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Abstract
We put forward the notion of unconditional convergence to an equilibrium of a
difference equation. Roughly speaking, it means that can be constructed a wide
family of higher order difference equations, which inherit the asymptotic behavior of
the original difference equation. We present a sufficient condition for guaranteeing
that a second-order difference equation possesses an unconditional stable attractor.
Finally, we show how our results can be applied to two families of difference
equations recently considered in the literature.
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1 Introduction
It is somewhat frequent that the global asymptotic stability of a family of difference equa-
tions can be extended to some higher-order ones (see, for example, [–]). Consider the
following simple example. If ϕ is the map ϕ(x, y) =  + (ax/y), the sequence yn defined by
yn = ϕ(x, yn–), that is,

yn =  +
ax
yn–

,

with y,a,x > , converges to Fϕ(x) = ( +
√
 + ax)/ for any y. Observe that Fϕ is the

function satisfying ϕ(x,Fϕ(x)) = Fϕ(x). Obviously, the second-order difference equation

yn =  +
ax
yn–

,

also converges to Fϕ(x) for any y, y,a,x > . Let us continue to add complexity, by con-
sidering the second-order difference equations

yn =  +
ayn–
yn–

, ()

yn =  +
ayn–
yn–

. ()

For all y, y,a > , the sequence defined by Equation () converges to the unique fixed
point μϕ = a+  of the function Fϕ . However, the behavior of Equation () depends on the
parameter a:
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• For a ≥ , the odd and even index terms converge respectively to some limits,
μ ∈ [, +∞] and μ/(μ – )∩ [, +∞], where μ may depend on y, y (for a = ).

• For  < a < , it converges to μϕ = a + , whatever the choice of y, y >  one makes.
No sophisticated tools are needed to reach those conclusions: It suffices to note that the

set

A =
{
n : (yn+ – yn+)(yn+ – yn) ≥ 

}
must be either finite or equal toN. As the sequences yn+ and yn are then both eventually
monotone, they converge in [, +∞] to some limits, say μ and μ, satisfying

μ =  +
aμ

μ
and μ =  +

aμ

μ
.

Therefore, one of the following statements holds: μ = μ/(μ – )∩ [, +∞], with a = ,
or {μ} ∪ {μ} ∈ {{, +∞}, { + a}}.
If {μ} ∪ {μ} = {, +∞}, then that of the sequences, yn+ or yn, which converges to

+∞, has to be nondecreasing. Just look at Equation () to conclude that a ≥  whenever
{μ} ∪ {μ} = {, +∞}.
The case we are interested in is  < a <  and we will say that μϕ =  + a is an uncondi-

tional attractor for the map ϕ, that is, we would consider ϕ(x, y) =  + (ax/y) with  < a < 
to observe that, not only () and (), but all the following recursive sequences converge to
μϕ =  + a, whatever the choice of y, . . . , ymax{k,m} >  we make:

yn =  +
ayn–k
yn–m

,

yn =  + a
yn–k+ + yn–k
yn–m+ + yn–m

,

yn =  + a
√

yn–k+yn–k
yn–m+yn–m

,

yn =  + a
max{yn–k+, yn–k}
min{yn–m+, yn–m} ,

. . . .

In this paper, we proceed as follows. The next section is dedicated to notation and a
technical result of independent interest. In Section , we introduce the main definition
and the main result in this paper, unconditional convergence and a sufficient condition
for having it in a general framework. We conclude, in Section , showing how the later
theorem can be applied to provide short proofs for some recent convergence results on
two families of difference equations and to improve them.

2 Preliminaries
This section is mainly devoted to the notation we employ. In the first part, we establish
some operations between subsets of real numbers and we clarify how we identify a func-
tion with a multifunction. We noticed that set-valued difference equations are not con-
cerned with us in this paper. The reason for dealing with those set operations and notation
is because it allows us to manage unboundedness and singular situations in a homoge-
neous way. In the second part, we introduce the families of maps �k

m (a kind of averages
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of their variables) that we shall employ in the definition of unconditional convergence.We
finish the section with a technical result on monotone sequences converging to the fixed
point of a monotone continuous function.

2.1 Basic notations
We consider the two points compactification R = [–∞, +∞] of R endowed with the usual
order and compact topology.

.. Operations and preorder in R \ {∅}
We define the operations ‘+’, ‘–’, ‘·’ and ‘/’ in R \ {∅} by

A ∗ B =
{
lim sup(an ∗ bn) : an,bn,an ∗ bn ∈ R for all n ∈N and liman ∈ A, limbn ∈ B

}
,

where ∗ stands for ‘+’, ‘–’, ‘·’ or ‘/’. We also agree to write A ∗ ∅ = ∅ ∗A = ∅.

Remark  We introduce the above notation in order to manage unboundedness and sin-
gular situations, but we point out that these are natural set-valued extensions for the arith-
metic operations. Let X, Y be compact (Hausdorff) spaces, U a dense subset of X and
f :U → Y . The closure Gr(f ) of the graph of f in X × Y defines an upper semicontinuous
compact-valued map f : X → Y by f (x) = {y ∈ Y : (x, y) ∈ Gr(f )}, that is, by Gr(f ) = Gr(f )
(see []). Furthermore, as usual, one writes f (A) =

⋃
x∈A f (x) for A ∈ X , thereby obtaining

a map f : X → Y .
To extend arithmetic operations, consider X = R × R, Y = R and U = R × R, when f

denotes addition, substraction or multiplication, and U = R × (R \ {}), when f denotes
division.

Also define A ≤ B (respectively A < B) to be true if and only if A �= ∅, B �= ∅ and a ≤ b
(respectively a < b) for all a ∈ A, b ∈ B. Here A,B ∈ R.
Notice that both relations ≤ and < are transitive but neither reflexive nor symmetric.

.. Canonical injections
When no confusion is likely to arise, we identify a ∈ R with {a} ∈ R, that is, in the sequel
we consider the fixed injection a → {a} of R into R and we identify R with its image.
We must point out that, under this convention, when a is expected to be subset of A,
we understand ‘a ∈ A’ as ‘there is b ∈ A with a = {b}’. For instance, one has  · (+∞) = R,
/ = {–∞, +∞}.

.. Extension of a function as a multifunction
Consider amap h :Rm → R and denote byD(h) the set formed by those x ∈R

m for which
there is b ∈ R with h(x) = {b}.
If A ∈ (R

m), then h(A) ∈ R is defined to be
⋃

a∈A h(a). Also, if B ∈ (R)m, then h(B) ∈ R

is defined to be h(B) = h(B × · · · × Bm).
For each function ϕ :U ⊂R

m →R, let ϕ̂ :Rm → R be defined by

ϕ̂(x) =
{
lim supϕ(xn) : xn ∈U for all n ∈N and limxn = x

}
.

http://www.boundaryvalueproblems.com/content/2013/1/63
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It is obvious that ϕ̂(x) �= ∅ if and only if x is in the closure U of U in R
m. Also notice that

U ⊂D(ϕ̂) ⊂U

when ϕ is continuous. In this case, and if no confusion is likely to arise, we agree to denote
also by ϕ the map ϕ̂. For example, we write

ϕ() = [–, ]; ϕ(–∞) = ϕ(+∞) = ; D(ϕ) =R \ {}

when U =R \ {} and ϕ(x) = sin(/x).

2.2 The maps in�k
m and �k

As we have announced, the unconditional convergence of a difference equation guaran-
tees that there exists a family of difference equations that inherit its asymptotic behavior.
Here, we define the set of functions that we employ to construct that family of difference
equations.
For k,m ∈N, let �k

m be the set formed by the maps λ :Rm →R
k such that

min
≤j≤m

xj ≤ λi(x)≤ max
≤j≤m

xj for all x ∈R
m,  ≤ i ≤ k. ()

Notice that λ ◦ γ ∈ �k
m whenever λ ∈ �k

r , γ ∈ �r
m. Let �k be defined as follows:

�k =
⋃
m∈N

�k
m.

We note that the functions in�k satisfy that their behavior is enveloped by themaximum
andminimum functions of its variables, which is a common hypothesis in studying higher
order nonlinear difference equations.
Some trivial examples of functions in � are:
• λ(x, . . . ,xm) =

∑m
j= αjxj, with αj ≥  for j = , . . . ,m,

∑m
j= αj = .

An important particular case is αj = , αj =  for j �= j.

• λ(x, . . . ,xm) =
{∏m

j= x
αj
j if min≤j≤m xj > ,

min≤j≤m xj if min≤j≤m xj ≤ ,
with αj ≥  for j = , . . . ,m,

∑m
j= αj = .

We refer to this function simply as λ(x, . . . ,xm) =
∏m

j= x
αj
j , when it is assumed that

λ ∈ �.
• λ(x, . . . ,xm) =maxj∈J xj, where J is a nonempty subset of {, . . . ,m}.
• λ(x, . . . ,xm) =minj∈J xj, where J is a nonempty subset of {, . . . ,m}.

2.3 A technical result
Assume –∞ ≤ a < b ≤ +∞, in the rest of this section. Recall that a continuous non-
increasing function F : [a,b] → [a,b] has a unique fixed point μ ∈ [a,b], that is, {μ} =
Fix(F).

Lemma  Let F : [a,b]→ [a,b] be a continuous non-increasing function, {μ} = Fix(F) and
ε > . Define F(x) = F(a) for x < a, F(x) = F(b) for x > b and

a = a; b = F(a); ak = F
(
bk– +

ε

k

)
; bk = F

(
ak –

ε

k

)

for k ≥ .
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Then (ak) and (bk) are, respectively, a nondecreasing and a nonincreasing sequence in
[a,b]. Furthermore, ak ≤ μ ≤ bk for all k and {limak ,μ, limbk} ⊂ Fix(F ◦ F).

Proof Since the map F is nonincreasing and taking into account the hypothesis a ≤ a,
we see that (ak) is a nondecreasing sequence. Assume ak– ≤ ak and ak > ak+ to reach a
contradiction

ak > ak+ ⇒ F
(
bk– +

ε

k

)
> F

(
bk +

ε

k + 

)

⇒ bk– +
ε

k
< bk +

ε

k + 
⇒ bk– < bk

⇒ F
(
ak– –

ε

k – 

)
< F

(
ak –

ε

k

)

⇒ ak– –
ε

k – 
> ak –

ε

k
⇒ ak– > ak .

Therefore, (ak) is a nondecreasing sequence, so by definition, (bk) is nonincreasing.
On the other hand, as b = F(a)≥ F(μ) = μ ≥ a, we see by induction that ak ≤ μ ≤ bk

for all k,

ak = F
(
bk– +

ε

k

)
≤ F(μ) = μ = F(μ) ≤ F

(
ak –

ε

k

)
= bk for k ≥ .

Because of the continuity of F , we conclude that

limak = F(limbk) = F
(
F(limak)

)
and

limbk = F(limak) = F
(
F(limbk)

)
. �

Remark  Suppose F not to be identically equal to +∞ and let x ∈ [a,μ). The map

ε → F
(
F(x) + ε

)
– ε

is decreasing in the set

{
ε ≥  : F

(
F(x) + ε

)
< +∞}

.

Unless F(x) = b < +∞, themap F verifies F(F(x)) > x if and only if there exists ε >  such
that F(F(x) + ε) – ε > x for all ε ∈ [, ε).
Therefore, if F(F(a)) > a, there exists ε >  such that F(F(a)+ε)–ε ≥ a and taking a = a

a ≤ F
(
F(a) + ε

)
– ε = a – ε ≤ ak –

ε

k
≤ μ ≤ bk– +

ε

k
≤ b + ε = F(a) + ε ≤ b.

As a consequence, (ak), (bk) are well defined, without the need of extending F .

http://www.boundaryvalueproblems.com/content/2013/1/63
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3 Unconditional convergence to a point
For a map h :Rk → R, the difference equation

yn = h(yn–, . . . , yn–k) ()

is always well defined whatever the initial points y, . . . , yk ∈ R are, even though the yn are
subsets of R, rather than points.
A pointμ ∈R is said to be an equilibrium for themap h if h(μ, . . . ,μ) = {μ}. The equilib-

rium μ is said to be stable if, for each neighborhood V of μ in R, there is a neighborhood
W of (μ, . . . ,μ) in D(h) such that yn ∈ V for all n, whenever (y, . . . , yk) ∈W .
The equilibrium μ is said to be an attractor in a neighborhood V of μ in R, if yn ∈R for

all n and yn → μ in R, whenever yn ∈ V for n≤ k.

Definition  The point μ is said to be an unconditional equilibrium of h (respectively,
unconditional stable equilibrium, unconditional attractor in V ) if it is an equilibrium (re-
spectively, stable equilibrium, attractor in V ) of h ◦ λ for all λ ∈ �k .

Definition  Wedefine the equilibria, stable equilibria, attractors, unconditional equilib-
ria, unconditional stable equilibria and unconditional attractors of a continuous function
ϕ :U ⊂ R

k →R to be those of ϕ̂.

3.1 Sufficient condition for unconditional convergence
After giving Definitions  and  we are going to prove a result guaranteeing that a general
second order difference equation as in () has an unconditional stable attractor.
Let –∞ < c ≤ a < b ≤ d ≤ +∞ and consider in the sequel a continuous function

ϕ : (a,b)× (c,d) → (c,d), satisfying the following conditions:
(H) ϕ(x, y) < ϕ(x, y), whenever a < x < x < b and c < y < d.
(H) There exists Fϕ : [a,b]→ [a,b] such that

Fϕ(x) – y
ϕ(x, y) – y

≥ 

whenever y ∈ (c,d) \ {Fϕ(x)}.
The functions ϕ(·, y) : [a,b] → [c,d] and ϕ(x, ·) : (c,d) → (c,d) are defined in the obvi-

ous way. Notice that ϕ(a, ·) is the limit of a monotone increasing sequence of continuous
functions, thus it is lower-semicontinuous, likewise ϕ(b, ·) is an upper-semicontinuous
function. Remember that we denote both ϕ and ϕ̂ by ϕ.
The next lemma, which we prove at the end of this section, shows that if (H) and (H)

holds we can get some information about the behavior and properties of ϕ and Fϕ .

Lemma  Let ϕ : (a,b) × (c,d) → (c,d), where –∞ < c ≤ a < b ≤ d ≤ +∞, be a continu-
ous function satisfying (H) and (H). Then the function Fϕ in (H) is unique and it is a
continuous nonincreasing map, thus it has a unique fixed point μϕ . Furthermore,

(i) a < ϕ(x, y) < b for all x, y ∈ (a,b) and a ≤ ϕ(x, y)≤ b for all x, y ∈ [a,b].
(ii) If x ∈ [a,b], y ∈ (c,d) and ϕ(x, y) = y, then y = Fϕ(x).
(iii) ϕ(x,Fϕ(x)) = Fϕ(x) for all x ∈ [a,b].
(iv) Fϕ is decreasing in F–

ϕ ((a,b)).

http://www.boundaryvalueproblems.com/content/2013/1/63


Franco and Peran Boundary Value Problems 2013, 2013:63 Page 7 of 14
http://www.boundaryvalueproblems.com/content/2013/1/63

We are in conditions of presenting and proving our main result.

Theorem  Let ϕ : (a,b)× (c,d) → (c,d), where –∞ < c ≤ a < b ≤ d ≤ +∞, be a continu-
ous function satisfying (H) and (H). If μϕ ∈ (a,b) and Fix(Fϕ ◦ Fϕ) = Fix(Fϕ), then μϕ is
an unconditional stable attractor of ϕ in (a,b).

Proof of Theorem  Consider λ ∈ �
m and denote

yn = ϕ ◦ λ(yn–, . . . , yn–m)

for some y, . . . , ym ∈ (a,b). Notice that yn ∈ (a,b) for all n, as a consequence of (i) in
Lemma .
We are going to prove first that μϕ is a stable equilibrium of ϕ ◦ λ. By (iii) in Lemma ,

as

λ(μϕ , . . . ,μϕ) = (μϕ ,μϕ),

we see that μϕ is an equilibrium.
Let ε ∈ (,min{μϕ –a,b–μϕ}). Because of the continuity of Fϕ , there is a′ ∈ (μϕ – ε,μϕ)

such that

b′ ≡ Fϕ

(
a′) ∈ (μϕ ,μϕ + ε).

As Fix(Fϕ ◦ Fϕ) = Fix(Fϕ) and Fϕ(Fϕ(a))≥ a, we have

Fϕ

(
Fϕ(x)

)
> x for all x ∈ [a,μϕ).

If x ∈ [a′,b′], then

Fϕ(x)≤ Fϕ

(
a′) = b′

and

Fϕ(x)≥ Fϕ

(
b′) = Fϕ

(
Fϕ

(
a′)) > a′.

Therefore, Fϕ([a′,b′]) ⊂ [a′,b′].
By replacing a, b by a′, b′ in Lemma (i), we see that

yn ∈ (
a′,b′) ⊂ (μϕ – ε,μϕ + ε) for all n,

whenever yn ∈ (a′,b′) for n≤ m, thus μϕ is an unconditional stable equilibrium of ϕ.
Now, if we see that

limFϕ(yn) = μϕ ,

http://www.boundaryvalueproblems.com/content/2013/1/63
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we are donewith thewhole proof. Indeed, for each accumulation point y of (yn), onewould
have

Fϕ(μϕ) = μϕ = Fϕ(y),

because of the continuity of Fϕ . As μϕ ∈ (a,b), this implies y = μϕ .
Therefore, as a consequence of Lemma , it suffices to find an increasing sequence nk of

natural numbers such that

ak ≤ Fϕ(yn) ≤ bk for all k ≥ ,n≥ nk .

Here, ak and bk are defined as in Lemma , with a = a and ε = ,

b = Fϕ(a); ak = Fϕ

(
bk– +


k

)
; bk = Fϕ

(
ak –


k

)
for k ≥ .

Let n =m, so that

a ≤ Fϕ(yn) ≤ Fϕ(a) = b for n≥ n.

Having in mind that λ ∈ �
m satisfies (), we find nk from nk– as follows. Denote

zk = F–
ϕ (bk–)

and momentarily assume n > nk– +m and bk– < yn in such a way that

bk– < yn = ϕ
(
λ(yn–, . . . , yn–m),λ(yn–, . . . , yn–m)

)
≤ ϕ

(
min{yn–, . . . , yn–m},λ(yn–, . . . , yn–m)

)
≤ ϕ

(
zk ,λ(yn–, . . . , yn–m)

)
,

which implies

ϕ
(
zk ,λ(yn–, . . . , yn–m)

) ≤ λ(yn–, . . . , yn–m)

and then

yn ≤ max
{
bk–,λ(yn–, . . . , yn–m)

} ≤ max{bk–, yn–, . . . , yn–m} ≡ wn

for all n > nk– +m.
As a consequence, the nonincreasing sequence wn is bounded below by bk–. It cannot

be the case that limwn > bk–, because in such a case there is a subsequence ynj > bk–
converging to limwn and such that λ(ynj–, . . . , ynj–m) converges to a point w≤ limwn.
Since

ynj ≤ ϕ
(
zk ,λ(ynj–, . . . , ynj–m)

) ≤ wnj ,

http://www.boundaryvalueproblems.com/content/2013/1/63
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one has

ϕ(zk ,w) = limwn > bk– = F(zk)

and then

ϕ(zk ,w) –w > F(zk) –w.

By applying (H), we see that

limwn = ϕ(zk ,w) < w,

a contradiction.
Therefore, limwn = bk– and there existsmk ≥ nk– such that

yn < bk– +

k

for all n≥ mk ,

that is,

Fϕ(yn) ≥ ak for all n ≥ mk .

Analogously, we see that there exists nk ≥ mk such that

Fϕ(yn) ≤ bk for all n≥ nk . �

Proof of Lemma 

• Uniqueness of Fϕ : Let y < y and x in [a,b] such that

yi – y
ϕ(x, y) – y

≥  >  for i = , , y ∈ (y, y).

Then

 < ϕ(x, y) – y < ,

a contradiction.
• (i): It suffices to prove the first assertion, because [a,b] is a closed set and, by definition,

ϕ(x, y) =
{
lim supϕ(xn, yn) : xn → x, yn → y,xn ∈ (a,b), yn ∈ (c,d)

}
for all (x, y) ∈ [a,b] × [c,d]. Assume now that (x, y) ∈ (a,b) × (a,b). We consider the
following three possible situations. If ϕ(x, y) = y, it is obvious that ϕ(x, y) ∈ (a,b).
On the other hand, if ϕ(x, y) > y and x′ ∈ (a,x), then

a≤ y < ϕ(x, y) < ϕ
(
x′, y

) ≤ Fϕ

(
x′) ≤ b.

Finally, if ϕ(x, y) < y and x′ ∈ (x,b), then

b≥ y > ϕ(x, y) > ϕ
(
x′, y

) ≥ Fϕ

(
x′) ≥ a.

http://www.boundaryvalueproblems.com/content/2013/1/63
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• (ii): Suppose y �= Fϕ(x). Since ϕ(x, y) = y ∈R, then ϕ(x, y) – y =  or ϕ(x, y) – y =R. In any
event, it cannot be the case that

Fϕ(x) – y
ϕ(x, y) – y

≥ ,

which contradicts hypothesis (H), thus y = Fϕ(x).
• (iii): Since Fϕ([a,b])⊂ [a,b]⊂ [c,d], it is worth considering the following three cases for

each x ∈ [a,b]: first, x ∈ (a,b), Fϕ(x) ∈ (c,d) and then (after probing continuity, mono-
tonicity and statement (iv)), we proceed with the case x ∈ {a,b}, Fϕ(x) ∈ (c,d) and finally
with x ∈ [a,b], Fϕ(x) ∈ {c,d}.
Case x ∈ (a,b) and Fϕ(x) ∈ (c,d): Since ϕ(x, y) > y when y < Fϕ(x) and ϕ(x, y) < y when
y > Fϕ(x), we see that

ϕ
(
x,Fϕ(x)

)
= Fϕ(x),

because of the continuity of ϕ(x, ·).
• Monotonicity and (iv): Suppose

Fϕ(x) ≤ Fϕ(x) for a ≤ x < x ≤ b.

If y ∈ [Fϕ(x),Fϕ(x)], then y = a, y = b or y≤ ϕ(x, y) < ϕ(x, y) ≤ y, thus

[
Fϕ(x),Fϕ(x)

] ⊂ {a,b}.

• Continuity: If x ∈ [a,b] and

w ∈ I =
(
lim inf
z→x

Fϕ(z), lim sup
y→x

Fϕ(y)
)
,

then there exist two sequences yn, zn → x with

Fϕ(zn) < w < Fϕ(yn).

Thus,

ϕ(zn,w) < w < ϕ(yn,w)

and, by (ii), one has ϕ(x,w) = w. Since w ∈ (c,d), this would imply Fϕ(x) = w for all w ∈ I ,
which is impossible.

• (iii) Case x ∈ {a,b} and Fϕ(x) ∈ (c,d): Since

Fϕ(t) ≤ ϕ
(
t,Fϕ(a)

) ≤ Fϕ(a) for all t ∈ (a,b),

and because of the continuity of Fϕ , we have

Fϕ(a) = sup
t
Fϕ(t)≤ sup

t
ϕ
(
t,Fϕ(a)

) ≤ Fϕ(a),

http://www.boundaryvalueproblems.com/content/2013/1/63
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but

sup
t

ϕ
(
t,Fϕ(a)

)
= ϕ

(
a,Fϕ(a)

)
.

Analogously, it can be seen that ϕ(b,Fϕ(b)) = Fϕ(b).
• (iii) Case Fϕ(x) ∈ {c,d}: First assume Fϕ(x) = c and recall that, by definition,

ϕ(x, c) =
{
lim supϕ(xn, yn) : xn → x, yn → c,xn ∈ (a,b), yn ∈ (c,d)

}
.

Suppose ϕ(xn, yn)≥ c′ > c for all n. Then

 ≤ Fϕ(xn) – yn
ϕ(xn, yn) – yn

≤ Fϕ(xn) – yn
c′ – yn

,

which implies Fϕ(xn) ≥ c′ > c, eventually for all n.
Since Fϕ(xn) → c, we reach a contradiction. Therefore,

ϕ
(
x,Fϕ(x)

)
= {c} = {

Fϕ(x)
}
.

Analogously, we see that ϕ(x,Fϕ(x)) = {d} when Fϕ(x) = d. �

4 Examples and applications
4.1 The difference equation yn = A + ( yn–kyn–q

)p with 0 < p < 1
The paper [] is devoted to prove that every positive solution to the difference equation

yn = A +
(
yn–k
yn–q

)p

converges to the equilibrium A + , whenever

A ∈ (, +∞) and p ∈ (
,min

{
, (A + )/

})
.

Here, k,q ∈ {, , , . . .} are fixed numbers.
Although paper [] complements [], where the case p =  had been considered, it should

be noticed that the case p = ,A≥  is not dealt with in []. Furthermore, we cannot assure
the global attractivity in this case.
The results in [] can be easily obtained by applying Theorem  above. Furthermore, we

slightly improve the results in [] by establishing the unconditional stability of the equilib-
rium A + , whenever A ∈ (, +∞), p ∈ (,min{, (A + )/}). We may assume without loss
of generality that the initial values y, . . . , ym are greater than A. Here, and in the sequel
m =max{k,q}.
Let

A ∈ (, +∞), p ∈ (, ), a = c = A, b = d = +∞,

ϕ(x, y) = A +
(
y
x

)p

,
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and

λ(x, . . . ,xm) = (xq,xk).

Define Fϕ(+∞) = A, consider for the moment a fixed x ∈ [A,∞) and define Fϕ(x) to be
the unique positive zero of the function fx given by

fx(y) = ϕ(x, y) – y.

Notice that fx is concave, fx() = A > , and fx(+∞) = –∞.
Clearly, Fϕ(x) is also the unique zero of the increasing function

jx(y) = ϕ(x, y) – Fϕ(x).

Since

jx(A) =
Ap – (Fϕ(x))p

xp
≤  and jx(+∞) = +∞ > ,

we see that condition (H) holds and μϕ = A + .
As for condition

Fix(Fϕ ◦ Fϕ) = Fix(Fϕ), ()

if A≤ x < y < +∞ with

A +
(
y
x

)p

= y,

then y > A +  and

ϕ(y,x) – x = A +
(
x
y

)p

– x = A +


y –A
–

y
(y –A)/p

.

Since the function

h(z) = A +


z –A
–

z
(z –A)/p

has a unique critical point in (A, +∞) and h(A + ) = , h(+∞) = A, the necessary and
sufficient condition for () to hold is that h′(A + ) ≥ , that is, p≤ (A + )/.
By this reasoning, we also get for free, unconditional stable convergence for several dif-

ference equations as, for instance:

yn = A +
(
yn–qyn–r
yn–syn–t

)p

with  < p <min
{
/, (A + )/

}
or

yn = A +
(
yn–q + yn–r
yn–s + yn–t

)p

with  < p <min
{
, (A + )/

}
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just considering respectively

λ(x, . . . ,xm) = (
√
xsxt ,

√xqxr),

λ(x, . . . ,xm) =
(
xs + xt


,
xq + xr



)
,

wherem =max{q, r, s, t}.

4.2 The difference equation yn =
α+βyn–1

A+Byn–1+Cyn–2
Here, α,β ,A,B,C, y, y ≥ . In , three conjectures on the above equation were posed
in []. In all three cases (B = , α,β ,A,C > ; A = , α,β ,B,C > ; and α,β ,A,B,C > ,
respectively) it was postulated the global asymptotic stability of the equilibrium. These
conjectures have resulted in several papers since then (see [–]). Let us see when there
is unconditional convergence.
Consider a = c = , b = c = +∞, and

ϕ(x, y) =
α + βy
A +Dx

with α,β ,A≥ , D > . We solve in y the equation y = α+βy
A+Dx to obtain

y =
α

A – β +Dx
,

so we consider A > β , α >  to define

Fϕ(x) =
α

A – β +Dx
.

A simple calculation shows that (H) holds, μϕ ∈ (a,b) and Fix(Fϕ ◦ Fϕ) = Fix(Fϕ):

Fϕ(x) – y
ϕ(x, y) – y

=  +
β

A – β +Dx
≥ ,

μϕ =

D

(
–A + β +

√(
(A – β) + Dα

))
,

Fϕ(Fϕ(x)) – x
Fϕ(x) – x

=
(A – β +Dx)(A – β)

(A – β) +Dx(A – β) +Dα
> .

Therefore, μϕ is an unconditional stable attractor of ϕ in (a,b) = (,+∞) whenever A >
β ≥ , D >  and α > .
If we choose

λ(x,x) =
(
Bx +Cx
B +C

,x
)

and D = B +C, we obtain unconditional stable convergence for the equation

yn =
α + βyn–

A + Byn– +Cyn–
,

whenever A > β ≥ , B +C > , C ≥  and α > .
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Other choices of λ result on the unconditional stable convergence of difference equa-
tions such as

yn =
α + βyn– + γ yn–
A + Byn– +Cyn–

with A > β + γ , B +C > , γ ≥ , α > , β ≥ , C ≥ . Or

yn =
α + β max{yn–, yn–}
A +Dmin{yn–, yn–}

with A > β ≥ , D > , α > .
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