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Abstract
In this paper, we discuss the existence of positive solutions to the singular Dirichlet
boundary value problems (BVPs) for ordinary differential equations (ODEs) of the form

u′′(t) +
a

t
u′(t) –

a

t2
u(t) = f (t,u(t),u′(t)), u(0) = 0,u(T ) = 0,

where a ∈ (–1, 0). The nonlinearity f (t, x, y) may be singular for the space variables x = 0
and/or y = 0. Moreover, since a �= 0, the differential operator on the left-hand side of
the differential equation is singular at t = 0. Sufficient conditions for the existence of
positive solutions of the above BVPs are formulated and asymptotic properties of
solutions are specified. The theory is illustrated by numerical experiments computed
using the open domain MATLAB code bvpsuite, based on polynomial collocation.
MSC: 34B18; 34B16; 34A12

Keywords: singular ordinary differential equation of the second order; time
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1 Introduction
In the present work, we analyze the existence of positive solutions to the singular Dirichlet
BVP,

u′′(t) +
a
t
u′(t) –

a
t
u(t) = f

(
t,u(t),u′(t)

)
, (a)

u() = , u(T) = . (b)

Here, we assume that T > , a ∈ (–, ) and f satisfies the local Carathéodory conditions
on [,T] × D, where D := R+ × R and R+ := (,∞), R := R \ {}. Let us recall that a
function h : [,T] × A → R, A ⊂ R × R, satisfies the local Carathéodory conditions on
[,T]×A if

(i) h(·,x, y) : [,T] →R is measurable for all (x, y) ∈A,
(ii) h(t, ·, ·) :A→R is continuous for a.e. t ∈ [,T],
(iii) for each compact set U ⊂A, there exists a functionmU ∈ L[,T] such that

∣∣h(t,x, y)∣∣ ≤ mU (t) for a.e. t ∈ [,T] and all (x, y) ∈ U .
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For such functions, we use the notation h ∈ Car([,T] × A). Moreover, f (t,x, y) may be-
come singular when the space variables x and/or y vanish, which means that f (t,x, y) may
become unbounded for x =  and a.e. t ∈ [,T] and all y ∈R, and/or itmay be unbounded
for y =  and a.e. t ∈ [,T] and all x ∈ R+. Finally, since a �= , Eq. (a) has a singularity of
the first kind at the time variable t =  because

∫ T




t
dt = ∞,

∫ T




t

dt = ∞.

The differential operator on the left-hand side of Eq. (a) can be equivalently written as
(t–a(tau)′)′ and, after the substitution x(t) = tau(t), it takes the form (t–ax′)′, which arises
in numerous important applications. Operators of such type were studied in phase tran-
sitions of Van der Waals fluids [–], in population genetics, especially in models for the
spatial distribution of the genetic composition of a population [, ], in the homogeneous
nucleation theory [], in relativistic cosmology for description of particles which can be
treated as domains in the universe [], and in the nonlinear field theory [], in particular,
when describing bubbles generated by scalar fields of Higgs type in the Minkowski spaces
[].
The aim of this paper is to study the case a ∈ (–, ) which is fundamentally different

from the case a ∈ (–∞, –). The latter setting was studied in [, ], where the structure
and properties of the set of all positive solutions to (a) and (b) were investigated (the
cardinality of this set is a continuum).
In the sequel, we introduce the basic notation and state the preliminary results required

in the analysis of problem (a) and (b). Here, we focus our attention on the case a ∈ (–, )
and prove the existence of at least one positive solution of (a) and (b). In contrast to [,
], we consider the more general situation in which f may be also singular at y = . This
means that we have to deal with the following additional difficulties.
Let u be a positive solution of problem (a) and (b), where f (t,x, y) has a singularity at

y = . Then there exists t ∈ (,T) such that u(t) > , u′(t) =  and hence f is unbounded
in a neighborhood of the point (t,u(t),u′(t)). Unfortunately, we do not know the exact
position of t and therefore, it is not possible to construct a universal Lebesgue integrable
majorant for all functions f (t,un(t),u′

n(t)), where un are positive solutions of a sequence of
auxiliary regular problems. Consequently, the Lebesgue dominated convergence theorem
is not applicable and we have to use arguments based on the Vitali convergence theorem
instead; see Lemma . Another tool used in the proofs is a combination of regularization
and sequential techniques with the Leray-Schauder nonlinear alternative.
The investigation of singular Dirichlet BVPs has a long history and a lot of methods

for their analysis are available. One of the most important ones is the topological degree
method providing various fixed point theorems and existence alternative theorems; see,
e.g., Lemma . For more information on the topological degree method and its application
to numerous BVPs, including Dirichlet problems, we refer the reader to the monographs
by Mawhin [–].
Throughout this paper, we work with the following conditions on the function f in (a):

(H) f ∈ Car([,T]×D), where D =R+ ×R.
(H) There exists an ε >  such that

–f (t,x, y)≥ ε for a.e. t ∈ [,T] and all (x, y) ∈D.
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(H) For a.e. t ∈ [,T] and all (x, y) ∈D, the estimate

–f (t,x, y)≤ ϕ(t)h
(
x, |y|) + g(x) + r

(|y|)

holds, where ϕ ∈ L[,T], h ∈ C([,∞)× [,∞)), g, r ∈ C(R+) are positive, h is non-
decreasing in both its arguments, g and r are nonincreasing, and

lim
z→∞

h(z, z)
z

= ,

∫ b


g(s) ds < ∞,

∫ b


r(s) ds < ∞ for each b ∈R+.

By

‖x‖∞ =max
{∣∣x(t)∣∣ : t ∈ [,T]

}
, ‖x‖ =

∫ T



∣∣x(t)∣∣dt

we denote the norms in C[,T] and L[,T], respectively. AC[,T] denotes the set of
functions whose first derivative is absolutely continuous on [,T], while AC

loc(,T] is the
set of functions having absolutely continuous first derivative on each compact subinterval
of (,T]. We use the symbol meas(M) to denote the Lebesgue measure ofM.

Definition  We say that a function u ∈ AC[,T] is a positive solution of problem (a)
and (b) if u >  on (,T), u satisfies the boundary conditions (b) and (a) holds for a.e.
t ∈ [,T].

Remark  Let a function g have the properties specified in (H). Then for each b, c ∈R+,∫ b
 g(cs) ds < ∞, and it follows from the inequality

t(T – t) ≥
⎧⎨
⎩

T
 t for t ∈ [, T ],
T
 (T – t) for t ∈ [T ,T],

that

∫ T


g
(
ct(T – t)

)
dt < ∞ for each c ∈R+. ()

In order to prove that the singular problem (a) and (b) has a positive solution, we
use regularization and sequential techniques. To this end, for n ∈ N we define functions
f *n : [,T]× (R×R)→ R and fn : [,T]×R

 →R by

f *n (t,x, y) =

⎧⎨
⎩
f (t,x, y) if x ≥ 

n ,

f (t, n , y) if x < 
n ,

and

fn(t,x, y) =

⎧⎨
⎩
f *n (t,x, y) if |y| ≥ 

n ,
n
 [f

*
n (t,x,


n )(y +


n ) – f *n (t,x, –


n )(y –


n )] if |y| < 

n ,
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respectively. Then it follows from (H) that fn ∈ Car([,T]×R
) and (H) and (H) yield

–fn(t,x, y)≥ ε for a.e. t ∈ [,T] and all x, y ∈R, ()

–fn(t,x, y)≤ ϕ(t)h
(
 + |x|,  + |y|) + g

(|x|) + r
(|y|)

for a.e. t ∈ [,T] and all x, y ∈ R.

⎫⎬
⎭ ()

Hence,

ε ≤ –λfn(t,x, y) + ( – λ)ε for a.e. t ∈ [,T] and all x, y ∈R,λ ∈ [, ], ()

and

–λfn(t,x, y) + ( – λ)ε ≤ ϕ(t)h
(
 + |x|,  + |y|) + g

(|x|) + r
(|y|)

for a.e. t ∈ [,T] and all x, y ∈ R,λ ∈ [, ].

⎫⎬
⎭ ()

As a first step in the analysis, we investigate auxiliary regular BVPs of the form

u′′(t) +
a
t
u′(t) –

a
t
u(t) = fn

(
t,u(t),u′(t)

)
, (a)

u() = , u(T) = . (b)

To show the solvability of problem (a) and (b), we use the following alternative of Leray-
Schauder type which follows from [, Theorem .].

Lemma  Let E be a Banach space, U be an open subset of E and � ∈ U . Assume that
F :U → E is a compact operator. Then either
A: F has a fixed point in U , or
A: there exists an element u ∈ ∂U and λ ∈ (, ) with u = λF (u) + ( – λ)�.

In limit processes, we apply the following Vitali convergence theorem; cf. [–].

Lemma  Let {ρn} ⊂ L[,T] and let limn→∞ ρn(t) = ρ(t) for a.e. t ∈ [,T]. Then the fol-
lowing statements are equivalent:

(i) ρ ∈ L[,T] and limn→∞ ‖ρn – ρ‖ = ,
(ii) the sequence {ρn} is uniformly integrable on [,T].

We recall that a sequence {ρn} ⊂ L[,T] is called uniformly integrable on [,T] if for
any ε >  there exists δ >  such that ifM⊂ [,T] and meas(M) < δ, then

∫
M

∣∣ρn(t)
∣∣dt < ε, n ∈N.

The paper is organized as follows. In Section , we collect auxiliary results used in the
subsequent analysis. Section  is devoted to the study of limit properties of solutions to
Eq. (a). In Section , we investigate auxiliary regular problems associated with the sin-
gular problem (a) and (b). We show their solvability and describe properties of their
solutions. An existence result for the singular problem (a) and (b) is given in Section .
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Finally, in Section , we illustrate the theoretical findings by means of numerical experi-
ments.
Throughout the paper a ∈ (–, ).

2 Preliminaries
In this section, auxiliary statements necessary for the subsequent analysis are formulated.

Lemma  Let ρ ∈ L[,T] and

r(t) =


ta+

∫ t


sa+ρ(s) ds for t ∈ (,T],

H(t) = t
∫ T

t


sa+

(∫ s


ξa+ρ(ξ ) dξ

)
ds for t ∈ (,T].

Then
(i) r can be extended on [,T] with r ∈ C[,T] and r() = ,
(ii) H can be extended on [,T] with H ∈ AC[,T], and the equality

H ′′(t) +
a
t
H ′(t) –

a
t
H(t) = –ρ(t) ()

holds for a.e. t ∈ [,T].

Proof (i) It is clear that r ∈ C(,T]. Since

∣∣∣∣ 
ta+

∫ t


sa+ρ(s) ds

∣∣∣∣ ≤
∫ t



∣∣ρ(s)∣∣ds for t ∈ (,T], ()

we have limt→+ r(t) = . Setting r() := , r ∈ C[,T] follows.
(ii) Let

p(t) =
∫ T

t


sa+

(∫ s


ξa+ρ(ξ ) dξ

)
ds for t ∈ (,T].

Then p ∈ C(,T] and H(t) = tp(t) for t ∈ (,T]. We now show that p can be extended on
[,T] in such a way that p ∈ C[,T]. Integrating by parts yields

∫ T

t


sa+

(∫ s


ξa+ρ(ξ ) dξ

)
ds

=


(a + )ta+

∫ t


sa+ρ(s) ds

–


(a + )Ta+

∫ T


sa+ρ(s) ds +


a + 

∫ T

t
ρ(s) ds ()

for t ∈ (,T]. Hence limt→+ p(t) = A, where

A = –


(a + )Ta+

∫ T


sa+ρ(s) ds +


a + 

∫ T


ρ(s) ds.

http://www.boundaryvalueproblems.com/content/2013/1/6
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Let p() := A. Then p ∈ C[,T]. Since H ′(t) = p(t) + tp′(t) = p(t) – r(t) for t ∈ (,T], we see
that H can be extended on [,T] with H ∈ C[,T]. Moreover,

H ′′(t) = p′(t) – r′(t)

= –


ta+

∫ t


sa+ρ(s) ds +

a + 
ta+

∫ t


sa+ρ(s) ds – ρ(t)

=
a

ta+

∫ t


sa+ρ(s) ds – ρ(t).

In particular,

H ′′(t) =
a

ta+

∫ t


sa+ρ(s) ds – ρ(t) for a.e. t ∈ [,T]. ()

Hence, cf. (),

∫ T


H ′′(s) ds = a

∫ T




sa+

(∫ s


ξa+ρ(ξ ) dξ

)
ds –

∫ T


ρ(t) dt = aA –

∫ T


ρ(t) dt,

and therefore, H ′′ ∈ L[,T]. Consequently, H ∈ AC[,T]. Finally, it follows from H ′(t) =
p(t) – r(t) and p(t) = H(t)

t that r(t) = H(t)
t –H ′(t). Since, by (), a

t r(t) =H ′′(t) + ρ(t), we see
that equality () is satisfied for a.e. t ∈ [,T] which completes the proof. �

Lemma  Let {ρn} ⊂ L[,T] be a uniformly integrable sequence on [,T] and let
limn→∞ ρn(t) = ρ(t) for a.e. t ∈ [,T]. Then the sequence

{


ta+

∫ t


sa+ρn(s) ds

}
is equicontinuous on [,T]. ()

Proof It follows from Lemma  that ‖ρn‖ ≤ L for n ∈ N, where L is a positive constant.
Recall that by Lemma (i), { 

ta+
∫ t
 s

a+ρn(s) ds} ⊂ C[,T]. Let us assume that () does not
hold. Then there exist ε > , {kn} ⊂ N and {ξn}, {ηn} ⊂ [,T] such that limn→∞ kn = ∞,
limn→∞(ξn – ηn) =  and

∣∣∣∣ 
ξa+
n

∫ ξn


sa+ρkn (s) ds –


ηa+
n

∫ ηn


sa+ρkn (s) ds

∣∣∣∣ ≥ ε for n ∈N. ()

Since {ξn} and {ηn} are bounded sequences, we may assume that they are convergent, and
limn→∞ ξn = τ = limn→∞ ηn. If τ = , then (cf. ())

lim
n→∞


ξa+
n

∫ ξn


sa+ρkn (s) ds = , lim

n→∞


ηa+
n

∫ ηn


sa+ρkn (s) ds = ,

which contradicts (). Let τ ∈ (,T]. Since limn→∞( 
ξa+n

– 
ηa+n

) =  and since the uniform
integrability of the sequence {ρn} on [,T] results in

lim
n→∞

∣∣∣∣
∫ ξn

ηn

∣∣ρkn (t)
∣∣dt

∣∣∣∣ = ,

http://www.boundaryvalueproblems.com/content/2013/1/6
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we conclude from the relation

∣∣∣∣ 
ξa+
n

∫ ξn


sa+ρkn (s) ds –


ηa+
n

∫ ηn


sa+ρkn (s) ds

∣∣∣∣
≤

∣∣∣∣ 
ξa+
n

–


ηa+
n

∣∣∣∣
∫ ξn


sa+

∣∣ρkn (s)
∣∣ds + 

ηa+
n

∣∣∣∣
∫ ηn

ξn

sa+
∣∣ρkn (s)

∣∣ds
∣∣∣∣

≤
∣∣∣∣ 
ξa+
n

–


ηa+
n

∣∣∣∣Ta+L +
Ta+

ηa+
n

∣∣∣∣
∫ ηn

ξn

∣∣ρkn (s)
∣∣ds

∣∣∣∣
that

lim
n→∞

∣∣∣∣ 
ξa+
n

∫ ξn


sa+ρkn (s) ds –


ηa+
n

∫ ηn


sa+ρkn (s) ds

∣∣∣∣ = .

The last equality contradicts (). Consequently, () holds and the result follows. �

Lemma  Let ρ ∈ L[,T]. Then

∣∣∣∣
∫ T

t


sa+

(∫ s


ξa+ρ(ξ ) dξ

)
ds

∣∣∣∣ ≤ ‖ρ‖
a + 

for t ∈ [,T]. ()

Proof Since (cf. ())

∣∣∣∣
∫ T

t


sa+

(∫ s


ξa+ρ(ξ ) dξ

)
ds

∣∣∣∣ ≤ 
a + 

(∫ t



∣∣ρ(s)∣∣ds +
∫ T

t

∣∣ρ(s)∣∣ds + ‖ρ‖
)

=
‖ρ‖
a + 

for t ∈ [,T], estimate () holds. �

3 Limit properties of solutions to Eq. (7a)
Here, we investigate asymptotic properties of solutions of (a). We also provide a related
integral equation this solution satisfies.

Lemma  Let (H) hold. Let u ∈ AC
loc(,T] satisfy Eq. (a) for a.e. t ∈ [,T] and L :=

sup{|u(t)| + |u′(t)| : t ∈ (,T]} < ∞. Then u can be extended on [,T] with u ∈ AC[,T],
and there exists c ∈R such that the integral equation

u(t) = t
(
c –

∫ T

t


sa+

(∫ s


ξa+fn

(
ξ ,u(ξ ),u′(ξ )

)
dξ

)
ds

)
()

holds for t ∈ [,T].

Proof Choose n ∈ N and denote by ρ(t) = fn(t,u(t),u′(t)) for a.e. t ∈ [,T]. In order to
prove that ρ ∈ L[,T], define form ∈N, 

m < T ,

vm(t) :=

⎧⎨
⎩
u(t) if t ∈ ( 

m ,T],

u( 
m ) if t ∈ [, 

m ],
wm(t) :=

⎧⎨
⎩
u′(t) if t ∈ ( 

m ,T],

u′( 
m ) if t ∈ [, 

m ],

http://www.boundaryvalueproblems.com/content/2013/1/6
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and

ρm(t) := fn
(
t, vm(t),wm(t)

)
for a.e. t ∈ [,T].

Then ρm ∈ L[,T] and limm→∞ ρm(t) = ρ(t) for a.e. t ∈ [,T]. Moreover, |ρm(t)| ≤ μ(t)
for a.e. t ∈ [,T] and all m ∈ N, where μ(t) = sup{|fn(t,x, y)| : |x| ≤ L, |y| ≤ L} ∈ L[,T].
Consequently, by the Lebesgue dominated convergence theorem, ρ ∈ L[,T].
We now discuss the linear Euler differential equation

v′′(t) +
a
t
v′(t) –

a
t
v(t) = ρ(t). ()

Let H be the function given in Lemma . By Lemma (ii), H can be extended on [,T]
with H ∈ AC[,T] and –H satisfies () for a.e. t ∈ [,T]. Therefore, each function v ∈
AC

loc(,T] which satisfies Eq. () a.e. on [,T] has the form v(t) = c*t + d*t–a –H(t) for
t ∈ (,T], with some c*,d* ∈ R. By assumption we know that u ∈ AC

loc(,T] satisfies ()
a.e. on [,T], and therefore there exist c,d ∈R such that u(t) = ct + dt–a –H(t), t ∈ (,T].
Since by assumption |u′| ≤ L on (,T], we have d = . Consequently, the function u can
be extended on the interval [,T] in the class AC[,T] and () holds on [,T]. �

Corollary  Let (H) hold. Let u ∈ AC[,T] be a solution of Eq. (a). Then there exists a
constant c ∈R such that equality () is satisfied for t ∈ [,T].

Proof The result holds by Lemma  with sup{|u(t)| + |u′(t)| : t ∈ [,T]} < ∞. �

Remark  Corollary  says that the set of all solutions u ∈ AC[,T] of Eq. (a) depends
on one parameter c ∈R and u() = .

4 Auxiliary regular problems
In order to prove the solvability of problem (a) and (b), we first have to investigate the
problem

u′′(t) +
a
t
u′(t) –

a
t
u(t) = λfn

(
t,u(t),u′(t)

)
– ( – λ)ε, λ ∈ [, ], (a)

u() = , u(T) = , (b)

depending on the parameter λ. Here, ε >  is from (H) and n ∈N.
The following result shows that the solvability of problem (a) and (b) is equivalent

to the solvability of an integral equation in the set C[,T].

Lemma  Let (H) hold. Then u is a solution of problem (a) and (b) if and only if u is
a solution of the integral equation

u(t) = –t
∫ T

t


sa+

(∫ s


ξa+[λfn(ξ ,u(ξ ),u′(ξ )

)
– ( – λ)ε

]
dξ

)
ds ()

in the set C[,T].

http://www.boundaryvalueproblems.com/content/2013/1/6
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Proof Let u be a solution of Eq. (a). Then u ∈ AC[,T], and by Corollary  (with fn
replaced by λfn – ( – λ)ε), there exists c ∈R such that the equation

u(t) = t
(
c –

∫ T

t


sa+

(∫ s


ξa+[λfn(ξ ,u(ξ ),u′(ξ )

)
– ( – λ)ε

]
dξ

)
ds

)

holds for t ∈ [,T]. Hence, u() =  and u(T) =  if and only if c = . Consequently, if u is
a solution of problem (a) and (b), then u is a solution of Eq. () in C[,T].
Let u be a solution of Eq. () in C[,T]. Then fn(t,u(t),u′(t)) ∈ L[,T]. Hence,

Lemma (ii) (with ρ replaced by –λfn + ( – λ)ε) guarantees that u ∈ AC[,T] and u is a
solution of Eq. (a). Moreover, u() = u(T) = . Consequently, u is a solution of problem
(a) and (b) which completes the proof. �

The following results provide bounds for solutions of problem (a) and (b).

Lemma Let (H)-(H) hold.Then there exists a positive constant S (independent of n ∈N

and λ ∈ [, ]) such that for all solutions u of problem (a) and (b), the estimates

u(t) ≥ ε

a + 
t(T – t) for t ∈ [,T], ()

‖u‖∞ < ST ,
∥∥u′∥∥∞ < S, ()

hold. Moreover, for any solution u of problem (a) and (b), there exists ξ ∈ (,T) such
that

∣∣u′(t)
∣∣ ≥ ε

a + 
|t – ξ | for t ∈ [,T]. ()

Proof Let u be a solution of problem (a) and (b). Then by Lemma , equality () holds
for t ∈ [,T]. Since by (), λfn(t,u(t),u′(t)) – ( – λ)ε ≤ –ε for a.e. t ∈ [,T], the relation

u(t) ≥ εt
∫ T

t


sa+

(∫ s


ξa+ dξ

)
ds =

ε

a + 
t(T – t) for t ∈ [,T]

follows from (). Hence, g(u(t)) ≤ g( ε
a+ t(T – t)) for t ∈ (,T) because g is nonincreasing

on R+. Due to Remark , L = ‖g( ε
a+ t(T – t))‖ <∞, which means that

∫ T


g
(
u(t)

)
dt ≤ L. ()

It is clear that L is independent of the choice of solution u to problem (a) and (b) and
independent of n ∈N, λ ∈ [, ].
We now show that inequality () holds for some ξ ∈ (,T). Differentiation of () gives

u′′(t) = –
a

ta+

∫ t


sa+

[
λfn

(
s,u(s),u′(s)

)
– ( – λ)ε

]
ds

+ λfn
(
t,u(t),u′(t)

)
– ( – λ)ε for a.e. t ∈ [,T]. ()

Since a < , it follows from () and () that

u′′(t) ≤ aε
ta+

∫ t


sa+ ds – ε = –

ε
a + 

for a.e. t ∈ [,T].

http://www.boundaryvalueproblems.com/content/2013/1/6
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Hence, u′ is decreasing on [,T], and therefore u′ vanishes at a unique point ξ ∈ (,T) due
to u() = u(T) = . The inequality () now follows from the relations

u′(t) = –
∫ ξ

t
u′′(s) ds ≥ ε

a + 
(ξ – t) for t ∈ [, ξ ],

u′(t) =
∫ t

ξ

u′′(s) ds≤ –
ε

a + 
(t – ξ ) for t ∈ [ξ ,T].

Hence, r(|u′(t)|) ≤ r( ε
a+ |t – ξ |) on [,T] \ {ξ}, and

∫ T



(
r
(∣∣u′(t)

∣∣))dt ≤
∫ ξ



(
r
(

ε
a + 

(ξ – t)
))

dt +
∫ T

ξ

(
r
(

ε
a + 

(t – ξ )
))

dt

<
a + 

ε

∫ (εT)/(a+)


r(s) ds = V for t ∈ [,T].

In particular,

∥∥r(∣∣u′(t)
∣∣)∥∥

 < V . ()

LetW = a+
a+ . Taking into account (), (), (), (), (), and Lemma , we obtain

∣∣u′(t)
∣∣ =

∣∣∣∣–
∫ T

t


sa+

(∫ s


ξa+[λfn(ξ ,u(ξ ),u′(ξ )

)
– ( – λ)ε

]
dξ

)
ds

+


ta+

∫ t


sa+

[
λfn

(
s,u(s),u′(s)

)
– ( – λ)ε

]
ds

∣∣∣∣
≤ W

∫ T



∣∣λfn(t,u(t),u′(t)
)
– ( – λ)ε

∣∣dt

≤ W
∫ T



(
ϕ(t)h

(
 + ‖u‖∞,  +

∥∥u′∥∥∞
)
+ g

(
u(t)

)
+ r

(∣∣u′(t)
∣∣))dt

≤ W
(
h
(
 + ‖u‖∞,  +

∥∥u′∥∥∞
)‖ϕ‖ + L +V

)
, t ∈ [,T].

It follows from u(t) =
∫ t
 u

′(s) ds for t ∈ [,T],

‖u‖∞ ≤ T
∥∥u′∥∥∞, ()

and therefore, we have

∥∥u′∥∥∞ ≤ Kh
(
 + T

∥∥u′∥∥∞,  +
∥∥u′∥∥∞

)
+M, ()

where K =W‖ϕ‖ andM =W (L +V ). By (H),

lim
z→∞(/z)

(
Kh( + Tz,  + z) +M

)
= .

Consequently, there exists S >  such that Kh( + Tz,  + z) +M < z for z ≥ S. Now, due to
(), ‖u′‖∞ < S, and therefore, by (), ‖u‖∞ < ST . �

We are now in the position to prove the existence result for problem (a) and (b).

http://www.boundaryvalueproblems.com/content/2013/1/6
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Lemma  Let (H)-(H) hold. Then for each n ∈ N, problem (a) and (b) has a solution
u satisfying inequalities ()-(), where S is a positive constant independent of n.

Proof Let S be a positive constant in Lemma  and let us define

� :=
{
x ∈ C[,T] : ‖x‖ < ST ,

∥∥x′∥∥ < S
}
.

Then � is an open and bounded subset of the Banach space C[,T]. Keeping in mind
Lemma , define an operator K : [,T]× � → C[,T] by the formula

K(λ,x)(t) = –t
∫ T

t


sa+

(∫ s


ξa+[λfn(ξ ,x(ξ ),x′(ξ )

)
– ( – λ)ε

]
dξ

)
ds. ()

By Lemma , any fixed point of the operatorK(, ·) is a solution of problem (a) and (b). In
order to show the existence of a fixed point ofK(, ·), we apply Lemma  with E = C[,T],
U = �, F =K(, ·) and � = ε

a+ t(T – t). Especially, we show that
(i) K(, ·) :� → C[,T] is a compact operator, and
(ii) K(λ,x) �= x for each λ ∈ (, ] and x ∈ ∂�.

We first verify that K(, ·) is a continuous operator. To this end, let {xm} ⊂ � be a conver-
gent sequence, and let limm→∞ xm = x in C[,T]. Let

rm(t) := fn
(
t,xm(t),x′

m(t)
)
– fn

(
t,x(t),x′(t)

)
for a.e. t ∈ [,T].

It follows from Lemma  and () that

∣∣K(,xm)(t) –K(,x)(t)
∣∣ =

∣∣∣∣–t
∫ T

t


sa+

(∫ s


ξa+rm(ξ ) dξ

)
ds

∣∣∣∣
≤ T‖rm‖

a + 
,

∣∣K(,xm)′(t) –K(,x)′(t)
∣∣ =

∣∣∣∣–
∫ T

t


sa+

(∫ s


ξa+rm(ξ ) dξ

)
ds

+


ta+

∫ t


sa+rm(ξ ) dξ

∣∣∣∣
≤ ‖rm‖

a + 
+ ‖rm‖

for t ∈ [,T]. Here K(,x)′ = d
dtK(,x). In particular, form ∈N,

∥∥K(,xm) –K(,x)
∥∥∞ ≤ T‖rm‖

a + 
,

∥∥K(,xm)′ –K(,x)′
∥∥∞ ≤ (a + )‖rm‖

a + 
.

()

Since limm→∞ fn(t,xm(t),x′
m(t)) = fn(t,x(t),x′(t)) for a.e. t ∈ [,T] and there exists ρ ∈

L[,T] such that

∣∣fn(t,xm(t),x′
m(t)

)∣∣ ≤ ρ(t) for a.e. t ∈ [,T] and allm ∈N,

http://www.boundaryvalueproblems.com/content/2013/1/6
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we have limm→∞ ‖rm‖ =  by the Lebesgue dominated convergence theorem. Hence, by
(), K(, ·) is a continuous operator. We now show that the set K(,�) is relatively com-
pact in C[,T]. It follows from fn ∈ Car([,T]×R

) and� bounded in C[,T] that there
exists μ ∈ L[,T] such that

∣∣fn(t,x(t),x′(t)
)∣∣ ≤ μ(t) for a.e. t ∈ [,T] and all x ∈ �.

Then by Lemma  and (), the inequalities

∣∣K(,x)(t)
∣∣ ≤ T‖μ‖

a + 
,

∣∣K(,x)′(t)
∣∣ ≤ (a + )‖μ‖

a + 

are satisfied for t ∈ [,T] and x ∈ �, and therefore, the set K(,�) is bounded in C[,T].
Moreover, the relation

∣∣K(,x)′′(t)
∣∣ =

∣∣∣∣– a
ta+

∫ t


sa+fn

(
s,x(s),x′(s)

)
ds + fn

(
t,x(t),x′(t)

)∣∣∣∣
≤ |a|

ta+

∫ t


sa+μ(s) ds +μ(t) ∈ L[,T]

holds for a.e. t ∈ [,T] and all x ∈ � (cf. ()). Consequently, the set {K(,x)′ : x ∈ �} is
equicontinuous on [,T]. Hence, the set K(,�) is relatively compact in C[,T] by the
Arzelà-Ascoli theorem. As a result, K(, ·) is a compact operator and the condition (i)
follows.
Due to the fact that by Lemma  any fixed point u of the operatorK(λ, ·) is a solution of

problem (a) and (b), Lemma  guarantees that u satisfies inequality (). Therefore,
K has property (ii). Consequently, by Lemmas  and , for each n ∈ N, problem (a) and
(b) has a solution u satisfying estimates ()-(). �

Let un be a solution of problem (a) and (b) for n ∈N. The following property of the se-
quence {|fn(t,un(t),u′

n(t))|} is an important prerequisite for solving problem (a) and (b).

Lemma  Let (H)-(H) hold. Let un be a solution of problem (a) and (b) for n ∈ N.
Then the sequence {|fn(t,un(t),u′

n(t))|} is uniformly integrable on [,T].

Proof By Lemma , the inequalities

un(t) ≥ ε

a + 
t(T – t) for t ∈ [,T],n ∈N, ()

‖un‖ < ST ,
∥∥u′

n
∥∥ < S for n ∈ N, ()

∣∣u′
n(t)

∣∣ ≥ ε
a + 

|t – ξn| for t ∈ [,T],n ∈N, ()

hold, where S is a positive constant and ξn ∈ (,T). Hence, by () and (),

 < –fn
(
t,un(t),u′

n(t)
) ≤ ϕ(t)h( + ST ,  + S) + g∗(t) + r

(
ε

a + 
|t – ξn|

)
()
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for a.e. t ∈ [,T], where g∗(t) = g( ε
a+ t(T – t)) ∈ L[,T], see Remark . Since the sequence

{r( ε
a+ |t – ξn|)} is uniformly integrable on [,T] (cf. [, criterion A.], [, ]), it fol-

lows from () that {|fn(t,un(t),u′
n(t))|} is uniformly integrable on [,T] and the result

follows. �

5 The existence result for BVP (1a) and (1b)
This section is devoted to the main result on the existence of positive solutions to the
original BVP (a) and (b).

Theorem  Let (H)-(H) hold. Then problem (a) and (b) has at least one positive solu-
tion.

Proof By Lemma , for each n ∈ N, problem (a) and (b) has a solution un satisfying in-
equalities ()-(), where S is a positive constant and ξn ∈ (,T).Moreover, by Lemma ,
the sequence {|fn(t,un(t),u′

n(t))|} is uniformly integrable on [,T].We now prove that {u′
n}

is equicontinuous on [,T]. Since un is a fixed point of the operator K(, ·) given in (),
the equality

u′′
n(t) = –

a
ta+

∫ t


sa+fn

(
s,un(s),u′

n(s)
)
ds + fn

(
t,un(t),u′

n(t)
)

holds for a.e. t ∈ [,T] and all n ∈N. Let  ≤ t < t ≤ T . Then

∣∣u′
n(t) – u′

n(t)
∣∣ =

∣∣∣∣–a
∫ t

t


sa+

(∫ s


ξa+fn

(
ξ ,un(ξ ),u′

n(ξ )
)
dξ

)
ds

+
∫ t

t
fn

(
s,un(s),u′

n(s)
)
ds

∣∣∣∣.

Let rn(t) = 
ta+

∫ t
 s

a+fn(s,un(s),u′
n(s)) ds. By Lemma (i), {rn} ⊂ C[,T] and rn() = . In-

tegrating by parts yields

∫ t

t


sa+

(∫ s


ξa+fn

(
ξ ,un(ξ ),u′

n(ξ )
)
dξ

)
ds

=


a + 

(
rn(t) – rn(t) +

∫ t

t
fn

(
s,u(s),u′(s)

)
ds

)
,

and

∣∣u′
n(t) – u′

n(t)
∣∣ =

∣∣∣∣ a
a + 

(
rn(t) – rn(t)

)
+


a + 

∫ t

t
fn

(
s,u(s),u′(s)

)
ds

∣∣∣∣ ()

follows. By Lemma  (for ρn(t) = fn(t,un(t),u′
n(t))), the sequence {rn} is equicontinuous

on [,T]. Since the sequence {|fn(t,un(t),u′
n(t))|} is uniformly integrable on [,T], the se-

quence {∫ t
 fn(s,u(s),u

′(s)) ds} is equicontinuous on [,T]. Hence, it follows from (), that
{u′

n} is equicontinuous on [,T]. We summarize: {un} is bounded in C[,T] and {u′
n} is

equicontinuous on [,T]. Also, {ξn} ⊂ (,T). Using appropriate subsequences, if neces-
sary, we can assume, by the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem,

http://www.boundaryvalueproblems.com/content/2013/1/6
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that {un} is convergent in C[,T] and {ξn} is convergent in R. Let limn→∞ un =: u and
limn→∞ ξn =: ξ . With n→ ∞ in ()-(), we conclude

u(t) ≥ ε

a + 
t(T – t),

∣∣u′(t)
∣∣ ≥ ε

a + 
|t – ξ | for t ∈ [,T],

‖u‖ ≤ ST ,
∥∥u′∥∥ ≤ S.

In addition, u() = , u(T) = . Since

lim
n→∞ fn

(
t,un(t),u′

n(t)
)
= f

(
t,u(t),u′(t)

)
for a.e. t ∈ [,T], ()

it follows from Lemma  that

lim
n→∞

∥∥fn(t,un(t),u′
n(t)

)
– f

(
t,u(t),u′(t)

)∥∥
 = 

and f (t,u(t),u′(t)) ∈ L[,T]. We now deduce from the inequality (cf. Lemma )

∣∣∣∣t
∫ T

t


sa+

∫ s


ξa+((fn(ξ ,un(ξ ),u′

n(ξ )
)
– f

(
ξ ,u(ξ ),u′(ξ )

))
dξ

)
ds

∣∣∣∣
≤ T

a + 
∥∥fn(t,un(t),u′

n(t)
)
– f

(
t,u(t),u′(t)

)∥∥
 for t ∈ [,T]

that

lim
n→∞ t

∫ T

t


sa+

(∫ s


ξa+fn

(
ξ ,un(ξ ),u′

n(ξ )
)
dξ

)
ds

= t
∫ T

t


sa+

(∫ s


ξa+f

(
ξ ,u(ξ ),u′(ξ )

)
dξ

)
ds for t ∈ [,T].

Taking the limit n → ∞ in

un(t) = –t
∫ T

t


sa+

(∫ s


ξa+fn

(
ξ ,un(ξ ),u′

n(ξ )
)
dξ

)
ds,

we have

u(t) = –t
∫ T

t


sa+

(∫ s


ξa+f

(
ξ ,u(ξ ),u′(ξ )

)
dξ

)
ds for t ∈ [,T]. ()

Hence,

u′′(t) +
a
t
u′(t) –

a
t
u(t) = f

(
t,u(t),u′(t)

)
for a.e. t ∈ [,T],

and u ∈ AC[,T] by Lemma (ii). This means that u is a positive solution of problem (a)
and (b) and the result follows. �
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6 Numerical simulations
For the numerical simulation, we choose T =  and use an alternative formulation of prob-
lem (a) and (b),

u′′(t) +
a
t
u′(t) –

a
t
u(t) = f

(
t,u(t),u′(t)

)
, (a)

u() = , u′() = –c, (b)

where c >  is a parameter. We can use the above formulation because problem (a) and
(b) is solvable for f satisfying the assumptions of Theorem  and, therefore, solutions of
problem (a) and (b) can be computed as solutions of problem (a) and (b) using the
proper value c ∈ (, c*) depending on f . The values c* are provided for given f in Examples 
and , below.
The reason for changing the boundary conditions from (b) to (b) is that the differen-

tial equation (a) subject to (b) is not well posed; see []. However, to enable success-
ful numerical treatment, well-posedness of the model is crucial. This property means that
Eq. (a) subject to proper boundary conditions has at least a locally unique solution,a and
this solution depends continuously on the problem data. The well-posedness of the prob-
lem is important for two reasons. First of all, it allows to express errors in the solution
of the analytical problem in terms of modeling errors and data errors (all measured via
appropriate norms). Therefore, when the errors in the data become smaller due to more
precise modeling or smaller measurement inaccuracies, the errors in the solution will de-
crease. The second reason is that the well-posedness decides if the numerical simulation
will be at all successful. If the analytical problem is ill-posed, then the inevitable round-off
errors can become extremely magnified and fully spoil the accuracy of the approximation.
In what follows, we work with f (t,x, y) = q(t) + h(x, y) for a.e. t ∈ [, ] and all x ∈ R+,

y ∈ R \ {} and, according to the next numerical approach (see Section .), we consider
Eq. (a), where h≡ , that is,

u′′(t) +
a
t
u′(t) –

a
t
u(t) = q(t). ()

By [], problem (), (b) is well posed and therefore it is suitable for the numerical
treatment. To see this, we need to look at a general solution of the homogeneous equation

u′′(t) +
a
t
u′(t) –

a
t
u(t) = , t ∈ [, ]. ()

If we set u(t) = tλ, we arrive at the characteristic polynomial of (),

λ – ( – a)λ – a = 

whose roots λ =  and λ = –a are positive. Therefore, conditions for u and u′ can be
prescribed at t =  as it is done in (b).

6.1 MATLAB Code bvpsuite
To illustrate the analytical results discussed in the previous section, we solved numerically
examples of the form (a) and (b) using aMATLAB™ software package bvpsuite de-
signed to solve BVPs in ODEs and differential algebraic equations. The solver routine is

http://www.boundaryvalueproblems.com/content/2013/1/6
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based on a class of collocation methods whose orders may vary from two to eight. Collo-
cation has been investigated in the context of singular differential equations of first and
second order in [, ], respectively. This method could be shown to be robust with re-
spect to singularities in time and retains its high convergence order in the case that the an-
alytical solution is appropriately smooth. The code also provides an asymptotically correct
estimate for the global error of the numerical approximation. To enhance the efficiency of
the method, a mesh adaptation strategy is implemented, which attempts to choose grids
related to the solution behavior in such a way that the tolerance is satisfied with the least
possible effort. Error estimate procedure and the mesh adaptation work dependably pro-
vided that the solution of the problem and its global error are appropriately smooth.b The
code and the manual can be downloaded from http://www.math.tuwien.ac.at/ewa. For
further information, see []. This software proved useful for the approximation of nu-
merous singular BVPs important for applications; see, e.g., [, , , ].

6.2 Preliminaries
Before dealing with two nonlinear models specified in Sections . and ., we have to
compute numerical solutions for a simpler linearc model of the form

u′′(t) +
a
t
u′(t) –

a
t
u(t) = –

√
t
, t ∈ [, ], (a)

u() = , u′() = –


a + .
, (b)

where a was chosen as a = –., –.,–.. Since in this case the exact solution is given,
u(t) = t(–

√
t)

a+. , the value u′() is available, u′() = –.,–,–., respectively. In Figure ,
the numerical solutions of BVPs (a) and (b) are shown. They will be used as starting
values for the numerical solution of Examples  and ; see Sections . and ., respec-
tively. All numerical results have been obtained using collocation with five Gaussian col-

Figure 1 Problem (39a) and (39b): Numerical solutions for different values of a.
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location points on an equidistant grid (justified by a very simple solution structure) with
the step size ..

6.3 Example 1
We first investigate the following problem:

u′′(t) +
a
t
u′(t) –

a
t
u(t) = –

√
t
– u


 (t), t ∈ [, ], (a)

u() = , u′() = –c. (b)

The nonlinearity f in (a) has the form

f (t,x) = –
√
t
– x


 ()

and it satisfies (H)-(H) with ε = , ϕ(t) = √
t for t ∈ (, ] and

h(x, y) = , g(x) = x

 , r(y) =  for x, y ∈R+.

It follows from Theorem  that there exists at least one value of c >  such that the related
solution u of problem (a) and (b) with u′() = c is positive on (, ) with u() = .
Using formula (), we nowdetermine an interval (, c*) ⊂ (,∞) containing all admissible
values of c.
Let u be a solution of problem (a) and (b) with f from (). Then by (), we obtain

∣∣u(t)∣∣ ≤ t
∫ 

t


sa+

(∫ s


ξa+

(
√
ξ
+ ‖u‖ 

∞
)
dξ

)
ds

<


a + 
+

‖u‖ 
∞

(a + )
, t ∈ [, ].

Therefore,

‖u‖∞ <


a + 
+

‖u‖ 
∞

(a + )
. ()

Let K >  satisfy

K =


a + 
+

K 


(a + )
. ()

Then () implies ‖u‖∞ < K and due to () and (),

u′() =
∫ 


ta+f

(
t,u(t),u′(t)

)
dt =

∫ 


ta+

(
–

√
t
– u


 (t)

)
dt

≥ –
∫ 



(
ta+


 +K


 ta+

)
dt = –


a + 

–K




a + 

.
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Table 1 Problem (40a) and (40b): Complete data of the numerical simulation for different
values of a

a K c* c u(0)

–0.1 1.5819 1.327538328 1.00569659944 1.40264071382347 E-14
–0.5 2.2173 1.869327784 1.41953539630 1.18953445347016 E-13
–0.9 3.6844 3.070760848 2.33615892300 4.13495149060736 E-14

Consequently,

c* =


a + 
+K





a + 

. ()

In order to solve the nonlinear problem (a) and (b), we first have to solve a series
of auxiliary problems for parameter-dependent differential equations

u′′(t) +
a
t
u′(t) –

a
t
u(t) = –

√
t
– δu


 (t), t ∈ (, ], δ > . ()

We begin the calculations with δ =  and increase its value gradually until we arrive at
δ = ; cf. (a). In each step we use the solution of the previous problem to solve the next
one. The aim is to find a good starting value for both the solution u and the value u′()
before solving the BVP (a) and (b), i.e., find the final value of c ∈ (, c*) such that
u() = .
In the case of Example  and a = –., this chain has the following structure:
. Numerical approximation of BVP (a) and (b) is used as an initial guess for ODE

() with δ =  subject to terminal conditions u() = , u′() = –..
. Use the above approximation as an initial guess for ODE () with δ = . subject to

terminal conditions u() = , u′() = –..
. Use the above approximation as an initial guess for ODE () with δ = . subject to

terminal conditions u() = , u′() = –..
. Use the above approximation as an initial guess for ODE () with δ = . subject to

terminal conditions u() = , u′() = –..
After the last step, we have solved problem (a) and (b) subject to boundary conditions
u() = , u′() = –.. In this case, the value of u() was not small enough to consider it a
reasonable approximation for u() = . Therefore, we use a shooting idea combined with
a bisection strategy to find a better value for c = –u′(). The complete numerical results
for Example  can be found in Table  and Figure .

6.4 Example 2
The above approach has been also accordingly applied for Example . Here, we consider
the problem

u′′(t) +
a
t
u′(t) –

a
t
u(t) = –

√
t
– u–


 (t), t ∈ [, ], (a)

u() = , u′() = –c. (b)

The right-hand side f in Eq. (a) now reads

f (t,x) = –
√
t
– x–


 ()
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Figure 2 Problem (40a) and (40b): Numerical solutions for different values of a. Values of u(0) ≈ 10–14.

and has a singularity at x = . The function f satisfies conditions (H)-(H) with ε = ,
ϕ(t) = √

t for t ∈ (, ] and

h(x, y) = , g(x) = x–

 , r(y) =  for x, y ∈ R+.

Theorem  guarantees the existence of at least one c >  such that a solution u of problem
(a) and (b) is positive on (, ) and u() =  holds.Wenowagain determine an interval
(, c*) ⊂ (,∞) containing all such values of c. Let u be a solution of problem (a) and (b)
with f given in (). Inequality () yields

u(t) ≥ 
a + 

t( – t), t ∈ [, ],

and hence by (),

u′() =
∫ 


ta+f

(
t,u(t),u′(t)

)
dt =

∫ 


ta+

(
–

√
t
– u–


 (t)

)
dt

≥
∫ 


ta+

(
–

√
t
–

(


a + 
t( – t)

)– 

)
dt.

Consequently,

c* =
∫ 


ta+

(
√
t
+

(a + )/

t/( – t)/

)
dt. ()

For Example , the auxiliary ODE is constructed using ODE (a),

u′′(t) +
a
t
u′(t) –

a
t
u(t) = –

√
t
– δu–


 , t ∈ [, ], δ > . ()
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Table 2 Problem (46a) and (46b): Complete data of the numerical simulation for different
values of a

a c* c u(0)

–0.1 2.044582190 1.63000971355 4.57015034596816 e-12
–0.5 2.528760387 2.04278888650 1.82943058378521 e-13
–0.9 3.566085670 2.91010561000 1.16498324337590 e-12

Figure 3 Problem (46a) and (46b): Numerical solutions for different values of a. Values of u(0) ≈ 10–12.

For all values of a, we choose u′() ∈ (–c*, ) and analogously carry out the path-following
in δ first. The related chain for a = –. is as follows.
. Numerical approximation of BVP (a) and (b) is used as an initial guess for ODE

() with δ =  subject to terminal conditions u() = , u′() = –..
. Use the above approximation as an initial guess for ODE () with δ = . subject to

terminal conditions u() = , u′() = –..
. Use the above approximation as an initial guess for ODE () with δ = . subject to

terminal conditions u() = , u′() = –..
. Use the above approximation as an initial guess for ODE () with δ = . subject to

terminal conditions u() = , u′() = –..
. Use the above approximation as an initial guess for ODE () with δ = . subject to

terminal conditions u() = , u′() = –..
After the last step, we have solved BVP (a) and (b) subject to boundary conditions
u() = , u′() = –., but also, in this case, the value of u() is too large and we have to find
a better value for c = –u′(). The complete numerical results for Example  can be found
in Table  and Figure .
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7 Conclusions
In the present article, we deal with the existence of positive solutions to the singular
Dirichlet problem of the form

u′′(t) +
a
t
u′(t) –

a
t
u(t) = f

(
t,u(t),u′(t)

)
, u() = ,u(T) = ,

where a ∈ (–, ), and the nonlinearity f (t,x, y) may be singular at the space variables x = 
and/or y = . The main result for the existence of positive solutions of the above BVP is
Theorem . It is illustrated by numerical simulations using theMATLAB codebvpsuite,
based on polynomial collocation. For the successful numerical treatment, the above prob-
lem has to be reformulated to obtain its well-posed form

u′′(t) +
a
t
u′(t) –

a
t
u(t) = f

(
t,u(t),u′(t)

)
, u(T) = ,u′(T) = –c.

Here, it is only known that c ∈ (, c*), where c* can be specified depending on functions f
arising in Examples  and . Now, a simple shooting method combined with the bisection
idea is used to find c in such a way that u() = .
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Endnotes
a This BVP can have more than one solution, but they may not lay close together.
b The required smoothness of higher derivatives is related to the order of the used collocation method.
c The nonlinear term in f has been omitted; see (40a) and (46a).
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12. Rachůnková, I, Spielauer, A, Staněk, S, Weinmüller, EB: The structure of a set of positive solutions to Dirichlet BVPs with
time and space singularities. Georgian Math. J. (to appear)

13. Gaines, RE, Mawhin, JL: Coincidence Degree and Nonlinear Differential Equations. Lecture Notes Math., vol. 568.
Springer, Berlin (1977)

14. Mawhin, J: Points Fixes, Points Critiques et Problèmes aux Limites. Sémin. Math. Sup., vol. 92. Presses Univ. Montréal,
Montréal (1985)

15. Mawhin, J: Topological Degree and Boundary Value Problems for Nonlinear Differential Equations. Lecture Notes
Math., vol. 1537. Springer, Berlin (1993)

16. Agarwal, RP, Meehan, M, O’Regan, D: Fixed Point Theory and Applications. Cambridge University Press, Cambridge
(2001)

17. Bartle, RG: A Modern Theory of Integration. Graduate Studies in Mathematics, vol. 32. AMS, Providence (2001)
18. Hewitt, E, Stromberg, K: Real and Abstract Analysis. Springer, New York (1965)
19. Natanson, IP: Theorie der Funktionen Einer Reelen Veränderlichen. Herausgegeben von Karl Bögel, 4 Aufl.

Mathematische Lehrbücher und Monographien. Akademie Verlag, Berlin (1975)
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