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Abstract
A family of Schrödinger operators, P(λ) = P0 + λV , is studied in this paper. Here
P0 = –� + f (x) with f (x)∼ 1

|x|2 when |x| is large enough and V(x) = O(|x|–2–ε ) for some
ε > 0. We show that each discrete eigenvalue of P(λ) tends to 0 when λ tends to
some λ0. We get asymptotic behavior of the smallest discrete eigenvalue when λ
tends to λ0.
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1 Introduction
In this paper, we consider a family of Schrödinger operators P(λ) which are the perturba-
tion of P in the form

P(λ) = P + λV for λ ≥ 

on L(Rd), d ≥ . Here P = –� + q(θ )
r . (r, θ ) are the polar coordinates on R

d , and q(θ ) is a
real continuous function. V ≤  is a non-zero continuous function satisfying

∣∣V (x)
∣∣ ≤ C〈x〉–ρ for some ρ > . ()

Here 〈x〉 = ( + |x|)/. Let �s denote the Laplace operator on the sphere S
d–. Assume

that

–�s + q(θ ) > –


(d – ) on L

(
S
d–). ()

If () holds, then P ≥  in L(Rd) (see []).
Under the assumption on V , we know that P(λ) has discrete eigenvalues when λ is large

enough, and each discrete eigenvalue tends to zero when λ tends to some λ (see Sec-
tion ).We study the asymptotic behaviors of the discrete eigenvalues of P(λ) in this paper.
The asymptotic behaviors for Schrödinger operators with fast decaying potentials were
studied by Klaus and Simon []. In [], they studied the convergence rate of discrete eigen-
values ofH(λ) = –�+λV when λ → λ. λ is the value at which some discrete eigenvalue
ei(λ) tends to zero. The main method they used in their paper is the Birman-Schwinger
technique.
In order to use the Birman-Schwinger technique to P(λ), we need to get the asymp-

totic expansion of (P – α)– for α near zero, α < , which was studied by Wang []. In
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this paper, we first show that there exists some λ such that when λ > λ, P(λ) has dis-
crete eigenvalues. Then, we define the Birman-Schwinger kernel K(α) for P(λ) and find
that there is one-to-one correspondence between the discrete eigenvalues of K(α) and the
discrete eigenvalues of P(λ). Hence, the asymptotic expansion of the discrete eigenvalue
of P(λ) can be got through the asymptotic expansion of the discrete eigenvalue of K(α).
In our main results, we need to use that K(α) is a bounded operator from L to L. To get
that, we add a strong condition on V (i.e., ρ >  in ()). We show that K(α) is a family of
compact operators converging to K() and obtain the asymptotic expansions of the dis-
crete eigenvalues of K(α) by functional calculus. After that, the convergence rate of the
smallest discrete eigenvalue of P(λ) is obtained.
Here is the plan of our work. In Section , we recall some results of P and define the

Birman-Schwinger kernelK(α) for P(λ). The relationship between the eigenvalues of these
two kinds of operators is studied. In Section , we first study the asymptotic behavior of the
discrete eigenvalues ofK(α). Then the convergence rate of the smallest discrete eigenvalue
of P(λ) is obtained. We get the leading term and the estimate of the remainder term of the
smallest discrete eigenvalue.
Let us introduce some notations first.

Notation The scalar product on L(R+; rd– dr) and L(Rd) is denoted by 〈·, ·〉 and that
on L(Sd–) by (·, ·). Hr,s(Rd), r ∈ Z, s ∈ R, denotes the weighted Sobolev space of order r
with volume element 〈x〉s dx. The duality between H,s and H–,–s is identified with the
L product. Denote H,s = L,s. Notation L(Hr,s,Hr′ ,s′ ) stands for the space of continuous
linear operators from Hr,s to Hr′ ,s′ . The complex plane C is slit along positive real axis so
that zν = eν ln z and ln z = ln |z| + i arg z with  < arg z < π are holomorphic there.

2 Some results for P0
Assume that (r, θ ) are the polar coordinates on R

d . Then the condition

–�s + q(θ ) > –


(d – ) on L

(
S
d–)

implies

–� +
q(θ )
r

≥  ()

in L(Rd) (see []).
Now, we recall some results on the resolvent and the Schrödinger group for the unper-

turbed operator P. Let

σ∞ =
{
ν;ν =

√
λ +

(d – )


,λ ∈ σ

(
–�s + q(θ )

)}
.

Denote

σk = σ∞ ∩ [,k], k ∈ N.
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For ν ∈ σ∞, let nν denote themultiplicity of λν = ν – (d–)
 as the eigenvalue of –�s +q(θ ).

Let ϕ
(j)
ν , ν ∈ σ∞,  ≤ j ≤ nν denote an orthogonal basis of L(Sd–) consisting of eigenfunc-

tions of –�s + q(θ ):

(
–�s + q(θ )

)
ϕ(j)

ν = λνϕ
(j)
ν ,

(
ϕ(i)

ν ,ϕ(j)
ν

)
= δij.

Let πν denote the orthogonal projection in L(Sd–) onto the subspace spanned by the
eigenfunctions of –�s + q(θ ) associated with the eigenvalue λν , and let π (i)

ν denote the
orthogonal projection in L(Sd–) onto the eigenfunction ϕ(i)

ν :

πν f =
nν∑
j=

(
f ,ϕ(j)

ν

) ⊗ ϕ(j)
ν , f ∈ L

(
S
n–),

π (i)
ν f =

(
f ,ϕ(i)

ν

) ⊗ ϕ(i)
ν , f ∈ L

(
S
d–),  ≤ i ≤ nν .

Denote for ν ∈ σ∞

zν =

{
zν′ if ν /∈N,
z ln z if ν ∈N.

Here ν ′ = ν – [ν], and [ν] is the largest integer which is not larger than ν . For ν > , let [ν]–
be the largest integer strictly less than ν . When ν = , set [ν]– = . Define δν by δν = , if
ν ∈ σ∞ ∩N, δν = , otherwise. One has [ν] = [ν]– + δν .
The following is the asymptotic expansion for the resolvent R(z) = (P – z)–.

Theorem . (Theorem . []) The following asymptotic expansion holds for z near zero
with �z > :

R(z) = δ ln zG,π +
N∑
j=

zjFj +
∑
ν∈σN

zν

N–∑
j=[ν]–

zjGν,j+δν πν + R(N)
 (z)

in L(–, s; , –s), s > N + . Here

Gν,j(r, τ ) =

{
bν′ ,j(rτ )j+ν′ fj–[ν](r, τ ;ν ′), ν /∈N,
– (irτ )j

j! fj–[ν](r, τ ; ), ν ∈N,

Fj ∈L(–, s; , –s), s > j + ,

R(N)
 (z) =O

(|z|N+ε
) ∈L(–, s; , –s), s > N + , ε > .

Here

bν′ ,j = –
ije–iν′π/�( – ν ′)

ν ′(ν ′ + ) · · · (ν ′ + j)

for  ≤ ν ′ < , and

fj(r, τ ,ν) = (rτ )–

 (n–)Pj,ν(ρ)
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with Pj,ν(ρ) a polynomial in ρ of degree j:

Pj,ν(ρ) =
ijaν

j!

∫ 

–

(
ρ +



θ

)j(
 – θ)ν– 

 dθ , aν = –
e–iπν/

ν+π /�(ν + /)
.

First, we show that P(λ) has discrete eigenvalues when λ is large enough. In fact, we need
only to show that there exists a function ψ ∈ L(Rd) such that 〈ψ ,P(λ)ψ〉 < .
From the assumption on V , we know that there exists a point x ∈R

d such that V (x) =
infx∈Rd V (x). Choose δ >  small enough such that for all x ∈ B(x, δ), V (x) < 

V (x). For
ψ ∈ C∞

 (Rd), ‖ψ(x)‖ = , suppψ ⊂ B(x, δ), one has

〈
ψ ,P(λ)ψ

〉
= 〈ψ ,Pψ〉 + λ〈ψ ,Vψ〉 < 〈ψ ,Pψ〉 + λ


V (x),

when λ is large enough, one has 〈ψ ,P(λ)ψ〉 < . This means that P(λ) has discrete eigen-
values when λ is large enough.
P(λ) has a continuous spectrum [,∞) for λ ≥  because lim|x|→∞ V (x) exists and equals

zero (see []). We know that σ (P()) = σ (P) = [,∞). Hence, from the continuity of a dis-
crete spectrum of P(λ), we know that there exists some λ such that when λ > λ, P(λ) has
eigenvalues less than zero, and when λ ≤ λ, σ (P(λ)) = [,∞). So, P(λ) has an eigenvalue
e(λ) <  at the bottom of its spectrum for λ > λ. In Section  (Proposition .), we prove
that e(λ) is simple and the corresponding eigenfunction can be chosen to be positive ev-
erywhere. (There are many results about the simplicity of the smallest eigenvalue of the
Schrödinger operator without singularity, but there is no result which can be used directly,
because the potential we use in this paper has singularity at zero. TheoremXIII. [] can
treat the Schrödinger operator with the potential which has singularity at zero, but the
positivity of potential is needed. Hence, we give this result.) From the discussion above
and the continuity of a discrete spectrum, one has that e(λ) tends to zero at some λ. The
asymptotic behavior of e(λ) is studied in this paper.
To study the eigenvalues of P(λ), we first define a family of Birman-Schwinger kernel

operators. Let

K(z) = |V |/(P – z)–|V |/

for z /∈ σ (P), and

K() = |V |/F|V |/.

Then we have the following result.

Proposition . Let α < . Then
(a) Let

A =
{
ψ ∈ L

(
R

d); (P(λ) – α
)
ψ = 

}
,

B =
{
φ ∈ L

(
R

d);K(α)φ = λ–φ
}
.

Then |V |/ is injective from A to B, and (P – α)–|V |/ is injective from B to A.

http://www.boundaryvalueproblems.com/content/2013/1/62
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(b) The multiplicity of α as the eigenvalue of P(λ) is exactly the multiplicity of λ– as the
eigenvalue of K(α).

Proof
(a) First, we prove that |V |/ is injective from A to B. Note that if ψ ∈ A, then

K(α)φ = λ–φ

with φ = |V |/ψ . And if φ = , then

ψ = –λ(P – α)–Vψ = λ(P – α)–|V |/φ = .

It follows that |V |/ is injective from A to B.
Next, we show that (P – α)–|V |/ is injective from B to A. If φ ∈ B, then

(
P(λ) – α

)
ψ = , with ψ = (P – α)–|V |/φ.

And if ψ = , then

 = |V |/ψ = K(α)φ = λ–φ.

It follows that (P – α)–|V |/ is injective from B to A.
(b) From (a), one has dimA = dimB. This means that the multiplicity of α as the eigen-

value of P(λ) is exactly the multiplicity of λ– as the eigenvalue of K(α). �

From the last proposition, we know that there exists one-to-one correspondence be-
tween the discrete eigenvalues of P(λ) and the discrete eigenvalues of K(α). Hence, we
can study the eigenvalues of K(α) first.

3 Asymptotic expansion of the eigenvalues
If P and V are defined as above, we show that if P +V has the eigenvalue less than zero,
then the smallest eigenvalue of P +V is simple. We use Theorems XIII., XIII. [] to
prove it.

Proposition . Suppose P + V has an eigenvalue at the bottom of its spectrum. Then
this eigenvalue is simple and the corresponding eigenfunction can be chosen to be a positive
function.

Proof Let  ≤ χ (t) ≤  be a smooth nonincreasing function such that χ (t) =  if |t| < 
and χ (t) =  if t > . Let χn(t) = χ (t/n). Set Vn = χn(r) q(θ )r + V – 〈x〉, H = –� + 〈x〉, Hn =
H + Vn, H = P = P + V . From the proof of Theorem XIII. [], we know that e–tH is
positivity preserving and {e–tH} ∪ L∞ acts irreducibly on L. Hence, by Theorem XIII.
[], if Hn converges to H and H – Vn converges to H in the strong resolvent sense, then
e–tH is positivity preserving and {e–tH} ∪ L∞ acts irreducibly on L. By Theorems XIII.
and XIII. [], we can get the result. Since C∞

 (Rd) is the core for all Pn and P, and for
any ψ ∈ C∞

 (Rd), Vnψ → ( q(θ )r + V )ψ in L, then we have the necessary strong resolvent
convergence by Theorem VIII.(a) []. This ends the proof. �
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Proposition . Assume that  /∈ σ∞. PFu = u in H–,s for any u ∈ H–,s, s > .

Proof If u ∈H–,s, then Fu ∈H,–s. For any test functionφ ∈ C∞
 (Rn), we have 〈PFu,φ〉 =

〈u,FPφ〉. If  /∈ σ∞, then we have limz→(P – z)– = F in H–,s for �z > . It follows
〈u,FPφ〉 = limz→〈u, (P – z)–Pφ〉 = limz→〈u,φ – z(P – z)–φ〉 = 〈u,φ〉 because φ and
Pφ belong to H–,s. Hence, PFu = u in H–,s. �

Proposition . Assume that  /∈ σ∞. K(α) is a compact operator for α ≤ . And K(α)
converges to K () in operator norm sense.

Proof For α < , K(α) = |V |/(P –α)–|V |/. Since (P –α)– is a bounded operator from
L(Rd) to H(Rd), and V is a compact operator from H(Rd) to L(Rd), then V (P – α)–

is a compact operator on L(Rd). Using a similar method to that in Proposition ., we
can show that V (P –α)– and K(α) have the same non-zero eigenvalues, and for the same
eigenvalue e(α), themultiplicity of e(α) as the eigenvalue ofV (P–α)– and themultiplicity
of e(α) as the eigenvalue of K(α) are the same. Hence, K(α) is a compact operator. Because

K(α) –K() = |V |/[(P – α)– – F
]|V |/ = |V |/R()

 |V |/

and if ρ > , then |V |/R()
 |V |/ = o(|α|ε) in L(Rd). Hence, K(α) → K() in operator

norm sense as α → . This means that K() is a compact operator. �

Lemma . Suppose A, A are two bounded self-adjoint operators on a Hilbert space H .
Set

μn(Ai) = inf
φ,...,φn

sup
‖ψ‖=,ψ∈[φ,...,φn]⊥

(ψ ,Aiψ),

then |μn(A) –μn(A)| ≤ ‖A –A‖.

Proof By the definition of μn(Ai), one has

∣∣μn(A) –μn(A)
∣∣

=
∣∣∣ inf
φ,...,φn

sup
‖ψ‖=,ψ∈[φ,...,φn]⊥

〈ψ ,Aψ〉 – inf
φ,...,φn

sup
‖ψ‖=,ψ∈[φ,...,φn]⊥

〈ψ ,Aψ〉
∣∣∣

=
∣∣∣– sup

φ,...,φn

(
– sup

‖ψ‖=,ψ∈[φ,...,φn]⊥
〈ψ ,Aψ〉

)
+ sup

φ,...,φn

(
– sup

‖ψ‖=,ψ∈[φ,...,φn]⊥
〈ψ ,Aψ〉

)∣∣∣
≤

∣∣∣ sup
φ,...,φn

[
– sup

‖ψ‖=,ψ∈[φ,...,φn]⊥
〈ψ ,Aψ〉 + sup

‖ψ‖=,ψ∈[φ,...,φn]⊥
〈ψ ,Aψ〉

]∣∣∣
= sup

φ,...,φn

∣∣∣ sup
‖ψ‖=,ψ∈[φ,...,φn]⊥

〈ψ ,Aψ〉 – sup
‖ψ‖=,ψ∈[φ,...,φn]⊥

〈ψ ,Aψ〉
∣∣∣

≤ sup
φ,...,φn

sup
‖ψ‖=,[φ,...,φn]⊥

∣∣〈ψ , –Aψ〉 – 〈ψ , –Aψ〉∣∣
≤ ‖A –A‖.

This ends the proof. �
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Lemma . Suppose T(α) is a family of compact self-adjoint operators on a separable
Hilbert space H , and T(α) = T + o(|α|ε) for α near zero. Set

μk(α) = inf
φ,...,φk

sup
‖ψ‖=,ψ∈[φ,...,φk ]⊥

〈
ψ ,T(α)ψ

〉
.

Then:
(a)μk(α) is an eigenvalue of T(α),andμk(α) convergeswhen α → .Moreover, ifμk(α)→

μk , then μk is an eigenvalue of T.
(b) Suppose that E �=  is an eigenvalue of T of the multiplicity of m. Then there are m

eigenvalues (counting multiplicity), Ek(α) ( ≤ k ≤ m), of T(α) near E. Moreover, we can
choose {φk(α);  ≤ k ≤ m} such that (φk(α),φj(α)) = δkj ( ≤ k, j ≤ m), φk(α) is the eigenvec-
tor of T(α) corresponding to Ek(α) (Ek(α) → E), and φk(α) converges as α → . If φk(α)
converges to φk , then φk is the eigenvector of T corresponding to E.

Proof
(a) By the min-max principle, we know that μk(α) is an eigenvalue of T(α). By

Lemma ., one has

∣∣μk(α) –μk()
∣∣ ≤ ∥∥T(α) – T

∥∥ =O
(|α|ε).

It follows that μk(α) converges to the eigenvalue of T.
(b) Because T is a compact operator and E �=  is an eigenvalue of T, then E is a dis-

crete spectrumofT. Then there exists a constant δ >  small enough such thatT has only
one eigenvalue E in B(E, δ) (= {z ∈C; |z – E| < δ}). For α small enough, T(α) has exactly
m eigenvalues (countingmultiplicity) in B(E, δ) because the eigenvalues of T(α) converge
to the eigenvalues of T by part (a) of lemma. Suppose them eigenvalues, near E, of T(α)
are E(α),E(α), . . . ,Em(α), and the corresponding eigenvectors areψ(α),ψ(α), . . . ,ψm(α)
such that 〈ψk(α),ψj(α)〉 = δkj. Let

Pα = –


π i

∮
|E–E|=δ

(
T(α) – E

)– dE.
Then Pα =

∑m
k=〈·,ψk(α)〉ψk(α). Let P(k)

α = 〈·,ψk(α)〉ψk(α), then Pα =
∑m

k= P(k)
α . For α near

zero, one has

∥∥Pα – P
∥∥ =

∥∥∥∥– 
π i

∮
|E–E|=δ

(
T(α) – E

)– – (T – E)– dE
∥∥∥∥

=
∥∥∥∥– 

π i

∮
|E–E|=δ

(
T(α) – E

)–(T – Tα)(T – E)– dE
∥∥∥∥

= O
(|α|ε).

Let A = {φ;‖φ‖ = ,φ ∈ RanP}. Let φk be an element in A such that ‖φ –ψk(α)‖ acquires
the minimum value. Then we have

∥∥P(k)
α φk – φk

∥∥ ≤ ∥∥P(k)
α φk –ψk(α)

∥∥ +
∥∥ψk(α) – φk

∥∥
=

∥∥P(k)
α φk – P(k)

α ψk(α)
∥∥ +

∥∥ψk(α) – φk
∥∥ ≤ 

∥∥ψk(α) – φk
∥∥,

http://www.boundaryvalueproblems.com/content/2013/1/62
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and

∥∥ψk(α) – φk
∥∥ ≤

∥∥∥∥ Pψk(α)
‖Pψk(α)‖ –ψk(α)

∥∥∥∥
≤

∥∥∥∥ Pψk(α)
‖Pψk(α)‖ – Pψk(α)

∥∥∥∥ +
∥∥Pψk(α) – Pαψk(α)

∥∥ =O
(|α|ε).

In the last equality, we use the fact

∥∥Pψk(α)
∥∥ =

∥∥(
Pψk(α) –ψk(α)

)
+ψk(α)

∥∥ =  +O
(|α|ε),

and

∥∥∥∥ Pψk(α)
‖Pψk(α)‖ – Pψk(α)

∥∥∥∥ =
∥∥∥∥Pψk(α)

(


‖Pψk(α)‖ – 
)∥∥∥∥ =O

(|α|ε).

It follows that ‖P(k)
α φk – φk‖ = O(|α|ε). Let φk(α) = P(k)α φk

‖P(k)α φk‖
. Then 〈φk(α),φj(α)〉 =  for k �=

j because P(k)
α P(j)

α =  if k �= j, and ‖φk(α) – φk‖ ≤ ‖P(k)
α φk – φk‖ + ‖( – 

‖P(k)α φk‖
)P(k)

α φk‖ =
O(|α|ε). This ends the proof. �

Let  < α < α < · · · < αi < · · · < αm and

T(β) = T +
m∑
i=

βαi (lnβ)δiTi + Tr(β).

Here, δi =  or , T ≥ , Ti ( ≤ i ≤ m), Tr(β) are compact operators, and Tr(β) =
O(|β|αm+ε) for β near zero. Set

es = inf
φ,...,φs

sup
‖ψ‖=,ψ∈[φ,...,φs]⊥

〈ψ ,Tψ〉.

Then, by the min-max principle, es is an eigenvalue of T. Moreover, if es �= , then es is a
discrete eigenvalue of T because T is a compact operator. If es �=  is an eigenvalue of T

ofmultiplicitym, without loss, we can suppose that es = es+ = · · · = es+m–. Then there exist
exactly m eigenvalues (counting multiplicity), es(β), es+(β), . . . , es+m–(β), of T(β) near es.
By Lemma ., we know that there exists a family of normalized eigenvectors {φj(β); j =
s, s + , . . . , s + m – } of T(β) such that T(β)φj(β) = ej(β)φj(β), 〈φj(β),φk(β)〉 = δjk (j,k =
s, s + , . . . , s +m – ), and φj(β) (j = s, s + , . . . , s +m – ) converge as β → . Suppose that
φj(β) converge to φj for all j such that ej �= . Then 〈φs,φj〉 = δsj. {φs} can be extended to a
standard orthogonal basis. Set

T(β) =
m∑
s=

βαs (lnβ)δiTs + Tr(β), Tsj(β) =
〈
φs,T(β)φj

〉
.

Then we have the following.

http://www.boundaryvalueproblems.com/content/2013/1/62
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Lemma. T(β), es are given as before.Then the eigenvalue of T(β), ej(β) (j = s, s+, . . . , s+
m – ) has the following form:

ej(β) = es +
∑∞

n= a
(j)
n (β)∑∞

n= b
(j)
n (β)

.

Here

a(j) (β) = Tjj(β),

a(j) (β) = –
∑

{k;ek �=es}
(ek – es)–Tjk(β)Tkj(β),

a(j) (β) =
∑
k �=j �=l

(ek – es)–(el – es)–Tjk(β)Tkl(β)Tlj(β)

– 
∑

{k;ek �=es}
(ek – es)–Tjk(β)Tkj(β)Tjj(β),

a(j)n (β) = –
(–)n

π i

∮
|E–es|=δ

(es – E)–
∑

i,i,...,in

(ei – E)– · · · (ein – E)–

× TjiTii · · ·Tinj dE for n > ,

b(j) (β) = ,

b(j) (β) = ,

b(j) (β) =
∑

{k;ek �=es}
(es – ek)–Tjk(β)Tkj(β),

b(j)n (β) = –
(–)n

π i

∮
|E–es|=δ

(es – E)–
∑

i,i,...,in–

(ei – E)– · · · (ein– – E)–

× TjiTii · · ·Tin–j dE for n > .

Proof If es �= , then es is the discrete eigenvalue of T. Suppose that the multiplicity of es
is m, and suppose that es = es+ = · · · = es+m– as before. Hence, we can choose δ >  small
enough such that there is only one eigenvalue es in B(es, δ) = {z ∈ C; |z – es| < δ}. We know
that ej(β) (j = s, s + , . . . , s +m – ) converge to es. It follows that if δ is small enough, there
are exactlym eigenvalues (counting multiplicity) of T(β) in B(es, δ) for β small. Set

Pβ � –


π i

∮
|E–es|=δ

(
T(β) – E

)– dE.
Then

ej(β) =
〈φj,T(β)Pβφj〉

〈φj,Pβφj〉

=
〈φj,TPβφj〉
〈φj,Pβφj〉 +

〈φj,T(β)Pβφj〉
〈φj,Pβφj〉

= es +
〈φj,T(β)Pβφj〉

〈φj,Pβφj〉 .
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Since

(
T(β) – E

)– = (T – E)–
(
I + T(β)(T – E)–

)–
= (T – E)–

∞∑
n=

(–)n
[
T(β)(T – E)–

]n,

then

〈φj,Pβφj〉 = –


π i

∮
|E–es|=δ

〈
φj, (T – E)–

∞∑
n=

(–)n
[(
T(β)

)
(T – E)–

]n
φj

〉
dE.

Then

b(j)n (β) = –
(–)n

π i

∮
|E–es|=δ

〈
φj, (T – E)–

[(
T(β)

)
(T – E)–

]n
φj

〉
dE.

In particular,

b(j) (β) = –


π i

∮
|E–es|=δ

〈
φj, (T – E)–φj

〉
dE = ,

b(j) (β) = –
–
π i

∮
|E–es|=δ

〈
φj, (T – E)–

[(
T(β)

)
(T – E)–

]
φj

〉
dE

= –
–
π i

∮
|E–es|=δ

(es – E)–
〈
φj,T(β)φj

〉
dE = ,

b(j) (β) = –
(–)

π i

∮
|E–es|=δ

〈
φj, (T – E)–

[(
T(β)

)
(T – E)–

]
φj

〉
dE

= –


π i

∮
|E–es|=δ

(es – E)–
〈
φj,

[(
T(β)

)
(T – E)–

(
T(β)

)]
φj

〉
dE

= –


π i

∮
|E–es|=δ

(es – E)–
∑
k

〈
φj,

(
T(β)

)
φk

〉
(ek – E)–

〈
φj,

(
T(β)

)
φk

〉
dE

= –


π i

∮
|E–es|=δ

(es – E)–
∑

{k;ek �=es}

〈
φj,

(
T(β)

)
φk

〉
(ek – E)–

〈
φj,

(
T(β)

)
φk

〉
dE

–


π i

∮
|E–es|=δ

(es – E)–
∑

{k;ek=es}

〈
φj,

(
T(β)

)
φk

〉
(ek – E)–

〈
φj,

(
T(β)

)
φk

〉
dE

=
∑

{k;ek �=es}
(es – ek)–Tjk(β)Tkj(β).

In the last step, we use that

∑
{k;ek �=es}

∣∣(ek – ej)–Tjk(β)Tkj(β)
∣∣ ≤ C

∑
{k;ek �=es}

(∣∣Tjk(β)
∣∣ + ∣∣Tkj(β)

∣∣)

≤ C
(∥∥T *

 (β)φj
∥∥ +

∥∥T(β)φj
∥∥).
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Similarly, we can get

b(j)n (β) = –
(–)n

π i

∮
|E–es|=δ

(es – E)–
∑

i,i,...,in–

(ei – E)– · · · (ein– – E)–

×TjiTii · · ·Tin–j dE;

and

a(j) (β) = Tjj(β),

a(j) (β) = –
∑

{k;ek �=es}
(ek – es)–Tjk(β)Tkj(β),

a(j) (β) =
∑

{l,k;ek �=ej �=el}
(ek – es)–(el – es)–Tjk(β)Tkl(β)Tlj(β)

– 
∑

{k;ek �=es}
(ek – es)–Tjk(β)Tkj(β)Tjj(β),

a(j)n (β) = –
(–)n

π i

∮
|E–es|=δ

〈
φj,

[(
T(β)

)
(T – E)–

]n+
φj

〉
dE

= –
(–)n

π i

∮
|E–es|=δ

(es – E)–
〈
φj,

[(
T(β)

)
(T – E)–

]nT(β)φj
〉
dE

= –
(–)n

π i

∮
|E–es|=δ

(es – E)–
∑
i

〈
φj,

[(
T(β)

)
(T – E)–

]n–
× T(β)φi

〉
(es – E)–Tij(β)dE

= · · ·

= –
(–)n

π i

∮
|E–es|=δ

(es – E)–
∑

i,i,...,in

(ei – E)– · · · (ein – E)–

× TjiTii · · ·Tinj dE. �

First, we study the asymptotic expansion of the smallest eigenvalue e(λ) of P(λ). By
Proposition ., we know that e(λ) is a simple eigenvalue of P(λ), and the corresponding
eigenfunction can be chosen to be positive. We suppose u(λ) is a positive eigenfunction
corresponding to e(λ). Then ũ(λ) = |V |/u(λ) ∈ L(Rd). Without loss of generality, we
can suppose that ‖ũ(λ)‖L(Rd) = . Then we can get the following result.

Lemma . Assume that  /∈ σ∞. Set ν = min{ν;ν ∈ σ∞}. ũ is defined as above. Then
ũ(λ) converges in L(Rd) when λ → λ. If ν <  and ũ(λ) converges to φ, then φ is the
eigenfunction of K (), and 〈φ, |V |/Gν,πν |V |/φ〉 �= .

Proof By the assumption of ũ(λ), one has K(e(λ))ũ(λ) = λ–ũ(λ). One can check that ũ(λ)
converges in L(Rd) as λ → λ by Lemma .. And also, by Lemma ., we know that φ is
the normalized eigenfunction of K() corresponding to E. φ is a positive function since
ũ(λ) is a positive function. Let u = F|V |/φ, then P(λ)u =  and u is a positive function
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because |V |/u = |V |/F|V |/φ = K()φ = λ–
 φ. Then

〈
φ, |V |/Gν,πν |V |/φ〉
= λ


〈|V |/u, |V |/Gν,πν |V |/|V |/u〉

= λ
〈Vu,Gν,πνVu〉

= λ
Cν

∣∣〈Vu, |y|– n–
 +νϕν

〉∣∣
�= .

In the last equality, we use the fact that

Gν, = (rτ )νbν,f = dνbν,(rτ )
– d–

 +ν = Cν (rτ )
– d–

 +ν

with dν = – e–

 iπν

ν+�(ν+)
, and Cν = dνbν,. This ends the proof. �

Theorem . Assume that  /∈ σ∞. φ is defined in Lemma .. If ρ > , one of three ex-
clusive situations holds:
(a) If σ = ∅, then

e(λ) = –c(λ – λ) + o(λ – λ)

with c = (λ‖F|V |  φ‖)– �= .
(b) If ν = , then

e(λ) = –c
λ – λ

ln(λ – λ)
+ o

(
λ – λ

ln(λ – λ)

)

with c = λ–
 〈φ, |V |/G,π|V |/φ〉– �= .

(c) If ν < , then

e(λ) = c
(
(λ – λ)


ν

)
+ o

(
(λ – λ)


ν

)
with c = λ–

 〈φ, |V |/Gν,πν |V |/φ〉– �= .

Proof
(a) By Theorem ., one has

R(α) = F + αF + R()
 (α), in L(–, s; , –s), s > .

Then if ρ > , we can get K(α) = K() + |V |/(αF +R()
 (α))|V |/ in L(, ; , ). Because

e(λ) is the simple eigenvalue of P(λ), then λ– is the simple eigenvalue of K(e(λ)). Since
V ≤ , one has that P(λ) is monotonous with respect to λ and so is the e(λ). Hence,
K(e(λ)) and the eigenvalues of K(e(λ)) are monotonous with respect to λ. Therefore,
we have that λ– is the biggest eigenvalue of K(e(λ)). If not, suppose that a > λ– is an
eigenvalue of K(e(λ)), then by the continuity and monotony of the eigenvalue of K(e(λ))
with respect to λ, we know that there exists a constant λ′ < λ such that λ ∈ σ (K(e(λ′))).
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It follows that e(λ′) < e(λ) is an eigenvalue of P + λV . This is contradictory to that e(λ)
is the smallest eigenvalue. By Lemma ., we know the normalized eigenfunction ũ(λ) of
K(e(λ)) converges to φ. It follows ũ(λ) = Pλφ

‖Pλφ‖ with Pλ = – 
π i

∮
|E–E|=δ

(K(e(λ)) – E)– dE.
Then

μ
(
e(λ)

)
=

〈
ũ(λ),K

(
e(λ)

)
ũ(λ)

〉
=

〈φ,K(e(λ))Pλφ〉
〈φ,Pλφ〉 .

Here μ(e(λ)) is the eigenvalue of K(e(λ)) corresponding to the eigenfunction ũ(λ). By
Lemma ., we should compute 〈φ, |V |/F|V |/φ〉. Let ψ = F|V |/φ. From the defini-
tion of φ, one has K()φ = λ–

 φ. Hence,

(P + λV )ψ = PF|V |/φ + λVF|V |/φ = .

In the last equality, we use the fact PF|V |/φ = |V |/φ, which can be obtained by Propo-
sition .. Since ν > , we have ψ ∈ L(Rd) by Theorem . []. So, ψ is the ground state
of P(λ). We also have

|V |/ψ = K()φ = λ–
 φ,

(P – α)–|V |ψ = λ–


(
ψ + αR(α)ψ

)
.

Hence,

|V |/F|V |/φ = λ|V |/F|V |/|V |/ψ
= λα

–|V |/(R(α) – F
)|V |ψ +O

(|α|ε)
= λα

–|V |/λ–


(
ψ + αR(α)ψ –ψ

)
+O

(|α|ε)
= |V |/R(α)ψ +O

(|α|ε).
It follows

〈
φ, |V |/F|V |/φ〉

= lim
α→

〈|V |/φ,R(α)ψ
〉

=
〈
F|V |/φ,ψ 〉

= ‖ψ‖ �= .

So, μ(α) = λ–
 + cα + o(|α|+ε) with c = ‖F|V |  φ‖. By the Proposition ., one has

μ(e(λ)) = λ–. It follows

λ– = λ–
 + ce(λ) +O

(|e(λ)|+ε
)
.

Since λ– = λ–
 –λ–

 (λ–λ)+O(|λ–λ|), we can get the leading term of e(λ) is –c(λ–λ)
with c = (λ‖F|V |  φ‖)–.
(b) If ν = , then

K(α) = K() + α lnα|V |/G,π|V |/ +O(α).
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By Lemma ., one has

〈
φ, |V |/G,π|V |/φ〉 �= .

Then we have

μ(α) = λ–
 + cα lnα + o(α)

with c = 〈φ, |V |/G,π|V |/φ〉. As in (a), using μ(e(λ)) = λ– and

λ– = λ–
 – λ–

 (λ – λ) +O
(|λ – λ|

)
,

one has –λ–(λ – λ) + O(|λ – λ|) = ce(λ) ln e(λ) + o(e(λ)). To get the leading term of
e(λ), we can suppose that e(λ) = (λ – λ)f (λ). Then, by comparing the leading term, we
can get f (λ) = / ln(λ – λ). It follows

e(λ) = –c
λ – λ

ln(λ – λ)
+ o

(
λ – λ

ln(λ – λ)

)

with c = λ–
 〈φ, |V |/G,π|V |/φ〉–.

(c) If ν < , one has

K(α) = K() +
∑
<ν≤

αν |V |/Gν,πν |V |/ +O
(|α|).

By Lemma ., we know that 〈φ, |V |/Gν,πν |V |/φ〉– �= . Using the same argument as
before, we can conclude

μ(α) = λ–
 + cαν + o

(|α|ν)
with c = 〈φ, |V |/Gν,πν |V |/φ〉. As above, we can get that

e(λ) = c(λ – λ)


ν + o
(
(λ – λ)


ν

)
with c = λ–

 〈φ, |V |/Gν,πν |V |/φ〉–. �
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