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Abstract
We study the existence of positive solutions of a nonlinear fractional heat equation
with nonlocal boundary conditions depending on a positive parameter. Our results
extend the second-order thermostat model to the non-integer case. We base our
analysis on the known Guo-Krasnosel’skii fixed point theorem on cones.

1 Introduction
Fractional calculus has been studied for centuries mainly as a pure theoretical mathemat-
ical discipline, but recently, there has been a lot of interest in its practical applications. In
current research, fractional differential equations have arisen in mathematical models of
systems and processes in various fields such as aerodynamics, acoustics, mechanics, elec-
tromagnetism, signal processing, control theory, robotics, population dynamics, finance,
etc. [–]. For some recent results in fractional differential equations, see [–] and the
references therein.
Infante and Webb [] studied the nonlocal boundary value problem

–u′′ = f (t,u), t ∈ (, ), u′() = , βu′() + u(η) = ,

which models a thermostat insulated at t =  with the controller at t =  adding or dis-
charging heat depending on the temperature detected by the sensor at t = η. Using fixed
point index theory and some results on their work on Hammerstein integral equations
[, ], they obtained results on the existence of positive solutions of the boundary value
problem. In particular, they have shown that if β ≥  – η, then positive solutions exist un-
der suitable conditions on f . This type of boundary value problemwas earlier investigated
by Guidotti andMerino [] for the linear case with η =  where they have shown a loss of
positivity as β decreases. In the present paper, we consider the following fractional analog
of the thermostat model:

–CDαu(t) = f
(
t,u(t)

)
, t ∈ [, ], ()

where  < α ≤ , CDα denotes the Caputo fractional derivative of order α and f ∈ C([, ]×
[,∞), [,∞)) subject to the boundary conditions

u′() = , βCDα–u() + u(η) = , ()

where β > ,  ≤ η ≤  are given constants.
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We point out that for α = , we recover the second-order problem of []. We use the
properties of the corresponding Green’s function and the Guo-Krasnosel’skii fixed point
theorem to show the existence of positive solutions of ()-() under the condition that the
nonlinearity f is either sublinear or superlinear.

2 Preliminaries
Here we present some necessary basic knowledge and definitions for fractional calculus
theory that can be found in the literature [–].

Definition . The Riemann-Liouville fractional integral of order α >  of a function g :
(,∞)→R is given by

Iαg(t) =


�(α)

∫ t


(t – s)α–g(s)ds

provided the integral exists.

Definition . The Riemann-Liouville fractional derivative of order α >  of a function
g : (,∞) →R is given by

Dα
+g(t) =


�(n – α)

(
d
dt

)n ∫ t



g(s)
(t – s)α–n+

ds
(
n –  < α < n,n = [α] + 

)
,

where [α] denotes the integer part of the real number α.

Definition. TheCaputo derivative of order α >  of a function g ∈ ACn–[,∞) is given
by

CDαg(t) =


�(n – α)

∫ t


(t – s)n–α–g(n)(s)ds

(
n –  < α < n,n = [α] + 

)
,

where [α] denotes the integer part of the real number α.

Lemma . Let g ∈ L(, ) and α,β > .
(i) If α = n ∈N, then Ing(t) = 

(n–)!
∫ t
 (t – s)n–g(s)ds.

(ii) If α = n ∈N, then CDng(t) = g(n)(t).
(iii) CDαIαg(t) = g(t).
(iv) IαIβg(t) = Iα+βg(t).

Remark. In addition to the above properties, theCaputo derivative of a power function
tk , k ∈N, is given by

CDαtk =

⎧⎨
⎩

�(k+)
�(k–α+) t

k–α , for k > n – ,

, for k ≤ n – ,

where n –  < α < n, n = [α] + .
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Lemma. For α > , the general solution of the fractional differential equation CDαu(t) =
 is given by

u(t) = c + ct + ct + · · · + cn–tn–,

where ci ∈R, i = , , , . . . ,n –  (n –  < α < n, n = [α] + ).

Lemma .

IαCDαu(t) = u(t) + c + ct + ct + · · · + cn–tn– ()

for some ci ∈ R, i = , , , . . . ,n –  (n –  < α < n, n = [α] + ).

We start by solving an auxiliary problem to get an expression for the Green’s function
of boundary value problem ()-().

Lemma . Suppose f ∈ C[, ]. A function u ∈ C[, ] is a solution of the boundary value
problem

–CDαu(t) = f (t), u′() = , βCDα–u() + u(η) = , t ∈ [, ]

if and only if it satisfies the integral equation

u(t) =
∫ 


G(t, s)f (s)ds,

where G(t, s) is the Green’s function (depending on α) given by

G(t, s) = β +Hη(s) –Ht(s) ()

and for r ∈ [, ],Hr : [, ] →R is defined as Hr(s) = (r–s)α–
�(α) for s ≤ r and Hr(s) =  for s > r.

Proof Using () we have, for some constants c, c ∈R,

u(t) = –Iαf (t) + c + ct = –
∫ t



(t – s)α–

�(α)
f (s)ds + c + ct. ()

In view of Lemma ., we obtain

u′(t) = –
∫ t



(t – s)α–

�(α – )
f (s)ds + c.

Since u′() = , we find that c = .
It also follows that

CDα–u(t) = –Iu(t).

Using the boundary condition βCDα–u() + u(η) = , we get

c = β

∫ 


f (s)ds +

∫ η



(η – s)α–

�(α)
f (s)ds.
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Finally, substituting the values of c and c in (), we have

u(t) = β

∫ 


f (s)ds +

∫ η



(η – s)α–

�(α)
f (s)ds –

∫ t



(t – s)α–

�(α)
f (s)ds

=
∫ 


G(t, s)f (s)ds,

where G(t, s) is given by (). This completes the proof. �

Remark . We observe that Hr is continuous on [, ] for any r ∈ [, ]. Thus, G(t, s)
given by () is continuous on [, ]× [, ].

Remark . By taking α = , we get

u(t) = β

∫ 


f (s)ds +

∫ 


(η – s)f (s)ds –

∫ t


(t – s)f (s)ds =

∫ 


G(t, s)f (s)ds

and G(t, s) in this case coincides with the one obtained in [] for the boundary value
problem

–u′′(t) = f (t), u′() = , βu′() + u(η) = .

Remark . We observe that for each fixed point s ∈ [, ], ∂G
∂t =  for t ≤ s and ∂G

∂t <  for
t > s and deduce that G(t, s) is a decreasing function of t. It then follows that

max
t∈[,]

G(t, s) =G(, s) =

⎧⎨
⎩

β , s > η,
β�(α)+(η–s)α–

�(α) , s ≤ η,

and

min
t∈[,]

G(t, s) =G(, s) =

⎧⎨
⎩

β�(α)–(–s)α–
�(α) , s > η,

β�(α)+(η–s)α––(–s)α–
�(α) , s ≤ η.

Consequently, by looking at the behavior of G(t, s) with respect to s, we get

min
t,s∈[,]

G(t, s) =
β�(α) – ( – η)α–

�(α)

and

max
t,s∈[,]

G(t, s) =
β�(α) + ηα–

�(α)
.

To establish the existence of positive solutions of problem ()-(), we will show that
G(t, s) satisfies the following property introduced by Lan and Webb in []:
(A) There exist a measurable function φ : [, ]→ [,∞), a subinterval [a,b]⊆ [, ] and

a constant λ ∈ [, ] such that

∣∣G(t, s)∣∣ ≤ φ(s) ∀t, s ∈ [, ]

http://www.boundaryvalueproblems.com/content/2013/1/5
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and

G(t, s)≥ λφ(s) ∀t ∈ [a,b],∀s ∈ [, ].

Lemma . If β�(α) > ( – η)α–, then G(t, s) >  for all t, s ∈ [, ], and G(t, s) satisfies
property (A).

Proof If β�(α) > ( – η)α–, then G(t, s) >  for all t, s ∈ [, ]. We choose [a,b] = [, ], and
we have

∣∣G(t, s)∣∣ =G(t, s)≤ β�(α) + ηα–

�(α)
:= φ(s)

and

G(t, s)≥ λφ(s) ∀s, t ∈ [, ],

where

λ =
β�(α) – ( – η)α–

β�(α) + ηα– . ()
�

Lemma . If β�(α) = ( – η)α–, then G(t, s) ≥  for all t, s ∈ [, ], and G(t, s) satisfies
property (A).

Proof We choose [a,b] = [,b] with η ≤ b < . Following the arguments in the previous
lemma, we have

∣∣G(t, s)∣∣ ≤ β�(α) + ηα–

�(α)
:= φ(s) ∀t, s ∈ [, ].

Also, by taking

λ =
β�(α) – (b – η)α–

β�(α) + ηα– ,

we obtain

G(t, s)≥ λφ(s) ∀t ∈ [,b],∀s ∈ [, ]. �

Lemma . If β�(α) < ( – η)α–, then G(t, s) changes sign on [, ] × [, ], and G(t, s)
satisfies property (A).

Proof We choose [a,b] = [,b] with η ≤ b <  such that β�(α) > (b – η)α–. We have

∣∣G(t, s)∣∣ ≤ max

{
β�(α) + ηα–

�(α)
,
( – η)α– – β�(α)

�(α)

}
:= φ(s) ∀t, s ∈ [, ]

and

G(t, s)≥ λφ(s) ∀t ∈ [,b],∀s ∈ [, ],
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where

λ =min

{
β�(α) – (b – η)α–

β�(α) + ηα– ,
β�(α) – (b – η)α–

( – η)α– – β�(α)

}
.

For the main results, we use the known Guo-Krasnosel’skii fixed point theorem []. �

Theorem . Let E be a Banach space and let P ⊂ E be a cone. Assume 	, 	 are open
bounded subsets of E such that  ∈ 	 ⊂ 	 ⊂ 	, and let T : P ∩ (	 \ 	) → P be a
completely continuous operator such that

(i) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂	 and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂	; or
(ii) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂	 and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂	.

Then the operator P has a fixed point in P ∩ (	 \ 	).

3 Main results
We set

f = lim
u→+

min
t∈[,]

f (t,u)
u

, f * = lim
u→+

max
t∈[,]

f (t,u)
u

,

f∞ = lim
u→∞ max

t∈[,]
f (t,u)
u

, f *∞ = lim
u→∞ min

t∈[,]
f (t,u)
u

.

We now state the main result of this paper.

Theorem . Let f (s,u(s)) ∈ C([, ] × [,∞), [,∞)). Assume that one of the following
conditions is satisfied:

(i) (Sublinear case) f = ∞ and f∞ = .
(ii) (Superlinear case) f * =  and f *∞ = ∞.

If β�(α) > ( – η)α–, then problem ()-() admits at least one positive solution.

Theorem. Let f (s,u(s)) ∈ C([, ]×[–∞, +∞), [,∞)).Assume that one of the following
conditions is satisfied:

(i) (Sublinear case) f = ∞ and f∞ = .
(ii) (Superlinear case) f * =  and f *∞ = ∞.

If β�(α)≤ (–η)α–, then problem ()-() admits a solution which is positive on an interval
[,b]⊂ [, ].

Proof of Theorem . Let C[, ] be the Banach space of all continuous real-valued func-
tions on [, ] endowed with the usual supremum norm ‖ · ‖.
We define the operator T : C[, ] → C[, ] as

Tu(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds,

where G(t, s) is defined by ().
It is clear from Lemma . that the fixed points of the operator T coincide with the

solutions of problem ()-().

http://www.boundaryvalueproblems.com/content/2013/1/5
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We now define the cone

P =
{
u
∣∣u ∈ C[, ],u(t) ≥ , min

t∈[,]
u(t) ≥ λ‖u‖

}
,

where λ is given by ().
First, we show that T(P) ⊂ P.
It follows from the continuity and the non-negativity of the functions G and f on their

domains of definition that if u ∈ P, then Tu ∈ C[, ] and Tu(t) ≥  for all t ∈ [, ].
For a fixed u ∈ P and for all t ∈ [, ], the fact that G(t, s) satisfies property (A) leads to

the following inequalities:

Tu(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds

≥ λ

∫ 


φ(s)f

(
s,u(s)

)
ds

≥ λ

∫ 


max
t∈[,]

G(t, s)f
(
s,u(s)

)
ds

≥ λ max
t∈[,]

∫ 


G(t, s)f

(
s,u(s)

)
ds

= λ‖Tu‖.

Hence, T(P) ⊂ P.
We now show that T : P → P is completely continuous.
In view of the continuity of the functionsG and f , the operator T : P → P is continuous.
Let	 ⊂ P be bounded, that is, there exists a positive constantM >  such that ‖u‖∞ ≤ M

for all u ∈ 	. Define

L = max
≤t≤,≤u≤M

∣∣f (t,u)∣∣ + .

Then for all u ∈ 	, we have

∣∣Tu(t)∣∣ ≤
∫ 


G(t, s)f

(
s,u(s)

)
ds ≤ L

∫ 


G(t, s)ds

for all t ∈ [, ]. That is, the set T(	) is bounded.
For each u ∈ 	 and t, t ∈ [, ] such that t < t, we have

∣∣Tu(t) – Tu(t)
∣∣ =

∣∣∣∣–
∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds +

∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds

∣∣∣∣
≤ 

�(α)

∫ t



(
(t – s)α– – (t – s)α–

)∣∣f (s,u(s))∣∣ds

+


�(α)

∫ t

t
(t – s)α–

∣∣f (s,u(s))∣∣ds

≤ L
�(α)

(∫ t



(
(t – s)α– – (t – s)α–

)
ds +

∫ t

t
(t – s)α– ds

)

http://www.boundaryvalueproblems.com/content/2013/1/5
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=
L

α�(α)
(
–(t – t)α + tα – tα + (t – t)α

)

=
L

�(α + )
(
tα – tα

)
.

Clearly, the right-hand side of the above inequalities tends to  as t → t and therefore the
set T(	) is equicontinuous. It follows from the Arzela-Ascoli theorem that the operator
T : P → P is completely continuous.
We now consider the two cases.
(i) Sublinear case (f = ∞ and f∞ = ).
Since f = ∞, there exists ρ >  such that f (t,u) ≥ δu for all  < u ≤ ρ, where δ satis-

fies

δ

(
β�(α) – ( – η)α–

�(α)

)
≥ . ()

We take u ∈ P such that ‖u‖ = ρ, then we have the following inequalities:

Tu =
∫ 


G(t, s)f

(
s,u(s)

)
ds

≥ δ

∫ 


G(t, s)u(s)ds

≥ δ‖u‖
(

β�(α) – ( – η)α–

�(α)

)

≥ ‖u‖.

Let 	 = {u ∈ C[, ]|‖u‖ < ρ}. Hence, we have ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂	.
Since f (t, ·) is a continuous function on [,∞), we can define the function:

f̃ (t,u) = max
z∈[,u]

{
f (t, z)

}
.

It is clear that f̃ (t,u) is non-decreasing on (,∞) and since f∞ = , we have (see [])

lim
u→∞

{
max
t∈[,]

f̃ (t,u)
u

}
= .

Therefore, there exists ρ > ρ >  such that f̃ (t,u) ≤ δu for all u≥ ρ, where δ satisfies

δ

(
β�(α) + ηα–

�(α)

)
≤ . ()

Define 	 = {u ∈ C[, ]|‖u‖ < ρ} and let u ∈ P such that ‖u‖ = ρ. Then

Tu =
∫ 


G(t, s)f

(
s,u(s)

)
ds

≤
∫ 


G(t, s)f̃

(
s,‖u‖)ds

http://www.boundaryvalueproblems.com/content/2013/1/5
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≤ δ‖u‖
(

β�(α) + ηα–

�(α)

)

≤ ‖u‖.

Hence, we have ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂	.
Thus, by the first part of the Guo-Krasnosel’skii fixed point theorem, we conclude that

()-() has at least one positive solution.
(ii) Superlinear case (f * =  and f *∞ = ∞).
Let δ >  be given as in ().
Since f * = , there exists a constant r >  such that f (t,u) ≤ δu for  ≤ u ≤ r. Take

u ∈ P such that ‖u‖ = r. Then we have

Tu =
∫ 


G(t, s)f

(
s,u(s)

)
ds

≤ δ

∫ 


G(t, s)u(s)ds

≤ δ‖u‖
(

β�(α) + ηα–

�(α)

)

≤ ‖u‖.

If we let 	 = {u ∈ C[, ]|‖u‖ < r}, we see that ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂	.
Now, since f *∞ = ∞, there exists r >  such that f (t,u) ≥ δu for all u ≥ r, where δ is as

in ().
Define 	 = {u ∈ C[, ]|‖u‖ < r}, where r =max(r, rλ ). Then u ∈ P and ‖u‖ = r im-

ply that

minu(t) ≥ λ‖u‖ = λr ≥ r,

and so we obtain

Tu =
∫ 


G(t, s)f

(
s,u(s)

)
ds

≥ δ

∫ 


G(t, s)u(s)ds

≥ δ‖u‖
(

β�(α) – ( – η)α–

�(α)

)

≥ ‖u‖.

This shows that ‖Tu‖ ≥ ‖u‖ for u ∈ P∩ ∂	. We conclude by the second part of the Guo-
Krasnosel’skii fixed point theorem that ()-() has at least one positive solution u ∈ P ∩
(	 \ 	). �

Remark . To prove Theorem ., we use the cone

P =
{
u
∣∣u ∈ C[, ], min

t∈[,b]
u(t) ≥ λ‖u‖

}
,

http://www.boundaryvalueproblems.com/content/2013/1/5
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where b and λ are defined in Lemma . for the case where β�(α) = ( – η)α–, and in
Lemma . for the case where β�(α) < ( – η)α–. We skip the rest of the proof as it is
similar to the proof of Theorem ..

Example . Consider the fractional boundary value problem:

⎧⎨
⎩
–CD 

 u(t) = te–u(t) +
√
u(t), t ∈ [, ],

u′() = , 

CD 

 u() + u(  ) = ,
()

which is problem ()-() with α = 
 , β = 

 , η = 
 and f (t,u(t)) = te–u(t) +

√
u(t).

First, we note that u =  is not a solution of ().
Clearly, f = ∞ and f∞ = , and we also have β�(α) – ( –η)α– = 

√
π

 – 
 ≈ . > .

We take

λ =
β�(α) – ( – η)α–

β�(α) + ηα– =

√

π

 – 



√

π

 +
√



=

√

π – 

√

π + 
√


≈ .

and consider the cone P = {u|u ∈ C[, ],u(t) ≥ ,mint∈[,] u(t)≥ λ‖u‖}.
By the first part of Theorem ., we conclude that the boundary value problem () has a

positive solution in the cone P.
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