
Atangana and Botha Boundary Value Problems 2013, 2013:53
http://www.boundaryvalueproblems.com/content/2013/1/53

RESEARCH Open Access

A generalized groundwater flow equation
using the concept of variable-order derivative
Abdon Atangana* and Joseph Francois Botha

*Correspondence:
abdonatangana@yahoo.fr
Institute for Groundwater Studies,
Faculty of Natural and Agricultural
Sciences, University of the Free
State, P.O. Box 9301, Bloemfontein,
South Africa

Abstract
In this paper, the groundwater flow equation is generalized using the concept of the
variational order derivative. We present a numerical solution of the modified
groundwater flow equation with the variational order derivative. We solve the
generalized equation with the Crank-Nicholson technique. Numerical methods
typically yield approximate solutions to the governing equation through the
discretization of space and time and can relax the rigid idealized conditions of
analytical models or lumped-parameter models. They can therefore be more realistic
and flexible for simulating field conditions. Within the discredited problem domain,
the variable internal properties, boundaries, and stresses of the system are
approximated. We perform the stability and convergence analysis of the
Crank-Nicholson method and complete the paper with some illustrative
computational examples and their simulations.
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1 Introduction
A problem that arises naturally in groundwater investigations is to choose an appropri-
ate geometry for the geological system in which the flow occurs. This geological forma-
tion, through which the groundwater flows, changes in time and space. Figure  shows
the groundwater flow direction toward the pumping well during the extraction of water
from the aquifer. The main effort is to establish a suitable mathematical relation between
different observables, or what [] calls a mathematical model for the observables. An ideal
mathematical model should not merely provide links between different observables, but
also lead to a better understanding of the phenomenon. The attractiveness of this approach
is that the mathematical model could, in principle, be used to investigate the future be-
havior of a given phenomenon under various conditions. This leads us to the groundwater
flow equation. Thismodel is based on the conventional, saturated groundwater flow equa-
tion for density-independent flow:

S(x, t)∂t�(x, t) = ∇ · [K∇�] + f (x, t). (.)

Here S is the specific storativity, K is the hydraulic conductivity tensor of the aquifer,
� is the piezometric head, f (x, t) is the strength of any sources or sinks. As a review of the
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Figure 1 Groundwater flow in the borehole during pumping test.

derivation of Eq. (.), we will show the Darcy law

q(x, t) = K
[
�(x, t)

]
(.)

is used as a keystone in the derivation of Eq. (.). This law, proposed by Darcy early in
the nineteenth century, relies on experimental results obtained from the flow of water
through a one-dimensional sand column. Alternatively, Darcy’s law states that the rate of
flow through a porous medium is proportional to the loss of head and inversely propor-
tional to the length of the flow path. Note that the specific discharge q(x, t) has the dimen-
sions of velocity. Recent investigations [] suggest that the flow is also influenced by the
geometry of the bedding parallel fractures, the feature that equation (.) cannot account
for. It is therefore possible that equation (.) may not be applicable to the flow in these
fractured aquifers. In an attempt to circumvent this problem, Barker [] introduced the
model in which the geometry of the aquifer is regarded as a fractal. Although this model
has been applied with reasonable success in the analysis of hydraulic tests from boreholes
in Karoo aquifers [], it introduces parameters for which no sound definition exists in
the case of non-integer flow dimensions. Recently [, ], the concept of a fractional-order
derivative was used to generalize the groundwater flow equation. However, it has been
found that the constant-order fractional diffusion equations are not capable of character-
izing some complex diffusion processes, for instance, diffusion process in aninhomoge-
neous or heterogeneous medium [].
In addition, when we consider the diffusion process in a porous medium, if the medium

structure or external field changes with time, in this situation, the constant-order frac-
tional diffusion equation model cannot be used to well characterize such a phenomenon
[–]. This is the case of the groundwater flow problem, the medium through which
the flow occurs is heterogeneous and changes with time. Still in some biology diffusion
processes, the concentration of particles will determine the diffusion pattern [, ]. To
solve the above problems, the variable-order (VO) fractional diffusion equation models
have been suggested for use []. This present work is therefore devoted to the discussion
underpinning the description of the groundwater flow equation with the variable-order
derivative.
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2 Modified groundwater flow equation
For the readers that are not acquaintedwith the concept of the variational order derivative,
we start this section by presenting the basic definition of this derivative.

2.1 Variational order differential operator
Let f : R → R, x → f (x) denote a continuous and necessary differentiable, let α(x) be a
continuous function in (, ]. Then its variational order differential in [a,∞) is defined as

Dα(x)


(
f (x)

)
=


�( – α(x))

∫ x


(x – t)–α(t) df (t)

dt
dt. (.)

The above derivative is called the Caputo variational order differential operator; in addi-
tion, the derivative of the constant is zero.

2.2 Problem formulation
Groundwater models describe the groundwater flow and transport processes using math-
ematical equations based on certain simplifying assumptions. These assumptions typically
involve the direction of flow, geometry of the aquifer, the heterogeneity or anisotropy of
sediments or bedrock within the aquifer. This geological formation, through which the
groundwater flows, changes in time and space.
The simplest generalization of the groundwater flow equation, which incidentally is also

in accord with true physics of the phenomenon, is to assume that water level is not in a
steady but transient state. Theis () [] was the first to develop a formula for unsteady-
state flow that introduces the time factor and the storativity. He noted that when a well
penetrating an extensive confined aquifer is pumped at a constant rate, the influence of
the discharge extends outward with time. The rate of decline of head multiplied by the
storativity and summed over the area of influence equals the discharge. The unsteady-state
(or Theis) equation, which was derived from the analogy between the flow of groundwater
and the conduction of heat, is perhaps the most widely used partial differential equation
in groundwater investigations

SDt�(r, t) = TDrr�(r, t) +

r
Dr�(r, t). (.)

The above equation is classified under a parabolic equation. To include explicitly the vari-
ability of the medium through which the flow takes place, the standard version of the
partial derivative with respect to time is replaced here with variable-order (VO) fractional
to obtain

⎧⎨
⎩SDα(x,t)

t �(r, t) = TDrr�(r, t) + 
rDr�(r, t),

 < α(x, t)≤ .
(.)

3 Numerical solution
Environmental phenomena such as groundwater flow described by variational order
derivative are highly complex phenomena, which do not lend themselves readily to the
analysis of analytical models. The discussion presented in this section will therefore be
devoted to the derivation of a numerical solution to groundwater flow equation (.).
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Numerical methods yield approximate solutions to the governing equation through the
discretization of space and time. Within the discredited problem domain, the variable in-
ternal properties, boundaries, and stresses of the system are approximated. Determinis-
tic, distributed-parameter, numerical models can relax the rigid idealized conditions of
analytical models or lumped-parameter models, and they can therefore be more realistic
and flexible for simulating field conditions. The finite difference schemes for constant-
order time or space fractional diffusion equations have been widely studied [–]. For
constant-order time fractional diffusion equations, Chen et al. proposed an implicit dif-
ference approximation scheme []. Yuste et al. introduced weighted average finite differ-
ence methods []. Podlubny et al. proposed the matrix approach for fractional diffusion
equations [], and Hanert proposed a flexible numerical scheme for the discretization of
the space-time fractional diffusion equation []. Recently, Zhuang et al. considered the
numerical schemes for VO space fractional advection-dispersion equation [], Lin et al.
investigated the explicit scheme for VO nonlinear space fractional diffusion equation [].
Before applying the numerical methods, we assume Eq. (.) has a unique and sufficiently
smooth solution. To establish the numerical schemes for the above equation, we let xl = lh,
 ≤ l ≤ M,Mh = L, tk = kτ ,  ≤ k ≤ N , Nτ = T , h is the step and τ is the time size,M and
N are grid points.

3.1 Crank-Nicholson scheme [24]
We introduce the Crank-Nicholson scheme as follows. Firstly, the discretization of first-
and second-order space derivative is stated as follows:

∂�

∂r
=



((
�(rl+, tk+) –�(rl–, tk+)

(h)

)
+

(
�(rl+, tk) –�(rl–, tk)

(h)

))
+O(h), (.)

∂�

∂r
=



((
�(rl+, tk+) – �(rl, tk+) +�(rl–, tk+)

(h)

)

+
(

�(rl+, tk) – �(rl, tk) +�(rl–, tk)
(h)

))
+O

(
h

)
, (.)

� =


(
�(rl, tk+) +�(rl, tk)

)
. (.)

The Crank-Nicholson scheme for the VO time fractional groundwater flow model can be
stated as follows:

∂αk+l �(rl, tk+)

∂tα
k+
l

=
τ–αk+l

�( – αk+
l )

(
�(rl, tk+) –�(rl, tk)

+
k∑
j=

[
�(rl, tk+–j) –�(rl, tk–j)

][
(j + )–αk+l – (j)–αk+l

])
. (.)

Now, replacing equations (.), (.), (.) and (.) in (.), we obtain the following:

[
Sτ–αk+l

�( – αk+
l )

(
�(rl, tk+) –�(rl, tk)

+
k∑
j=

[
�(rl, tk+–j) –�(rl, tk–j)

][
(j + )–αk+l – (j)–αk+l

])]

http://www.boundaryvalueproblems.com/content/2013/1/53
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= T
[



((
�(rl+, tk+) – �(rl, tk+) +�(rl–, tk+)

(h)

)

+
(

�(rl+, tk) – �(rl, tk) +�(rl–, tk)
(h)

))]

+

rl

[



((
�(rl+, tk+) –�(rl–, tk+)

(h)

)
+

(
�(rl+, tk) –�(rl–, tk)

(h)

))]
.

For simplicity, let us put:

bl,k+j = (j + )–αk+l – (j)–αk+l ; Tk+
l =

�( – αk+
l )ταk+l

Sh
T ;

Gk+
l =

�( – αk+
l )ταk+l

Sh
and λ

l,k+
j = bl,k+j– – bl,k+j .

(.)

Equation (.) becomes

�k+
l

(
 + Tk+

l
)
= �k+

l+

(
Tk+
l +

Gk+
l
rl

)
+�k+

l–

(
Tk+
l –

Gk+
l
rl

)

+�k
l+

(
Tk+
l –

Gk+
l
rl

)
+�k+

l
(
 + Tk+

l
)

+
k∑
j=

(
�

k+–j
l –�

k–j
l

)
λ
l,k+
j Gk+

l . (.)

4 Stability analysis of the Crank-Nicholson scheme
In this section, we will analyze the stability conditions of the Crank-Nicholson scheme for
the generalized groundwater flow equation.
Let ζ k

l = �k
l –	k

l . Here	k
l is the approximate solution at the point (xl, tk) (k = , , . . . ,N ,

l = , , . . . ,M– ) and, in addition, ζ k = [ζ k
 , ζ k

 , . . . , ζ k
M–]T and the function ζ k(x) is chosen

to be

ζ k(x) =

⎧⎨
⎩ζ k

l if xl – h
 < x≤ xl + h

 , l = , , . . . ,M – ,

 if L – h
 < x ≤ L.

(.)

Then the function ζ k(x) can be expressed in Fourier series as follows:

ζ k(x) =
m=∞∑
m=–∞

δm(m) exp[iπmk/L],

δk(x) =

L

∫ L


ρk(x) exp

[
iπmx

L

]
dx.

(.)

It was established by Chen et al. [] that

∥∥ρ∥∥
 =

m=∞∑
m=–∞

∥∥δk(m)
∥∥. (.)

Observe that for all k, l ≥ ,  ≤ –αk+
l < , in addition, according to the problem in point,

the storativity S, and transmissivityT are positive constants. Then the following properties
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of the coefficients Tk+
l , Gk+

l , λl,k+
j , and bk+l can be established:

. Gk+
l ,Tk+

l are positive for all l = , , . . . ,M – ;

.  < λ
l,k
j ≤ λ

l,k
j– ≤  for all l = , , . . . ,M – ;

.  ≤ bl,kj ≤ ,
k–∑
j=

bl,k+j+ =  – λ
l,k+
k for all l = , , . . . ,M – .

(.)

It is customary in groundwater investigations to choose a point on the centerline of the
pumped borehole as a reference for the observations, and therefore neither the drawdown
nor its derivatives will vanish at the origin, as required. In such situations where the dis-
tribution of the piezometric head in the aquifer is a decreasing function of the distance
from the borehole, the expression 

rl
→ . Under this situation, the error committed while

approximating the solution of the generalized groundwater flow equation with the Crank-
Nicholson scheme can be presented as follows:

ζ k+
l

(
 + Tk+

l
)
= ζ k+

l+
(
Tk+
l

)
+ ζ k+

l–
(
Tk+
l

)
+ ζ k

l+
(
Tk+
l

)
+ ζ k

l
(
 + Tk+

l
)

+
k∑
j=

(
ζ
k+–j
l – ζ

k–j
l

)
λ
l,k+
j Gk+

l . (.a)

If we assume that ζ k
l in equation (.) can be put in the delta-exponential form as follows:

ζ k
l = δk exp[iφlk], (.b)

where φ is a real spatial wave number, new replacing the above equation (.b) into (.a),
we obtain[

 + T 
l sin


(

φh


)]
δ =

[
 – T 

l sin

(

φh


)]
δ for k = ,

[
 + T +k

l sin
(

φh


)]
δk+ =

[
 – T +k

l sin
(

φh


)
– λ

l,k+


]
δk (.)

+
k–∑
j=

λ
l,k+
j+ δk–j + λ

l,k+
k δ for k = , , . . . ,N – .

Equation (.) can be written in the following form:

δ =
[ – T 

l sin
( φh

 )]δ
[ + T 

l sin
( φh

 )]
,

δk+ =
[ – T +k

l sin( φh
 ) – el,k+ ]δk +

∑k–
j= λ

l,k+
j+ δk–j + λ

l,k+
k δ

[ + T +k
l sin( φh

 )]
.

(.)

Our next concern here is to show that for all k = , , . . . ,N – , the solution of equation
(.) satisfies the following condition:

|δk| < |δ|.

To achieve this, we make use of the recurrence technique on the natural number k.

http://www.boundaryvalueproblems.com/content/2013/1/53
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For k =  and remembering that dk+
l , bk+l are positive for all l = , , . . . ,M–, we obtain

|δ|
|δ| =

∣∣∣∣ [ – T 
l sin

( φh
 )]

[ + T 
l sin

( φh
 )]

∣∣∣∣ < . (.)

Assuming that form = , , . . . ,k the property is verified, we get

|δk+| =
∣∣∣∣ [ – T +k

l sin( φh
 ) – el,k+ ]δk +

∑k–
j= λ

l,k+
j+ δk–j + λ

l,k+
k δ

[ + T +k
l sin( φh

 )]

∣∣∣∣. (.)

Making use of the triangular inequality we obtain

|δk+| ≤
| – T +k

l sin( φh
 ) – el,k+ ||δk| + |∑k–

j= p
l,k+
j+ δk–j| + |el,k+k δ|

| + T +k
l sin( φh

 )|
. (.)

Using the recurrence hypothesis, we have

|δk+| ≤
( | – T +k

l sin( φh
 )| + |∑k–

j= λ
l,k+
j+ |

| + T +k
l sin( φh

 )|
)

|δ|,

|δk+| ≤
( | + T +k

l sin( φh
 )|

| + T +k
l sin( φh

 )|
)

|δ|, (.)

|δk+| < |δ|,

which this completes the proof.

5 Convergence analysis of the Crank-Nicholson scheme
If we assume that �(rl, tk) (l = , , . . . ,M, k = , , . . . ,N – ) is the exact solution of our
problem at the point (rl, tk), by letting �k

l = �(rl, tk) – �k
l and �k = (,�k

 ,�k
, . . . ,�k

M–),
substituting this in equation (.), we obtain

ζ 
l
(
 + T 

l
)
– ζ 

l+
(
T 
l
)
– ζ 

l–
(
T 
l
)
= R

l for k = ,

ζ +k
l

(
 + T +k

l
)
– ζ k+

l+
(
T +k
l

)
– ζ +k

l–
(
T +l
l

)
= R+k

l +
k–∑
j=

�
k–j
l λ

l,k+
j+ for k ≥ .

(.)

Here,

R+k
l = �(rl, tk+) –

k–∑
j=

�(rl, tk–j)λl,k+
j+ + bl,k+ �(rl, t)

– T +k
l

[
�(rl+, tk+) – �(rl, tk+) +�(rl–, tk+)

]
. (.)

From equations (.) and (.), we have

∂�(rl, tk+)
∂r

+ hV =



(
(�(rl+, tk+) – �(rl, tk+) +�(rl–, tk+))

h

+
(�(rl+, tk) – �(rl, tk) +�(rl–, tk))

h

)
,

http://www.boundaryvalueproblems.com/content/2013/1/53
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∂αk+l �(rl, tk+)

∂tα
k+
l

+ τV

=
τ–αk+l

�( – αk+
l )

(
�(rl, tk+) –�(rl, tk) +

k∑
j=

[
�(rl, tk+–j) –�(rl, tk–j)

]
λ
l,k
j

)
.

From the above, we have that

Rk+
l ≤ K

(
τ +αk+l + hταkl

)
, (.)

where K, K, and K are constants. Taking into account the Caputo-type fractional deriva-
tive, the detailed error analysis on the above schemes can refer to the work by Diethelm
et al. [] and further work by Li and Tao [].

Lemma  ‖�k+‖∞ ≤ K(τ +αk+l + hταkl )(�l,k+
j )– is true for (k = , , , . . . ,N – ), where

‖wk‖∞ =max≤l≤M–(�k), K is a constant. In addition,

αk+ =

⎧⎨
⎩min≤l≤M– α

k+
l , if τ < ,

max≤l≤M– α
k+
l , if τ > .

This can be achieved via the recurrence technique on the natural number k.

When k = , we have the following:

∣∣�
l
∣∣ ≤ (

cl + bl
)∣∣w

l+
∣∣ + (

cl – bl
)∣∣w

l–
∣∣

=
∣∣F

l
∣∣ ≤ V

(
τ +αk+l + hταkl

)(
λ
l,k+
j

)–. (.)

Now suppose that ‖�i+‖∞ ≤ K(τ +αi+l + hταil )(λl,i+
j )–, i = , . . . ,N – . Then

∣∣w+k
l

∣∣ ≤ ∣∣bk+l
[(
wk+
l+ – wk+

l +wk+
l–

)]
+ ck+l

[(
wk+
l+ –wk+

l–
)]
+ dk+

l wk+
l

∣∣
≤ (

bk+l + ck+l
)∣∣wk+

l+
∣∣ + (

bk+l – ck+l
)∣∣wk+

l–
∣∣ + (

dk+
l – bk+l

)∣∣wk+
l

∣∣
=

∣∣∣∣∣Rk+
l +

k∑
i=

(
�k–i

l
)
λ
l,k+
j

∣∣∣∣∣
≤ ∣∣Rk+

l
∣∣ + k∑

i=

∣∣�k–i
l

∣∣λl,k+
j

(.)

≤ K
(
τ +αk+l + hταkl

)
+

k∑
i=

∥∥�k–i
l

∥∥∞λ
l,k+
j

≤ K
(
τ +αk+l + hταkl

)(
λ
l,k+
j + λ

l,k+
 – λ

l,k+
j

)(
λ
l,k+
j

)–
≤ V

(
τ +αk+l + hταkl

)(
λ
l,k+


)(
λ
l,k+
j

)–
∣∣�+k

l
∣∣ ≤ V

(
τ +αk+l + hταkl

)(
λ
l,k+
j

)–,
which completes the proof.
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Figure 2 Drawdown as a function of space and time.

Theorem TheCrank-Nicholson scheme is convergent,and there exists a positive constant
V such that

∣∣�k
l –�(xl, tk)

∣∣ ≤ K
(
τ + h

)
, l = , , . . . ,M – ,k = , , . . . ,N . (.)

An interested reader can find the solvability of the Crank-Nicholson scheme in the
work done by []. Therefore, the details of the proof will not be presented in this pa-
per.

6 Numerical results
An image is worth ten thousand words; therefore, we devote this section to the nu-
merical simulations of the solution of the generalized groundwater flow equation. The
parameters used in the simulation are given as S = ., T = , r ∈ [., ], and
t ∈ [, ].

Example

⎧⎪⎪⎨
⎪⎪⎩
SDα(x,t)

t �(r, t) = TDrr�(r, t) + 
rDr�(r, t),

α(x, t) =  – sin(rt),

�(r, ) = .

(.)

The numerical simulations of the approximate solution are presented in figures. First,
Figure  shows the solution as a function of time and space. Figure  shows the solution as
a function of time for a fixed distance. Figure  shows the solution as a function of space
for fixed time.

7 Conclusion
In this paper, the groundwater flow equation was generalized using the concept of a varia-
tional order derivative. The new equationwas solved numerically via theCrank-Nicholson
technique. We presented in detail the stability and the convergence of this problem. We
presented numerical simulations.

http://www.boundaryvalueproblems.com/content/2013/1/53
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Figure 3 Drawdown as a function of time for a fixed distance.

Figure 4 Drawdown as a function of space for fixed time.
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