppose f ∈ L(,π ). Then, for almost every x ∈ (,π ) with j = jn(x),

lim
n→∞

sn
π

∫ xnj+

xnj
f (t)dt = f (x).

Proof Since f ∈ L(,π ), d
dx

∫ x
a f (t)dt = f (x) almost everywhere. Thus, given any ζ > ,

when n is sufficiently large and for almost every x ∈ (,π ),

∣∣∣∣ snπ
∫ xnj+

xnj
f (t)dt – f (x)

∣∣∣∣
=

∣∣∣∣ sn(x – xnj )
π

[


x – xnj

∫ x

xnj
f (t)dt – f (x)

]
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+
sn(xnj+ – x)

π

[


xnj+ – x

∫ xnj+

x
f (t)dt – f (x)

]
+ f (x)

( snlnj
π

– 
)∣∣∣∣

≤ snlnj ζ
π

+ ζ
∣∣f (x)∣∣ = (∣∣f (x)∣∣ +  + ζ

)
ζ .

This proves Lemma .. �

Theorem . The potential function q(x) ∈ L(,π ) satisfies

q(x) = lim
n→∞

[
sn

( snlnj
π

– 
)
– snA ln

(xnj+
xnj

)
+
snA
π

∫ xnj+

xnj

cossnt
t

dt
]

for almost every x ∈ (,π ) with j = jn(x). We note that the asymptotic expression for sn in
Theorem . implies that q(x) = limn→∞ Fn(x).

Proof When we consider (.) in the form

lnj =
π

sn
+


sn

∫ xnj+

xnj

( – cosst)
{
A
t
+ q(t)

}
dt + o

(

sn

)

so that

sn

( snlnj
π

– 
)

=
sn
π

∫ xnj+

xnj
q(t)dt +

snA
π

∫ xnj+

xnj

dt
t
–
sn
π

∫ xnj+

xnj
cossnt

{
A
t
+ q(t)

}
dt + o(),

sn

( snlnj
π

– 
)
– snA ln

(xnj+
xnj

)
+
snA
π

∫ xnj+

xnj

cossnt
t

dt

=
sn
π

∫ xnj+

xnj
q(t)dt –

sn
π

∫ xnj+

xnj
cossntq(t)dt + o().

By Lemma .

lim
n→∞

sn
π

∫ xnj+

xnj

q(t)dt = q(x)

for almost every x ∈ (,π ).
It remains to show that for almost every x ∈ (,π ),

Tn(x) :=
sn
π

∫ xnj+

xnj
cossntq(t)dt

tends to zero as n → ∞. Take a sequence of continuous functions qk which converges to
q in L(,π ). Then qk has a subsequence converging to q almost everywhere in (,π ). We
call this subsequence qk . Take any x such that qk(x) converges to q(x). Then for a given
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ε > , we can fix a large k such that |qk(x) – q(x)| < ε. Hence

Tn(x) =
sn
π

∫ xnj+

xnj

cossnt
[
q(t) – qk(t)

]
dt +

sn
π

∫ xnj+

xnj

cossnt
[
qk(t) – qk(x)

]
dt

+
sn
π

∫ xnj+

xnj
cossntqk(x)dt

= An + Bn +Cn.

By Lemma .,

Cn =
qk(x)
π

[
sin

(
snxnj+

)
– sin

(
snxnj

)]
= qk(x)O

(

n

)

and so it tends to zero as n → ∞. By Lemma ., the first term An satisfies, when n is
sufficiently large,

|An| =
∣∣∣∣ snπ

∫ xnj+

xnj

cossnt
[
q(t) – qk(t)

]
dt

∣∣∣∣
≤ sn

π

∫ xnj+

xnj

∣∣q(t) – qk(t)
∣∣dt

<
∣∣q(x) – qk(x)

∣∣ + ε

< ε.

On the other hand,

|Bn| =
∣∣∣∣ snπ

∫ xnj+

xnj

cossnt
[
qk(t) – qk(x)

]
dt

∣∣∣∣ ≤ sn
π

∫ xnj+

xnj

∣∣qk(t) – qk(x)
∣∣dt.

Because qk is continuous, this term is arbitrarily every x ∈ (,π ). Hence we conclude that
limn→∞ Tn(x) = . This proves Theorem .. �

Lemma . We take a sequence fk ∈ C[,π ] converges to f ∈ L, then, for any large enough
n, with j = jn(x) as k → ∞

∥∥∥∥ snπ
∫ xnj+

xnj

[
fk(t) – f (t)

]
dt

∥∥∥∥

→ .

Proof By (.) and observation that the integral
∫ xnj+
xnj

[fk(t) – f (t)]dt is constant on any
nodal interval Inj , we obtain

∫ π



∣∣∣∣ snπ
∫ xnj+

xnj

[
fk(t) – f (t)

]
dt

∣∣∣∣dx
=

n–∑
i=

snlnj
π

∫ xnj+

xnj

[
fk(t) – f (t)

]
dt
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≤
n–∑
i=

[
 +O

(
lnn
n

)]∫ xnj+

xnj

[
fk(t) – f (t)

]
dt

=
[
 +O

(
lnn
n

)]∫ π



∣∣fk(t) – f (t)
∣∣dt,

and for k → ∞ this term converges to zero. �

Lemma . Suppose that q ∈ L(,π ), then as n → ∞ with j = jn(x),

∥∥∥∥ snπ
∫ xnj+

xnj
q(t)dt – q(x)

∥∥∥∥

→ .

Proof Firstly, let us show that if q is continuous on [,π ], the result is satisfied. Let M =
maxx∈[,π ] |q(x)|. By using the intermediate value theorem, there exists ξ ∈ (a,x) such that

∣∣∣∣ 
x – a

∫ x

a
q(t)dt – q(x)

∣∣∣∣ = ∣∣q(ξ ) – q(x)
∣∣.

If x is close enough to a, the difference can be arbitrarily small. Then, for all ε > , when n
is large enough, with j = jn(x) we get

∣∣∣∣ snπ
∫ xnj+

xnj

q(t)dt – q(x)
∣∣∣∣ ≤

∣∣∣∣ sn(x – xnj )
π

[


x – xnj

∫ x

xnj

q(t)dt – q(x)
]∣∣∣∣

+
∣∣∣∣ sn(x

n
j+ – x)
π

[


xnj+ – x

∫ xnj+

x
q(t)dt – q(x)

]∣∣∣∣
+

∣∣q(x)∣∣∣∣∣∣
( snlnj

π
– 

)∣∣∣∣
≤ snlnj ε

π
+Mε

≤ (M +  + ε)ε.

In the above process, we assume that x 	= xnj . The estimate also holds if x = xnj . Hence if q ∈
C[,π ], sn

π

∫ xnj+
xnj

q(t)dt converges to q(x) uniformly on (,π ). Thus ‖ sn
π

∫ xnj+
xnj

q(t)dt – q(x)‖
can be arbitrarily small. Because C[,π ] is dense in L(,π ), for any q ∈ L(,π ), there
exists a sequence qk ∈ C[,π ] convergent to q in L(,π ). Hence, fix n sufficiently large,

∫ π



∣∣∣∣ snπ
∫ xnj+

xnj

q(t)dt – q(x)
∣∣∣∣dx

≤
∫ π



∣∣∣∣ snπ
∫ xnj+

xnj

[
q(t) – qk(t)

]
dt

∣∣∣∣dx +
∫ π



∣∣∣∣ snπ
∫ xnj+

xnj
qk(t) – qk(x)

∣∣∣∣dx
+

∫ π



∣∣qk(x) – q(x)
∣∣dx.
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From the above process and Lemma ., when k is large enough, the first two terms are
arbitrarily small. Hence, as k → ∞,

∥∥∥∥ snπ
∫ xnj+

xnj

[
fk(t) – f (t)

]
dt

∥∥∥∥

→ . �

Theorem . Fn converges to q in L.

Proof When we consider the value of Fn, we obtain that

∣∣∣∣Fn – sn

( snlnj
π

– 
)
+ snA ln

(xnj+
xnj

)
–
snA
π

∫ xnj+

xnj

cossnt
t

dt
∣∣∣∣

=
∣∣∣∣Fn – sn

(snlnj
π

– sn –A ln

(xnj+
xnj

)
+
A
π

∫ xnj+

xnj

cossnt
t

dt
)∣∣∣∣.

It suffices to show that as n→ ∞
∥∥∥∥sn

(snlnj
π

– sn –A ln

(xnj+
xnj

)
+
A
π

∫ xnj+

xnj

cossnt
t

dt
)
– q

∥∥∥∥

→ .

By using (.) we have

sn
(snlnj

π
– sn –A ln

(xnj+
xnj

)
+
A
π

∫ xnj+

xnj

cossnt
t

dt
)

=
sn
π

∫ xnj+

xnj
q(t)dt +

sn
π

∫ xnj+

xnj
cossnt

{
A
t
+ q(t)

}
dt + o().

Hence, we only need to prove that for n→ ∞
∥∥∥∥ snπ

∫ xnj+

xnj
q(t)dt – q

∥∥∥∥

→ 

and

∥∥∥∥ snπ
∫ xnj+

xnj
cossnt

{
A
t
+ q(t)

}
dt

∥∥∥∥

→ . (.)

From Lemma ., the first limit holds and the second limit also holds. On the other hand,
the sequence of functions

cn(x) =
sn
π

∫ xnj+

xnj
cossnt

{
A
t
+ q(t)

}
dt

converges to  for almost every x ∈ (,π ). Furthermore,

∣∣cn(x)∣∣ ≤ sn
π

∫ xni+

xnj

∣∣∣∣At + q(t)
∣∣∣∣dt = gn(x)

http://www.boundaryvalueproblems.com/content/2013/1/49
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and

∫ π


gn(x)dx =

n–∑
i=

snlnj
π

∫ xnj+

xnj

∣∣∣∣At + q(t)
∣∣∣∣dt =

[
 +O

(
lnn
n

)]
‖q‖.

Then, we may apply the Lebesque dominated convergence theorem to show that (.) is
valid. The proof of Theorem . is completed. �
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