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Abstract
In the present paper, in view of the variational approach, we discuss a Ni-Serrin type
equation involving non-standard growth condition and arising from the capillarity
phenomena. Establishing some suitable conditions, we prove the existence and
multiplicity of solutions.
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1 Introduction
Westudy the existence andmultiplicity of solutions for aNi-Serrin type equation involving
non-standard growth condition and arising from capillarity phenomena of the following
type:

⎧⎨
⎩
–M(L(u))div(|∇u|p(x)–∇u + |∇u|p(x)–∇u√

+|∇u|p(x)
) = f (x,u), x ∈ �,

u = , x ∈ ∂�,
(P)

where � ⊂ R
N is a bounded domain with smooth boundary ∂�, p ∈ C(�) such that  <

p(x) <N for any x ∈ � and L(u) :=
∫
�

|∇u|p(x)+
√

+|∇u|p(x)
p(x) dx.

Capillarity can be briefly explained by considering the effects of two opposing forces:
adhesion, i.e., the attractive (or repulsive) force between the molecules of the liquid and
those of the container; and cohesion, i.e., the attractive force between themolecules of the
liquid. The study of capillary phenomena has gained some attention recently. This increas-
ing interest is motivated not only by fascination in naturally-occurring phenomena such
as motion of drops, bubbles and waves but also its importance in applied fields ranging
from industrial and biomedical and pharmaceutical to microfluidic systems.
The study of ground states for equations of the form

–div
( ∇u√

 + |∇u|
)
= f (u) in R

N , (.)

whereG(u) = ∇u√
+|∇u| is the Kirchhoff stress term and the source term f was very general,

was initiated by Ni and Serrin [, ]. Moreover, radial solutions of the problem (.) have
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been studied in the context of the analysis of capillarity surfaces for a function of the form
f (u) = ku, k >  (see [–]). Recently, in [] Rodrigues studied a version of the problem (P)
for the caseM(L(u)) ≡  and f (x,u) ≡ λf (x,u), λ > .
We note that if we choose the functional L(u) as

∫
�

|∇u|p(x)
p(x) dx in (P), then we get the

problem

⎧⎨
⎩
–M(

∫
�

|∇u|p(x)
p(x) dx)div(|∇u|p(x)–∇u) = f (x,u) in �,

u =  on ∂�,
(.)

which is called the p(x)-Kirchhoff type equation [–]. In this case, the problem (.)
indicates a generalization of a model, the so-called Kirchhoff equation, introduced by
Kirchhoff in []. To be more precise, Kirchhoff established a model given by the equa-
tion

ρ
∂u
∂t

–
(
P

h
+

E
l

∫ l



∣∣∣∣∂u∂x
∣∣∣∣


dx
)

∂u
∂x

= , (.)

where ρ , P, h, E, l are constants, which extends the classical D’Alambert wave equation
by considering the effects of the changes in the length of the strings during the vibra-
tions. A distinguishing feature of Kirchhoff equation (.) is that the equation contains
a nonlocal coefficient P

h + E
l

∫ l
 | ∂u

∂x | dx which depends on the average E
l

∫ l
 | ∂u

∂x | dx of
the kinetic energy 

 | ∂u
∂x | on [, l], and hence the equation is no longer a pointwise iden-

tity.
The nonlinear problems involving the p(x)-Laplacian operator, that is, div(|∇u|p(x)–∇u),

are extremely attractive because they can be used to model dynamical phenomena which
arise from the study of electrorheological fluids or elastic mechanics, in the modeling of
stationary thermo-rheological viscous flows of non-Newtonian fluids and in the mathe-
matical description of the processes filtration of an ideal barotropic gas through a porous
medium [–]. The detailed application backgrounds of the p(x)-Laplacian can be found
in [–] and references therein.

2 Abstract framework and preliminary results
We state some basic properties of the variable exponent Lebesgue-Sobolev spaces Lp(x)(�)
andW ,p(x)(�), where � ⊂R

N is a bounded domain (for details, see [–]).
Set

C+(�) =
{
p;p ∈ C(�), infp(x) >  for all x ∈ �

}
.

Let p ∈ C+(�) and denote

p– := inf
x∈�

p(x) and p+ := sup
x∈�

p(x).

For any p ∈ C+(�), we define the variable exponent Lebesgue space by

Lp(x)(�) =
{
u | u :� →R is measurable,

∫
�

∣∣u(x)∣∣p(x) dx <∞
}
,
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then Lp(x)(�) endowed with the norm

|u|p(x) = inf

{
μ >  :

∫
�

∣∣∣∣u(x)μ

∣∣∣∣
p(x)

dx ≤ 
}
,

becomes a Banach space.

Proposition  [, ] For any u ∈ Lp(x)(�) and v ∈ Lp′(x)(�), we have

∣∣∣∣
∫

�

uvdx
∣∣∣∣ ≤

(

p–

+


(p–)′

)
|u|p(x)|v|p′(x),

where Lp′(x)(�) is a conjugate space of Lp(x)(�) such that 
p(x) +


p′(x) = .

Themodular of Lp(x)(�), which is the mapping ρ : Lp(x)(�) →R, is defined by

ρ(u) =
∫

�

∣∣u(x)∣∣p(x) dx

for all u ∈ Lp(x)(�).

Proposition  [, ] If u,un ∈ Lp(x)(�) (n = , , . . .), then the following statements are
equivalent:

(i) limn→∞ |un – u|p(x) = ;
(ii) limn→∞ ρ(un – u) = ;
(iii) un → u in measure in � and limn→∞ ρ(un) = ρ(u).

Proposition  [, ] If u,un ∈ Lp(x)(�) (n = , , . . .), we have
(i) |u|p(x) < (= ; > ) ⇔ ρ(u) < (= ; > );
(ii) |u|p(x) >  =⇒ |u|p–p(x) ≤ ρ(u)≤ |u|p+p(x); |u|p(x) <  =⇒ |u|p+p(x) ≤ ρ(u)≤ |u|p–p(x);
(iii) limn→∞ |un|p(x) =  ⇔ limn→∞ ρ(un) = ;

limn→∞ |un|p(x) = ∞ ⇔ limn→∞ ρ(un) = ∞.

The variable exponent Sobolev space W ,p(x)(�) is defined by

W ,p(x)(�) =
{
u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)

}
,

with the norm

‖u‖,p(x) = |u|p(x) + |∇u|p(x),

for all u ∈W ,p(x)(�).
The spaceW ,p(x)

 (�) is defined as the closure of C∞
 (�) inW ,p(x)(�) with respect to the

norm ‖u‖,p(x). For u ∈W ,p(x)
 (�), we can define an equivalent norm

‖u‖ = |∇u|p(x)

http://www.boundaryvalueproblems.com/content/2013/1/55
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since the Poincaré inequality holds, i.e., there exists a positive constant C >  such
that

|u|p(x) ≤ C|∇u|p(x)

for all u ∈W ,p(x)
 (�) [, ].

Proposition  [, ] If  < p– ≤ p+ < ∞, then the spaces Lp(x)(�), W ,p(x)(�) and
W ,p(x)

 (�) are separable and reflexive Banach spaces.

Proposition  [, ] Let q ∈ C+(�). If q(x) < p∗(x) for all x ∈ �, then the embedding
W ,p(x)(�) ↪→ Lq(x)(�) is compact and continuous, where p∗(x) = Np(x)

N–p(x) if p(x) < N and
p∗(x) = +∞ if p(x)≥ N .

Proposition  [] Let X be a Banach space and let define the functional� =
∫
�

|∇u|p(x)
p(x) dx.

Then � : X → R is convex. The mapping �′ : X → X∗ is a strictly monotone, bounded
homeomorphism of (S+) type, namely

un ⇀ u in X and lim
n→∞

〈
�′(un),un – u

〉 ≤  implies un → u in X.

Definition  Let X be a Banach space and J : X → R be a C-functional. We say that a
functional J satisfies the Palais-Smale condition ((PS) for short) if any sequence {un} in X,
such that {J(un)} is bounded and J ′(un) →  as n→ ∞, admits a convergent subsequence.

We say that u ∈W ,p(x)
 (�) is a weak solution of (P) if

M
(
L(u)

)∫
�

(
|∇u|p(x)–∇u +

|∇u|p(x)–∇u√
 + |∇u|p(x)

)
∇vdx =

∫
�

f (x,u)vdx

for any v ∈ W ,p(x)
 (�). The energy functional I : W ,p(x)

 (�) → R corresponding to the
problem (P) is

I(u) =M
(
L(u)

)
–

∫
�

F(x,u)dx,

whereM(t) =
∫ t
 M(ξ )dξ and F(x,u) =

∫ u
 f (x,ϕ)dϕ.

Thanks to the conditions (M) and (f) (see below), the functional I is well defined and of
class C. Since the problem (P) is in the variational setting, the critical points of I are weak
solutions of (P).Moreover, the derivative of I is themapping I ′ :W ,p(x)

 (�)→ (W ,p(x)
 (�))∗

given by the formula

〈
I ′(u), v

〉
=M

(
L(u)

)∫
�

(
|∇u|p(x)–∇u +

|∇u|p(x)–∇u√
 + |∇u|p(x)

)
∇vdx –

∫
�

f (x,u)vdx

for any u, v ∈W ,p(x)
 (�), where

∫
�

(
|∇u|p(x)–∇u +

|∇u|p(x)–∇u√
 + |∇u|p(x)

)
∇vdx :=

〈
L′(u), v

〉
= L′(u)v.
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3 Main results
Theorem  Assume the following conditions hold:

(M) M :R+ →R
+ is a continuous function and satisfies the condition

mtα– ≤ M(t)

for all t > , where m and α >  are positive real numbers;
(f) f :� ×R →R satisfies the Carathéodory condition and there exist positive constants

C and C such that

∣∣f (x, t)∣∣ ≤ C +C|t|q(x)–

for all x ∈ � and t ∈ R, where p,q ∈ C+(�) such that q+ < αp– < p∗(x). Then (P) has
a weak solution.

Proof By the assumptions (M) and (f), we have

I(u) = M
(
L(u)

)
–

∫
�

F(x,u)dx

≥ m

∫ L(u)


ξα– dξ –

∫
�

F(x,u)dx

≥ m

α

(
L(u)

)α –
C

q–

∫
�

|u|q(x) dx –C.

Therefore, by Proposition  and Proposition , it follows

I(u) ≥ m

α(p+)α
(‖u‖p– +

√
 + ‖u‖p–)α –

C

q–
‖u‖q+ –C

≥ αm

α(p+)α
‖u‖αp– –

C

q–
‖u‖q+ –C → +∞ as ‖u‖ → ∞. (.)

By the assumption q+ < αp–, I is coercive. Since I is weakly lower semicontinuous, I has a
minimum point u inW ,p(x)

 (�) and u is a weak solution of (P). �

Theorem  Assume the following conditions hold:

(M) M :R+ →R
+ is a continuous function and satisfies the condition

mtα– ≤ M(t) ≤ mtα–

for all t > , where m,m and α real numbers such that  <m ≤ m and α > ;
(M) M satisfies

M(t)≥ M(t)t

for all t > ;

http://www.boundaryvalueproblems.com/content/2013/1/55
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(f) f :� ×R →R satisfies the Carathéodory condition and there exist positive constants
C and C such that

∣∣f (x, t)∣∣ ≤ C +C|t|β(x)–

for all x ∈ � and t ∈ R, where β ∈ C+(�) such that β(x) < p∗(x) for all x ∈ � and
αp+ < β–;

(f) f (x, t) = o(|t|αp+–), t →  uniformly for x ∈ �;
(f) There exists t∗ >  such that F(x, t) >  for x ∈ � and all t ≥ t∗;
(AR) Ambrosetti-Rabinowitz’s condition holds, i.e., ∃t∗ > , θ > m

m
αp+ such that

 ≤ θF(x, t)≤ f (x, t)t, |t| ≥ t∗ a.e. x ∈ �.

Then (P) has at least one nontrivial weak solution.

To obtain the result of Theorem , we need to show that Lemma  and Lemma  hold.

Lemma  Suppose (M), (M), (AR) and (f) hold. Then I satisfies the (PS) condition.

Proof Let us assume that there exists a sequence {un} inW ,p(x)
 (�) such that

I(un) → c and I ′(un) → . (.)

Then

c + ‖un‖ ≥ I(un) –

θ
I ′(un)un

= M
(
L(un)

)
–

θ
M

(
L(un)

)
L′(un)un +

∫
�

(

θ
f (x,un)un – F(x,un)

)
dx.

Since
√
 + |∇u|p(x) ≥ |∇u|p(x), we have L(un) ≥ 

p+
∫
�

|∇un|p(x) dx. Therefore,

L′(un)un =
∫

�

(
|∇un|p(x)–∇un +

|∇un|p(x)–∇un√
 + |∇un|p(x)

)
∇un dx

≤ 
∫

�

|∇un|p(x) dx ≤ p+L(un).

By the above inequalities and assumptions (M), (M) and (AR), we get

c + ‖un‖ ≥ M
(
L(un)

)
L(un) –

p+

θ
M

(
L(un)

)
L(un) – c

≥
(
 –

p+

θ

)
M

(
L(un)

)
L(un) – c

≥
(

θ – p+

θ

)
L(un)α–L(un) – c

≥ α(θ – p+)
θ (p+)α

‖un‖αp– – c.

http://www.boundaryvalueproblems.com/content/2013/1/55
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This implies that {‖un‖} is bounded in W ,p(x)
 (�). Passing to a subsequence if necessary,

there exists u ∈W ,p(x)
 (�) such that un ⇀ u. Therefore, by Proposition , we have

un ⇀ u inW ,p(x)
 (�),

un → u in Lβ(x)(�), (.)

un → u a.e. in �.

By (.), we have 〈I ′(un),un – u〉 → . Thus

〈
I ′(un),un – u

〉

=M
(
L(un)

)∫
�

(
|∇un|p(x)–∇un +

|∇un|p(x)–∇un√
 + |∇un|p(x)

)
∇(un –∇u)dx

–
∫

�

f (x,un)(un – u) → .

From (f) and Proposition , it follows

∣∣∣∣
∫

�

f (x,un)(un – u)dx
∣∣∣∣

≤ C

∣∣∣∣
∫

�

|un|β(x)–un(un – u)dx
∣∣∣∣ +C

∣∣∣∣
∫

�

(un – u)dx
∣∣∣∣

≤ C
∣∣|un|β(x)–∣∣ β(x)

β(x)–
|un – u|β(x) +C

∫
�

|un – u|dx.

If we consider the relations given in (.), we get

∫
�

f (x,un)(un – u)dx → .

Hence,

M
(
L(un)

)∫
�

(
|∇un|p(x)–∇un +

|∇un|p(x)–∇un√
 + |∇un|p(x)

)
∇(un –∇u)dx → .

From (M), we get

∫
�

(
|∇un|p(x)–∇un +

|∇un|p(x)–∇un√
 + |∇un|p(x)

)
(∇un –∇u)dx → . (.)

Since the functional (.) is of type (S+) (see Proposition . in []), we get un → u in
W ,p(x)

 (�). We are done. �

Lemma  Suppose (M), (AR) and (f)-(f) hold. Then the following statements hold:
(i) There exist two positive real numbers γ and a such that I(u) ≥ a > , u ∈W ,p(x)

 (�)
with ‖u‖ = γ ;

(ii) There exists u ∈W ,p(x)
 (�) such that ‖u‖ > γ , I(u) < .

http://www.boundaryvalueproblems.com/content/2013/1/55
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Proof (i) Let ‖u‖ < . Then by (M) and Proposition , we have

I(u) ≥ αm

α(p+)α
‖u‖αp+ –

∫
�

F(x,u)dx.

Since αp+ < β– < p∗(x), by Proposition  we have the continuous embeddings
W ,p(x)

 (�) ↪→ Lαp+ (�) and W ,p(x)
 (�) ↪→ Lβ+(�) ↪→ Lβ–(�), and also there are positive

constants C, C and C such that

|u|αp+ ≤ C‖u‖, ∀u ∈W ,p(x)
 (�), (.)

and

|u|β– ≤ C‖u‖, |u|β+ ≤ C‖u‖, ∀u ∈ W ,p(x)
 (�). (.)

From (f) and (f), we get F(x, t) ≤ ε|t|αp+ +Cε|t|β(x) for all x ∈ � and t ∈ R, where ε >  is
small enough and Cε > . Therefore, by (M), Proposition  and (.), (.), it follows

I(u) ≥ αm

α(p+)α
‖u‖αp+ – ε

∫
�

|u|αp+ dx –Cε

∫
�

|u|β(x) dx

≥ αm

α(p+)α
‖u‖αp+ –

(
ε|u|αp+αp+ +Cβ+

ε |u|β+

β+ +Cβ–
ε |u|β–

β–
)

≥ αm

α(p+)α
‖u‖αp+ – εCαp+

 ‖u‖αp+ –Cβ–

 ‖u‖β–
–Cβ+

 ‖u‖β+

≥
(

αm

α(p+)α
– εCαp+



)
‖u‖αp+ –max

{
Cβ–

 ,Cβ+


}‖u‖β–

providing that εCαp+
 < m

α(p+)α . Since ‖u‖ <  and αp+ < β–, there exist two positive real
numbers γ and a such that I(u) ≥ a > , u ∈W ,p(x)

 (�) with ‖u‖ = γ ∈ (, ).
(ii) From (AR) and (f), one easily deduces

F(x, t)≥ F(x, t∗)
tθ∗

tθ∗

for all x ∈ � and t ≥ t∗. Therefore, for δ >  and nonnegative u ∈ W ,p(x)
 (�) such that

{x ∈ � : u(x)≥ t∗}, we get
∫

�

F(x, δu)dx ≥
∫

{δu≥t∗}
F(x, δu)dx≥ δθ

tθ∗

∫
{δu≥t∗}

F(x, t∗)uθ dx

≥ δθ

tθ∗

∫
{u≥t∗}

F(x, t∗)uθ dx≥ δθ

∫
{u≥t∗}

F(x, t∗)dx > 

(recall that F ≥  and F(·, t∗) >  almost everywhere). On the other hand, when t > t∗, from
(M) we obtain that

M(t)≤ m

α
tα ≤ m

α
t
m
m

α .

http://www.boundaryvalueproblems.com/content/2013/1/55


Avci Boundary Value Problems 2013, 2013:55 Page 9 of 13
http://www.boundaryvalueproblems.com/content/2013/1/55

Since t > , it is obvious L(tω)≤ tp+L(ω). Hence, for ω ∈ W ,p(x)
 (�)\{}, we have

I(tω) = M
(
L(tω)

)
–

∫
�

F(x, tω)dx

≤ m

α

(
L(tω)

)m
m

α –
∫

�

F(x, tω)dx

≤ m

α
t
m
m

αp+(L(ω))m
m

α – tθ
∫

{ω≥t∗}
F(x,ω)dx.

From the assumption on θ (see (AR)), we conclude I(tω) → –∞ as t → +∞. �

Proof of Theorem  From Lemma , Lemma  and the fact that I() = , I satisfies the
mountain pass theorem (see [, ]). Therefore, I has at least one nontrivial weak solu-
tion. The proof of Theorem  is completed. �

In the sequel, using Krasnoselskii’s genus theory (see [, ]), we show the existence of
infinitely many solutions of the problem (P). So, we recall some basic notations of Kras-
noselskii’s genus.
Let X be a real Banach space and set

R =
{
E ⊂ X\{} : E is compact and E = –E

}
.

Definition  Let E ∈R and X =R
k . The genus γ (E) of E is defined by

γ (E) =min
{
k ≥ ; there exists an odd continuous mapping φ : E → R

k\{}}.
If such a mapping does not exist for any k > , we set γ (E) = ∞. Note also that if E is a
subset which consists of finitely many pairs of points, then γ (E) = . Moreover, from the
definition, γ (∅) = . A typical example of a set of genus k is a set which is homeomorphic
to a (k – ) dimensional sphere via an odd map.

Now, we will give some results of Krasnoselskii’s genus which are necessary throughout
the present paper.

Theorem  Let X = R
N and ∂� be the boundary of an open, symmetric and bounded

subset � ⊂R
N with  ∈ �. Then γ (∂�) =N .

Corollary  γ (SN–) =N .

Remark  If X is of an infinite dimension and separable and S is the unit sphere in X,
then γ (S) = ∞.

Theorem  Suppose that M and f satisfy the following conditions:

(M) M :R+ → R
+ is a continuous function and satisfies the condition

mtδ– ≤ M(t) ≤ mtα–

for all t > , where m, m, δ and α are real numbers such that  < m ≤ m and
 < δ ≤ α;

http://www.boundaryvalueproblems.com/content/2013/1/55
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(f) f :�×R →R is a continuous function and there exist positive constants C, C, C

and C such that

C +C|t|s(x)– ≤ f (x, t)≤ C +C|t|q(x)–

for all x ∈ � and t ≥ ,where s,q ∈ C(�) such that  < s(x) < q(x) < p∗(x) for all x ∈ �;
(f) f is an odd function according to t, that is,

f (x, t) = –f (x, –t)

for all x ∈ � and t ∈R.

If p(x) < q(x) < p∗(x) for all x ∈ � and q+ < δp–, then the problem (P) has infinitely many
solutions.

The following result obtained by Clarke in [] is the main idea which we use in the
proof of Theorem .

Theorem  Let J ∈ C(X,R) be a functional satisfying the (PS) condition. Furthermore,
let us suppose that:

(i) J is bounded from below and even;
(ii) There is a compact set K ∈ R such that γ (K) = k and supx∈K J(x) < J().

Then J possesses at least k pairs of distinct critical points and their corresponding critical
values are less than J().

Lemma  Suppose (M), (f) and the inequality q+ < δp– hold.
(i) I is bounded from below;
(ii) I satisfies the (PS) condition.

Proof (i) By the assumptions (M) and (f), we have

I(u) = M
(
L(u)

)
–

∫
�

F(x,u)dx

≥ m

∫ L(u)


ξ δ– dξ –

C

q–

∫
�

|u|q(x) dx –C

≥ δm

δ(p+)δ
‖u‖δp+ –

C

q–

∫
�

|u|q(x) dx –C.

By Proposition  and Proposition , we get

I(u) ≥ δm

δ(p+)δ
‖u‖δp– –

C

q–
max

{|u|q–q(x), |u|q+q(x)
}
–C

≥ δm

δ(p+)δ
‖u‖δp– –

C

q–
max

{
Cq–‖u‖q– ,Cq+‖u‖q+} –C

≥ δm

δ(p+)δ
‖u‖δp– –

C

q–
Cq+‖u‖q+ –C (.)

for ‖u‖ large enough. Hence, I is bounded from below.
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(ii) Let us assume that there exists a sequence {un} inW ,p(x)
 (�) such that

I(un) → c and I ′(un) → . (.)

From (.) we have |I(un)| ≤ C. This fact combined with (.) implies that

C ≥ I(un) ≥ δm

δ(p+)δ
‖u‖δp– –C‖u‖q+ ≥ C,

where ‖un‖ > . Since q+ < δp–, we obtain that {‖un‖} is bounded inW ,p(x)
 (�).

Hence, we may extract a subsequence {un} ⊂ W ,p(x)
 (�) and u ∈ W ,p(x)

 (�) such that
un ⇀ u inW ,p(x)

 (�). In the rest of the proof, if we consider similar relations given in (.)
and growth conditions assumed on f and apply the same processes which we used in the
proof of Lemma , we can see that I satisfies the (PS) condition. �

Proof of Theorem  Set (see [, ])

Rk=
{
E ⊂R : γ (E)≥ k

}
,

ck = inf
E∈Rk

sup
u∈E

I(u), k = , , . . . ,

then we have

–∞ < c ≤ c ≤ · · · ≤ ck ≤ ck+ ≤ · · · .

Now, we will show that ck <  for every k ∈ N. Since W ,p(x)
 (�) is a reflexive and sepa-

rable Banach space, for any k ∈ N, we can choose a k-dimensional linear subspace Xk of
W ,p(x)

 (�) such thatXk ⊂ C∞
 (�). As the norms onXk are equivalent, there exists rk ∈ (, )

such that u ∈ Xk with ‖u‖ ≤ rk implies |u|L∞ ≤ δ.
Set S(k)rk = {u ∈ Xk : ‖u‖ = rk}. By the compactness of S(k)rk and the condition (f), there

exists a constant ηk >  such that

F(x,u)≥ C +C|t|s(x),∫
�

F(x,u)dx≥ C

s+

∫
�

|u|s(x) dx +C

∫
�

dx ≥ ηk +C (.)

for all u ∈ S(k)rk . If we consider (M) and (f), for u ∈ S(k)rk and t ∈ (, ), we have

I(tu) = M
(
L(tu)

)
–

∫
�

F(x, tu)dx≤ m

α

(
L(tu)

)α – ts
+
ηk –C

≤ m

α

(∫
�

|∇tu|p(x) +√
 + |∇tu|p(x)

p(x)
dx

)α

– ts
+
ηk –C

≤ m

α(p–)α
(
tp

–‖u‖p– +  + tp
–‖u‖p–)α – ts

+
ηk –C

≤ m

α(p–)α
α–((tp–‖u‖p–)α + 

)
– ts

+
ηk –C

≤ m

α(p–)α
α–tαp

–
rαp

–

k – ts
+
ηk +

m

α(p–)α
α– –C, (.)
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providing that C ≥ m
α(p–)α 

α–. Since s+ < q– ≤ q+ < δp– ≤ αp–, we can find tk ∈ (, ) and
εk >  such that

I(tku) ≤ –εk <  for all u ∈ S(k)rk ,

i.e.,

I(u) ≤ –εk <  for all u ∈ S(k)tkrk .

It is clear that γ (S(k)tkrk ) = k, so ck ≤ –εk < . Finally, by Lemma  above, we can apply The-
orem  to obtain that the functional I admits at least k pairs of distinct critical points, and
since k is arbitrary, we obtain infinitely many critical points of I . The proof is completed.

�

Theorem  Suppose (M), (f) and (f) hold. If q(x) < p(x) < p∗(x) for all x ∈ �, then the
problem (P) has a sequence of solutions {±uk : k = , , . . .} such that I(±uk) < .

Proof In the beginning, we will show that I is coercive. If we follow the same processes
applied in the proof of Theorem  and consider the fact q+ < p–, it is easy to get the coer-
civeness of I . Since I is weak lower semi-continuous, I attains its minimum onW ,p(x)

 (�),
i.e., (P) has a solution. By help of coerciveness, we know that I satisfies the (PS) condition
onW ,p(x)

 (�). Moreover, from the condition (f), I is even.
In the rest of the proof, since we develop the same arguments which we used in the proof

of Theorem , we omit the details. Therefore, if we follow similar steps to those in (.)
and (.) and consider the inequalities s+ < q– ≤ q+ < p– < αp–, we can find tk ∈ (, ) and
εk >  such that

I(u) ≤ –εk <  for all u ∈ S(k)tkrk .

Obviously, γ (S(k)tkrk ) = k, so ck ≤ –εk < . By Krasnoselskii’s genus, each ck is a critical value
of I , hence there is a sequence of solutions {±uk : k = , , . . .} such that I(±uk) < . �
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