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Abstract
In this paper, abstract results concerning the approximate controllability of semilinear
evolution systems in a separable reflexive Banach space are obtained. An
approximate controllability result for semilinear systems is obtained by means of
Schauder’s fixed-point theorem under the compactness assumption of the linear
operator involved. It is also proven that the controllability of the linear system implies
the controllability of the associated semilinear system. Then the obtained results are
applied to derive sufficient conditions for the approximate controllability of the
semilinear fractional integrodifferential equations in Banach spaces and heat
equations.

1 Introduction
The problems of controllability of infinite dimensional nonlinear (fractional) systemswere
studied widely by many authors; see [–] and the references therein. The approximate
controllability of nonlinear systems when the semigroup S(t), t > , generated by A is
compact has been studied by many authors. The results of Zhou [] and Naito [] give
sufficient conditions on B with finite dimensional range or necessary and sufficient condi-
tions based onmore strict assumptions on B. Li and Yong in [] studied the same problem
assuming the approximate controllability of the associated linear system under arbitrary
perturbation in L∞(I,L(X)). Bian [] investigated the approximate controllability for a class
of semilinear systems. For abstract nonlinear systems, Carmichael andQuinn [] used the
Banach fixed-point theorem to obtain a local exact controllability in the case of nonlin-
earities with small Lipschitz constants. Zhang [] studied the local exact controllability
of semilinear evolution systems. Naito [] and Seidman [] used Schauder’s fixed-point
theorem to prove invariance of the reachable set under nonlinear perturbations. Other
related abstract results were given by Lasiecka and Triggiani [].
In recent years, controllability problems for various types of nonlinear fractional dynam-

ical systems in infinite dimensional spaces have been considered inmany publications. An
extensive list of these publications focused on the complete and approximate controllabil-
ity of the fractional dynamical systems can be found (see [–, , –]). A pioneering
work has been reported by Bashirov andMahmudov [], Dauer andMahmudov [] and
Mahmudov []. Sakthivel et al. [] studied the approximate controllability of nonlinear
deterministic and stochastic evolution systems with unbounded delay in abstract spaces.
Klamka [–] derived a set of sufficient conditions for constrained local controllability
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near the origin for semilinear dynamical control systems.Wang and Zhou [] investigated
the complete controllability of fractional evolution systems without assuming the com-
pactness of characteristic solution operators. Sukavanam and Kumar [] obtained a new
set of sufficient conditions for the approximate controllability of a class of semilinear de-
lay control systems of fractional order by using the contraction principle and Schauder’s
fixed-point theorem.
Consider an abstract semilinear equation

y = y + LBv + LF(y, v), ()

and define the following sets:

R(L,F) =
{
y ∈ Y : there exists v ∈ Y such that y = y + LBv + LF(y, v)

}
,

QR(L,F) =
{
Qy : y ∈ R(L,F)

}
, QR(L, ) =

{
Qz : z ∈ R(L, )

}
, � =QLB(QLB)∗.

Here Y , X are separable reflexive Banach spaces and V is a Hilbert space, B ∈ L(V ,Y ), L ∈
L(Y ,Y ), Q ∈ L(Y ,X), F : Y × V → Y × V is a nonlinear operator, y ∈ Y , v ∈ V . QR(L,F)
is the set of points Qy, where y is a solution of (), attainable from the point y. The set
QR(L, ) is the set of points Qz, where z is a solution of

z = y + LBv, ()

reachable from y. One can see that for each h ∈ X, ε >  the control

vε = (QLB)∗J
(
(εI + �J)–(h –Qy)

)
()

transfers equation () from y to

Qzε =Qy +QLBvε =Qy + �J
(
(εI + �J)–(h –Qy)

)
= h – ε(εI + �J)–(h –Qy),

where zε = y + LBvε . It is known that QR(L, ) = X if and only if

ε(εI + �J)–(h) → 

in the strong operator topology as ε → +, see []. Thus, the control () transfers sys-
tem () from y ∈ Y to a small neighborhood of an arbitrary point h ∈ X if and only if
QR(L, ) = X .
The same idea is now used to investigate the controllability of semilinear system (). To

do so, for each ε >  and h ∈ X, consider a nonlinear operator Tε from Y × V to Y × V
defined by

Tε(y, v) = (z,w), ()

http://www.boundaryvalueproblems.com/content/2013/1/50
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where⎧⎨⎩z = y + LBw + LF(y, v),

w = (QLB)∗J((εI + �J)–(h –Qy –QLF(y, v))).

One can see that if the operator Tε has a fixed point (yε∗, vε∗), then the control vε∗ steers
control system () from y to

Qyε
∗ = h – J

(
(εI + �J)–

(
h –Qy –QLF

(
yε
∗, v

ε
∗
)))

if ε > . We prove that Qyε∗ is close to h provided that ε(εI +QLB(QLB)∗)–(h) →  con-
verges strongly to zero as ε → +. Therefore, to prove the approximate controllability
of (), for each ε >  and h ∈ X, we have to seek for a solution of the following equation:

⎧⎨⎩yε = y + LBvε + LF(yε , vε),

vε = (QLB)∗J((εI + �J)–(h –Qy –QLF(yε∗, vε∗))).
()

It is clear that the fixed points of the nonlinear operator Tε are the solutions of nonlinear
control system () and vice versa.
To the best of our knowledge, the approximate controllability problem for semilinear ab-

stract systems in Banach spaces has not been investigated yet. Motivated by this consider-
ation, in this paper we study the approximate controllability of semilinear abstract systems
in Banach spaces. The approximate controllability of () is derived under the compactness
assumption of the linear operator involved. We prove that the approximate controllability
of linear system () implies the approximate controllability of semilinear system () under
some assumptions. On the other hand, it is known that if the operator L is compact, then
ImQLB �= X, that is, linear system () is not exactly controllable. Thus the analogue of this
result is not true for exact controllability, that is why we investigate just the approximate
controllability. Notice that a similar result for semilinear equations in Hilbert spaces was
obtained by Dauer and Mahmudov [].
In Section  an abstract result concerning the approximate controllability of semilinear

system () is obtained. It is proven that the controllability of () implies the controllabil-
ity of (). Finally, these abstract results are applied to the approximate controllability of
semilinear fractional integrodifferential equations. These equations serve as an abstract
formulation of a fractional partial integrodifferential equation arising in various applica-
tions such as viscoelasticity, heat equations and many other physical phenomena.

2 Approximate controllability of semilinear systems
Let X be a separable reflexive Banach space and let X∗ stand for its dual space with respect
to the continuous pairing 〈·, ·〉. We may assume, without loss of generality, that X and
X∗ are smooth and strictly convex by virtue of the renorming theorem (see, for example,
[, ]). In particular, this implies that the duality mapping J of X into X∗ given by the
following relations:

∥∥J(z)∥∥ = ‖z‖, 〈
J(z), z

〉
= ‖z‖ for all z ∈ X

http://www.boundaryvalueproblems.com/content/2013/1/50
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is bijective, demicontinuous, i.e., continuous from X with a strong topology into X∗ with
weak topology and strictly monotonic. Moreover, J– : X∗ → X is also a duality map-
ping.
An operator � : X∗ → X is symmetric if

〈
z∗
 ,�z

∗

〉
=

〈
z∗
,�z

∗

〉

for all z∗
 , z∗

 ∈ X∗. It is easy to see that � is linear and continuous. � is nonnegative if
〈z∗,�z∗〉 ≥  for all z∗ ∈ X∗.

Lemma  [] For every h ∈ X and ε > , the equation

εzε + �J(zε) = εh ()

has a unique solution zε = zε(h) = ε(εI + �J)–(h) and

∥∥zε(h)
∥∥ =

∥∥J(zε(h)
)∥∥ ≤ ‖h‖. ()

Theorem  [] Let � be a symmetric operator. Then the following three conditions are
equivalent:

(i) � is positive, that is, 〈z∗,�z∗〉 >  for all nonzero z∗ ∈ X∗.
(ii) For all h ∈ X , J(zε(h)) converges to zero as ε → + in the weak topology, where

zε(h) = ε(εI + �J)–(h) is a solution of equation ().
(iii) For all h ∈ X , zε(h) = ε(εI + �J)–(h) strongly converges to zero as ε → +.

We impose the following assumptions:
(A) F : Y ×V → Y is continuous and there exists C >  such that ‖F(y, v)‖ ≤ C for all

(y, v) ∈ Y ×V .
(A) L : Y → Y is compact.
(A) For all h ∈ X , zε(h) = ε(εI + �J)–(h) strongly converges to zero as ε → +.
Note that the condition (A) holds if and only if Im(QLB) =QR(L, ) = X, i.e., system ()

is approximately controllable.

Definition  System () is approximately controllable if

QR(L,F) = X.

Theorem  Assume (A)-(A) hold. Then semilinear system () is approximate controlla-
bility.

Proof Step . Show that the operator Tε has a fixed point in Y × V for all ε > . For our
convenience, let us introduce the following notation:

a =max
{‖QL‖,‖L‖}, a =max

{‖Qy‖,‖y‖
}
,

γ (ε) = aa‖B‖ 
ε
, β = a,

http://www.boundaryvalueproblems.com/content/2013/1/50


Mahmudov Boundary Value Problems 2013, 2013:50 Page 5 of 13
http://www.boundaryvalueproblems.com/content/2013/1/50

d(ε) = aa‖B‖ 
ε

(‖h‖ + a
)
, d = a,

a =max
{
,‖L‖‖B‖}, c(ε) =max

{
γ (ε),β

}
, d(ε) =max

{
d(ε), d

}
.

Assume that r(ε) ≥ d(ε) +Cc(ε). Then by () we have

‖w‖ ≤ ‖QLB‖∥∥(εI + �J)–
(
h –Qy –QLF(y, v)

)∥∥
≤ 

ε
‖QL‖‖B‖(‖h‖ + ‖Qy‖ +C‖QL‖)

=
d(ε)


+
γ (ε)
a

C

≤ d(ε)
a

+
γ (ε)
a

C ≤ 
a

(
d(ε) +Cc(ε)

)
,

and

‖z‖ ≤ ‖y‖ + ‖LB‖‖w‖ + ‖L‖∥∥F(y, v)∥∥
≤ a + ‖L‖‖B‖ 

a
(
d(ε) +Cc(ε)

)
+ ‖L‖C

≤ d(ε)


+



(
d(ε) + c(ε)C

)
+
c(ε)


C

≤ 

(
d(ε) + c(ε)C

)
.

Thus we proved that Tε maps Bε = {(z,w) ∈ Y × V : ‖(z,w)‖ ≤ r(ε)} into itself. On the
other hand, the operator Tε is continuous and Tε(Bε) is relatively compact. By Schauder’s
fixed-point theorem, for all ε > , Tε has a fixed point in the ball Bε .
Step . Assume QR(L, ) = X. By Step , the operator () has a fixed point (yε∗, vε∗). So,

(yε∗, vε∗) satisfies () and, moreover, it follows that for all h ∈ X

Qyε
∗ – h = –ε(εI + �J)–

(
h –Qy –QLF

(
yε
∗, v

ε
∗
))
. ()

So, zε :=Qyε∗ – h is a solution of the equation

εzε + �J(zε) = ε
(
QLF

(
yε
∗, v

ε
∗
)
+Qy – h

)
. ()

By the assumptions (A) and (A), the operator F is continuous bounded and L is compact.
So, there exists a subsequence, still denoted by {F(yε∗, vε∗)}, which weakly converges to say
z ∈ Y and LF(yε∗, vε∗) → Lz strongly in Y as ε → +. From () and strong convergence of
the sequence {h(zε) = h –Qy –QLF(yε∗, vε∗)}, it is easy to see that there exists C >  such
that for all ε > 

‖zε‖ =
∥∥J(zε)

∥∥ ≤ ∥∥QLF(
yε
∗, v

ε
∗
)
+Qy – h

∥∥ ≤ C.

Then we can extract a subsequence, still denoted by zε , such that

J(zε) ⇀ J(z) as ε → +

http://www.boundaryvalueproblems.com/content/2013/1/50
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for some z ∈ Z. Applying J(z) to equation () and taking the limit, we obtain

ε
〈
J(z), zε

〉
+

〈
J(z),�J(zε)

〉
= ε

〈
J(z),QLF

(
yε
∗, v

ε
∗
)
+Qy – h

〉
,

lim
ε→+

〈
J(z),�J(zε)

〉
=

〈
J(z),�J(z)

〉
= ,

J(z) = ,

since � is positive. So, J(zε) ⇀  as ε → +. Now, applying J(zε) to equation (), dividing
through by ε and taking the limit, we obtain

‖zε‖ + 
ε

〈
J(zε),�J(zε)

〉
=

〈
J(zε),QLF

(
yε
∗, v

ε
∗
)
+Qy – h

〉
,

lim
ε→+

‖zε‖ ≤ lim
ε→+

〈
J(zε),QLF

(
yε
∗, v

ε
∗
)
+Qy – h

〉
≤ lim

ε→+

∣∣〈J(zε),QLF
(
yε
∗, v

ε
∗
)
–QLz

〉∣∣ + lim
ε→+

∣∣〈J(zε),QLz +Qy – h
〉∣∣ = .

Thus limε→+ ‖Qyε∗ – h‖ = , consequently QR(L,F) = X. The theorem is proved. �

3 Fractional integrodifferential equations
The purpose of this section is to establish sufficient conditions for the approximate con-
trollability of certain classes of abstract fractional integrodifferential equations of the form

⎧⎨⎩cDα
t x(t) = Ax(t) + Bu(t) + f (t,x(t),

∫ t
 g(t, s,x(s))ds), t ∈ [,b],

x() = x,
()

where the state variable x takes values in a separable reflexive Banach space X; cDα is the
Caputo fractional derivative of order 

 < α < ; A is the infinitesimal generator of a C

semigroup S(t) of bounded operators on X; the control function u is given in L([,b],U),
U is a Hilbert space; B is a bounded linear operator from U into X, � = {(t, s) :  ≤ s ≤ t ≤
T} and g :� ×X → X, f : I ×X ×X → X are continuous bounded functions and x ∈ X.

Definition  The fractional integral of order α with the lower limit  for a function f is
defined as

Iαf (t) =


γ (α)

∫ t



f (s)
(t – s)–α

ds, t > ,α > ,

provided the right-hand side is pointwise defined on [,∞), where γ is the gamma func-
tion.

Definition  Riemann-Liouville derivative of order α with the lower limit  for a function
f : [,∞)→ R can be written as

LDαf (t) =


γ (n – α)
dn

dtn

∫ t



f (s)
(t – s)α+

ds, t > ,n –  < α < n.

http://www.boundaryvalueproblems.com/content/2013/1/50
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Definition TheCaputo derivative of order α for a function f : [,∞)→ R can bewritten
as

cDαf (t) =L Dα

(
f (t) –

n–∑
k=

tk

k!
f (k)()

)
, t > ,n –  < α < n.

Remark 
() If f (t) ∈ Cn[,∞), then

cDαf (t) =


γ (n – α)

∫ t



f (n)(s)
(t – s)α+–n

ds = In–αf (n)(t), t > ,n –  < α < n.

() The Caputo derivative of a constant is equal to zero.
() If f is an abstract function with values in X , then the integrals which appear in the

above definitions are taken in Bochner’s sense.

For basic facts about fractional integrals and fractional derivatives, one can refer to [].
In order to define the concept of a mild solution for problem (), we associate problem

() to the integral equation

x(t) = Ŝα(t)x +
∫ t


(t – s)q–Sα(t – s)f

(
s,x(s),

∫ s


g
(
s, r,x(r)

)
dr

)
ds

+
∫ t


(t – s)q–Sα(t – s)Bu(s)ds, ()

where

Ŝα(t) =
∫ ∞


ηα(θ )S

(
tαθ

)
dθ , Sα(t) = α

∫ ∞


θηα(θ )S

(
tαθ

)
dθ ,

ηα(θ ) =

α

θ–– 
α w̄q

(
θ– 

α
) ≥ ,

w̄α(θ ) =

π

∞∑
n=

(–)n–θ–αn– γ (nα + )
n!

sin(nπα), θ ∈ (,∞),

and ηα is a probability density function defined on (,∞), that is, ηα(θ ) ≥ , θ ∈ (,∞)
and

∫ ∞
 ηα(θ )dθ = .

Lemma  [] For any fixed t ≥ , the operators Ŝα(t) and Sα(t) are linear compact and
bounded operators, i.e., for any x ∈ X, ‖̂Sα(t)x‖ ≤ M‖x‖ and ‖Sα(t)x‖ ≤ M

�(α)‖x‖.

Definition  A solution x(·;x,u) ∈ C([,b],X) is said to be a mild solution of () if for
any u ∈ L([,b],U) and the integral equation () is satisfied.

Let xb(x;u) be the state value of () at terminal time b corresponding to the control u
and the initial value x. Introduce the set �(b,x) = {xb(x;u)() : u ∈ L([,b],U)}, which

http://www.boundaryvalueproblems.com/content/2013/1/50
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is called the reachable set of system () at terminal time b, its closure in X is denoted by
�(b,x) = X.

Definition  System () is said to be approximately controllable on J if�(b,x) = X, that
is, given an arbitrary ε > , it is possible to steer from the point x to within a distance ε

from all points in the state space X at time b.

Consider the following linear fractional differential system:

Dα
t x(t) = Ax(t) + Bu(t), t ∈ [,b],

x() = x.
()

The approximate controllability for linear fractional system () is a natural generalization
of the approximate controllability of a linear first-order control system. It is convenient at
this point to introduce the controllability operator associated with () as

�b
 =

∫ b


(b – s)(α–)Sα(b – s)BB∗S∗

α(b – s)ds : X → X,

where B∗ denotes the adjoint of B and S∗
α is the adjoint of Sα . It is straightforward that

the operator �b
 is a linear bounded operator. By Theorem , linear fractional control

system () is approximately controllable on [,b] if and only if for any h ∈ X, zε(h) =
ε(εI + �b

J)–(h) converges strongly to zero as ε → +.

Proposition  If S(t), t > , are compact operators and  < 
p < α ≤ , then the operator

Lαf (t) =
∫ t


(t – s)α–Sα(t – s)f (s)ds, f ∈ Lp

(
[,b],X

)
, t ∈ [,b],

is compact from Lp([,b],X) into C([,b],X).

Proof According to the infinite dimensional version of the Ascoli-Arzela theorem, we
need to show that

(i) for arbitrary t ∈ [,b], the set {Lαf (t) : ‖f ‖Lp ≤ } is relatively compact in C([,b],X);
(ii) for arbitrary η > , there exists δ >  such that

∥∥Lαf (t) – Lαf (s)
∥∥ < η if ‖f ‖Lp ≤ , |t – s| ≤ δ, t, s ∈ [,b].

To prove (i), fix  < t < b and define for  < η < t and δ >  operators Lη,δ
α from Lp([,b],X)

into X

(
Lη,δ

α f
)
(t) = α

∫ t–λ



∫ ∞

δ

θ (t – s)α–ηα(θ )S
(
(t – s)αθ

)
f (s)ds

= αS
(
λαδ

)∫ t–λ



∫ ∞

δ

θ (t – s)α–ηα(θ )S
(
(t – s)αθ – λαδ

)
f (s)ds,

f ∈ Lp
(
[,b],X

)
.

http://www.boundaryvalueproblems.com/content/2013/1/50
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Since S(t), t > , is a compact operator, the operators Lη,δ
α are compact. Moreover, we have

∥∥(Lαf )(t) –
(
Lη,δ

α f
)
(t)

∥∥ ≤ α

∥∥∥∥∫ t



∫ δ


θ (t – s)α–ηα(θ )S

(
(t – s)αθ

)
f (s)dθ ds

∥∥∥∥
+ α

∥∥∥∥∫ t

t–λ

∫ ∞

δ

θ (t – s)α–ηα(θ )S
(
(t – s)αθ

)
f (s)dθ ds

∥∥∥∥
=: J + J.

One can estimate J and J as follows:

J ≤ αM
∫ t


(t – s)α–

∥∥f (s)∥∥ds(∫ δ


θηα(θ )dθ

)

≤ αM
(∫ t


(t – s)(α–)q ds

)/q

‖f ‖Lp
(∫ δ


θηα(θ )dθ

)
,

and

J ≤ αM
∫ t

t–λ

(t – s)α–
∥∥f (s)∥∥ds(∫ ∞

δ

θηα(θ )dθ

)

≤ αM
γ ( + α)

(∫ t


(t – s)(α–)q ds

)/q(∫ t



∥∥f (s)∥∥p ds
)/p

=
αM

γ ( + α)

(
η(α–)q+

(α – )q + 

)/q

‖f ‖Lp ,

where we have used the equality

∫ ∞


θβηα(θ )dθ =

γ ( + β)
γ ( + αβ)

.

Consequently, Lη,δ
α → Lα in the operator norm so that Lα is compact and (i) follows im-

mediately.
To prove (ii), note that, for ≤ t ≤ t + h≤ b and ‖f ‖Lp ≤ , we have

∥∥(Lαf )(t + h) – (Lαf )(t)
∥∥

≤
∥∥∥∥∫ t



(
(t + h – s)α– – (t – s)α–

)
Sα(t + h – s)f (s)ds

∥∥∥∥
+

∥∥∥∥∫ t+h

t
(t + h – s)α–Sα(t + h – s)f (s)ds

∥∥∥∥
+

∥∥∥∥∫ t


(t – s)α–

(
Sα(t + h – s) – Sα(t – s)

)
f (s)ds

∥∥∥∥.
Applying the Hölder inequality, we obtain

∥∥(Lαf )(t + h) – (Lαf )(t)
∥∥

≤ M
γ (α)

(∫ t



(
(t + h – s)α– – (t – s)α–

)q ds)/q

‖f ‖Lp

http://www.boundaryvalueproblems.com/content/2013/1/50
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+
M

γ (α)

(∫ t+h

t
(t + h – s)(α–)q ds

)/q

‖f ‖Lp

+
(∫ t


(t – s)(α–)q

∥∥Sα(t + h – s) – Sα(t – s)
∥∥q ds

)/q

‖f ‖Lp

:= I + I + I.

It is clear that I, I →  as h → . On the other hand, the compactness of S(t), t >  (and
consequently Sα(t)), implies the continuity of Sα(t), t > , in the uniformoperator topology.
Then, by the Lebesque dominated convergence theorem, I →  as h→ . Thus the proof
of (ii), and therefore the proof of the proposition, is complete. �

Theorem  Suppose S(t), t > , is compact and 
 < α ≤ . Then system () is approx-

imately controllable on [,b] if the corresponding linear system is approximately control-
lable on [,b].

Proof Let Y = L([,b],X), V = L([,b],U), and y = Sα(·)x ∈ Y . Define the linear oper-
ators Q, L, L and the nonlinear operator F by

Qy = y(T), L(y)(t) =
∫ t


(t – s)α–Sα(t – s)y(s)ds,

LB(v)(t) =
∫ t


(t – s)α–Sα(t – s)Bv(s)ds, QLB : L

(
[,b],U

) → X,

LF(y)(t) =
∫ t


(t – s)α–Sα(t – s)f

(
s, y(s),

∫ s


g
(
s, r, y(r)

)
dr

)
ds,

� =QLB(QLB)∗ = �b
 =

∫ b


(b – s)(α–)Sα(b – s)BB∗S∗

α(b – s)ds

for y ∈ Y , v ∈ V . It is easy to see that by Proposition  all the conditions of Theorem  are
satisfied and () is approximately controllable. This completes the proof. �

4 Application
Consider the partial differential system of the form

⎧⎪⎪⎨⎪⎪⎩
Dα

t x(t, θ ) = xθθ (t, θ ) + b(θ )u(t) + f (t,x(t, θ ),
∫ t
 g(t, s,x(s, θ ))ds),

x(t, ) = x(t,π ) = , t > ,

x() = x,  < θ < π ,  ≤ t ≤ b,

()

where u ∈ L[,b], X = L[,π ], h ∈ X, 
 < α < , and f : R× R→ R, g : R× R× R → R are

continuous and uniformly bounded. Let B ∈ L(R,X) be defined as

(Bu)(θ ) = b(θ )u, B∗h =
∫ π


h(θ )b(θ )dθ ,

where  ≤ θ ≤ π , u ∈ R, b(θ ) ∈ L[,π ], and let A : X → X be an operator defined by
Az = z′′ with the domain

D(A) =
{
z ∈ X | z, z′ are absolutely continuous, z′′ ∈ X, z() = z(π ) = 

}
.

http://www.boundaryvalueproblems.com/content/2013/1/50
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Then

Az =
∞∑
n=

(
–n

)
(z, en)en, z ∈ D(A),

where en(θ ) =
√
/π sinnθ ,  ≤ x ≤ π , n = , , . . . . It is known that A generates a compact

semigroup S(t), t > , in X and is given by

S(t)z =
∞∑
n=

e–n
t(z, en)en, Sα(t)z = α

∞∑
n=

∫ ∞


θηα(θ )e–n

tαθ (z, en)en dθ , z ∈ X,

B∗S∗
α(t)z = α

∞∑
n=

∫ ∞


θηα(θ )e–n

tαθ dθ (z, en)(b, en).

Then B∗S∗
α(t)z =  for ≤ t < b implies

(z, en)(b, en) =  for all n = , , . . . .

Now if (b, en) �=  for all n, then (z, en) =  for all n and z = . Therefore, the associated linear
system is approximately controllable provided that

∫ π

 b(θ )en(θ )dθ �=  for n = , , , . . . .
Because of the compactness of the semigroup S(t) (and consequently Ŝα(t), Sα(t)) gen-
erated by A, the associated linear system of () is not completely controllable but it is
approximately controllable. Hence, according to Theorem , system () will be approx-
imately controllable on [,b].

5 Conclusion
In this paper, abstract results concerning the approximate controllability of semilinear
evolution systems in a separable reflexive Banach space are obtained. An approximate
controllability result for semilinear systems is obtained bymeans of Schauder’s fixed-point
theorem under the compactness assumption. It is also proven that the controllability of
the linear system implies the controllability of the associated semilinear system. Then the
obtained results are applied to derive sufficient conditions for the approximate control-
lability of the semilinear fractional integrodifferential equations in Banach spaces. Upon
making some appropriate assumptions, by employing the ideas and techniques as in this
paper, one can establish the approximate controllability results for awide class of fractional
deterministic and stochastic differential equations.
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