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Abstract
We develop a formulation for the analytic or approximate solution of fractional
differential equations (FDEs) by using respectively the analytic or approximate
solution of the differential equation, obtained by making fractional order of the
original problem integer order. It is shown that this method works for FDEs very well.
The results reveal that it is very effective and simple in determination of solutions of
FDEs.

1 Introduction
Fractional differential equations (FDEs) are obtained by generalizing differential equations
to an arbitrary order. Since fractional differential equations are used to model complex
phenomena, they play a crucial role in engineering, physics and applied mathematics.
Therefore they have been generating increasing interest from engineers and scientist in
recent years. Since FDEs havememory, nonlocal relations in space and time, complex phe-
nomena can bemodeled by using these equations. Due to this fact, materials withmemory
and hereditary effects, fluid flow, rheology, diffusive transport, electrical networks, elec-
tromagnetic theory and probability, signal processing, and many other physical processes
are diverse applications of FDEs [–].
In [], the solutions for some nonlinear fractional differential equations are constructed

by using symmetry analysis. But, in general, FDEs do not have exact analytic solutions,
hence the approximate and numerical solutions of these equations are studied. Analyti-
cal approximations of linear and nonlinear FDEs are obtained by the variational iteration
method, Adomian’s decomposition method, the homotopy perturbation method and the
Lagrange multiplier method [–].
In the present paper, we use the Taylor series of an analytical solution for the differential

equations which is obtained from FDEs by making the fractional order of the derivative
integer, to obtain the analytical or approximate solution of FDEs. We can obtain the ex-
act or approximate solution of FDEs by changing the terms of Taylor series expansion for
a solution of a differential equation in such a way that the relationship among the terms
of Taylor series expansion in the sense of derivative and fractional derivative remains the
same. Applications of this method show that it is easy and effective when applied to any
FDEs as long as the differential equation obtained from FDEs has an analytical or approx-
imate solution. We take the fractional derivative in the Caputo sense.
The structure of this article is as follows. In Section , we give the construction of an-

alytical or approximate solutions for FDEs including fractional derivative with respect to
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time. In the same manner, we obtain the analytical or approximate solution of FDEs with
fractional derivative with respect to space variable in Section . In Section , we take the
combination of previous two sections, and we get the analytical or approximate solution
of FDEs with fractional derivative with respect to time and space variable. Finally, we give
some illustrative examples of this method for all cases in Section .

2 Solution of FDEs including fractional derivative with respect to time
Let us consider the following FDE:

Dα
t u(x, t) = F

(
u,

∂u
∂x

· · · ∂nu
∂xn

,x, t
)
, m –  < α ≤ m, t > . ()

In order to determine the solution of this equation, we first need to determine the solu-
tion of the following differential equation:

Dm
t u(x, t) = F

(
u,

∂u
∂x

· · · ∂nu
∂xn

,x, t
)
, t > , ()

which is obtained by taking α = m. After finding an analytic or approximate solution of
equation (), we can obtain the exact or approximate solution of equation () by changing
the terms of Taylor series expansion for the solution of differential equation () in such
a way that the relationship among the terms of Taylor series expansion in the sense of
derivative and fractional derivative with respect to time remains the same. In other words,
we expand the exact or approximate solution into its Taylor series with respect to t. Then
we replace the derivatives with respect to t by fractional derivatives with respect to t in
such a way that the relation among the terms of Taylor series is preserved. Moreover, we
leave the first m terms of Taylor series fixed since α =m. This also allows the solution of
the fractional differential equation to satisfy the initial conditions of the problem. Let us
assume that the solution of equation () is expanded into its Taylor series with respect to
t as follows:

u(x, t) =
∞∑
n=

∂nu(x, )
∂tn

tn

n!
. ()

Then the solution of equation () becomes

u(x, t) =
m–∑
n=

∂nu(x, )
∂tn

tn

n!

+
∞∑
n=

m–∑
i=

∂mn+iu(x, )
∂tmn+i

tnα+i

�(nα + i + )
. ()

For instance, let us assume that  < α ≤  and the solution of equation () is u(x, t) = exet .
In order to find the solution of equation (), we expand this solution into Taylor series with
respect to t as follows:

u(x, t) =
∞∑
n=

extn

n!
.
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Figure 1 The surface shows the expansion (5) for α = 1.

Figure 2 The surface shows the expansion (5) for α = 0.75.

Based on (), the solution of equation () can be written in the following form:

u(x, t) = ex +
extα

�(α + )
+

extα

�(α + )
+

extα

�(α + )
+ · · · . ()

Figures - show the evolution results for the expansion () obtained for different values
of α.

3 Solution of FDEs including fractional derivative with respect to space
variable

Let us consider the following FDE:

Dα
x u(x, t) = F

(
u,

∂u
∂t

· · · ∂nu
∂tn

,x, t
)
, m –  < α ≤ m, t > . ()
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Figure 3 The surface shows the expansion (5) for α = 0.5.

In order to determine the solution of this equation, we first need to determine the solution
of the following differential equation:

Dm
x u(x, t) = F

(
u,

∂u
∂t

· · · ∂nu
∂tn

,x, t
)
, t > , ()

which is obtained by taking α =m.
After finding the analytic or approximate solution of equation (), we can obtain the ex-

act or approximate solution of equation () by changing the terms of Taylor series expan-
sion for the solution of differential equation () in such a way that the relationship among
the terms of Taylor series expansion in the sense of derivative and fractional derivative
with respect to space remains the same. In other words, we expand the exact or approxi-
mate solution into its Taylor series with respect to x. Then we replace the derivatives with
respect to x by fractional derivativeswith respect to x in such away that the relation among
the terms of Taylor series is preserved. Moreover, we leave the first m terms of Taylor se-
ries fixed since α =m. This also allows the solution of the fractional differential equation
to satisfy the boundary conditions of the problem.
Let us assume that the solution of equation () is expanded into its Taylor series with

respect to x as follows:

u(x, t) =
∞∑
n=

∂nu(, t)
∂xn

xn

n!
. ()

Then the solution of equation () becomes

u(x, t) =
m–∑
n=

∂nu(, t)
∂xn

xn

n!
+

∞∑
n=

m–∑
i=

∂mn+iu(, t)
∂xmn+i

xnα+i

�(nα + i + )
. ()

For instance, let us assume that  < α ≤  and the solution of equation () is u(x, t) = etex.
In order to find the solution of equation (), we expand this solution into Taylor series with
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respect to x as follows:

u(x, t) =
∞∑
n=

etxn

n!
.

Based on (), the solution of equation () can be written in the following form:

u(x, t) = et +
etxα

�(α + )
+

etxα

�(α + )
+

etxα

�(α + )
+ · · · . ()

Figures - show the evolution results for the expansion () obtained for different values
of α.

Figure 4 The surface shows the expansion (10) for α = 1.

Figure 5 The surface shows the expansion (10) for α = 0.75.
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Figure 6 The surface shows the expansion (10) for α = 0.5.

4 Solution of FDEs including fractional derivative with respect to space
variable and time

Let us consider the following linear FDE with constant coefficients:

F
(
u,Dβ

t u,Dα
x u,x, t

)
= , k –  < β ≤ k,m –  < α ≤ m, t > . ()

In order to determine the solution of this equation, we first need to determine the solution
of the following differential equation:

F
(
u,Dk

t u,D
m
x u,x, t

)
= , t > , ()

which is obtained by taking β = k, α =m. Since it is a linear partial differential equation,
its solution can be written as

u(x, t) = u(x)u(t). ()

After finding the analytic or approximate solution of equation (), we expand u(x) into
its Taylor series with respect to x and u(t) into its Taylor series with respect to t. Then we
replace the derivatives with respect to x by fractional derivatives with respect to x in u(x)
in such a way that the relation among the terms of Taylor series is preserved.Moreover, we
leave the first m terms of Taylor series fixed since α =m. Similarly, we do the same thing
for u(t). This also allows the solution of the fractional differential equation to satisfy the
initial and boundary conditions of the problem. Let us assume that u(x) of equation ()
is expanded into its Taylor series with respect to x as follows:

u(x) =
∞∑
n=

∂nu()
∂xn

xn

n!
.
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Then u(x) of solution () becomes

u(x) =
m–∑
n=

∂nu()
∂xn

xn

n!

+
∞∑
n=

m–∑
i=

∂mn+iu()
∂xmn+i

xnα+i

�(nα + i + )
. ()

Let us assume that u(t) of equation () is expanded into its Taylor series with respect
to t as follows:

u(t) =
∞∑
n=

∂nu()
∂tn

tn

n!
.

Then u(t) of solution () becomes

u(t) =
m–∑
n=

∂nu()
∂tn

tn

n!

+
∞∑
n=

m–∑
i=

∂mn+iu()
∂tmn+i

tnα+i

�(nα + i + )
. ()

For instance, let us assume that  < β ≤ ,  < α ≤ , and that the solution of equation
() is u(x, t) = exet . In order to find the solution of equation (), we first expand u(x) = ex

into Taylor series with respect to x as follows:

u(x) =
∞∑
n=

xn

n!
.

Similarly,

u(t) =
∞∑
n=

tn

n!
.

Based on () and (), the expansions of u(x) and u(t) can be written in the following
form:

u(x) =  +
xα

�(α + )
+

xα

�(α + )
+

xα

�(α + )
+ · · · ,

u(t) =  +
tβ

�(β + )
+

tβ

�(β + )
+

tβ

�(β + )
+ · · ·

and then the solution of equation () can be written in the following form:

u(x, t) =
(
 +

xα

�(α + )
+

xα

�(α + )
+

xα

�(α + )
+ · · ·

)

×
(
 +

tβ

�(β + )
+

tβ

�(β + )
+ · · ·

)
. ()
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5 Illustrative applications
Example  Let us consider the following time-fractional initial boundary value problem:

Dα
t u(x, t) =



xuxx(x, t),  < α ≤ , t > ,

u(x, ) = x, u(, t) = , u(, t) = et .

The exact solution, for the special case α = , is given by

u(x, t) = xet .

Now we can apply series () to construct the solution u(x, t) for  < α ≤ , and we have

u(x, t) = x
[
 +

tα

�(α + )
+

tα

�(α + )
+

tα

�(α + )
+ · · ·

]
,

which is exactly the same solution as in [].

Example  Let us consider the following time-fractional initial boundary value problem:

Dα
t u = uxx(x, t) + xux(x, t) + u(x, t),  < α ≤ , t > ,

u(x, ) = x, ux(x, ) = , u(, t) = .

The exact solution, for the special case α = , is given by

u(x, t) = xet .

Now we can apply series () to u(x, t) for  < α ≤ , and we have

u(x, t) = x
[
 +

tα

�(α + )
+

tα

�(α + )
+

tα

�(α + )
+ · · ·

]
,

which is exactly the same solution as in [].

Example  Let us consider the nonlinear time-fractional Fisher’s equation

Dα
t u = uxx(x, t) + u(x, t)

(
 – u(x, t)

)
,  < α ≤ , t > ,

u(x, ) =


( + ex)
.

The exact solution, for the special case α = , is given by

u(x, t) =


( + ex–t)
.

As in the previous examples, we can apply series () to obtain the solution u(x, t) for
 < α ≤ , and we get

u(x, t) =


( + ex)
+

ex

( + ex)
tα

�(α + )
+
ex(– + ex)

( + ex)
tα

�(α + )
+ · · · ,

which is totaly the same solution as in [].
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Example  Let us consider the following time-fractional initial boundary value problem:

Dα
t u = ±uxx(x, t),  < α ≤ , t > , ()

u(x, ) = x, u(, t) =
ktα

�(α + )
, u(�, t) = � +

ktα

�(α + )
, ()

where the boundary conditions are given in fractional terms.
Boundary value problem ()-(), for the special case α = , becomes as follows:

ut = ±uxx(x, t),  < α ≤ , t > ,

u(x, ) = x, u(, t) = kt, u(�, t) = � + kt,

and its analytic solution is obtained as follows:

u(x, t) = x + kt.

Now we can apply series () to u(x, t) for  < α ≤ , and we have

u(x, t) = x + k
tα

�(α + )
,

which is exactly the same solution as in [].

Example  Let us consider the following space-fractional initial boundary value problem:

ut(x, t) =Dβ
x u(x, t) – ( + tan t)u(x, t),  < β ≤ , ()

u(x, ) = ex, u(, t) = cos t, ux(, t) = cos t. ()

The exact solution, for the special case β = , is given by

u(x, t) = ex cos t.

Now we can apply series () to u(x, t) for  < β ≤ , then we have

u(x, t) = cos t
(
 + x +

xβ

�(β + )
+

xβ+

�(β + )
+

xβ

�(β + )
+

xβ+

�(β + )
+ · · ·

)
.

Example  Let us consider the following space and time-fractional initial boundary value
problem:

Dα
t u(x, t) = Dβ

x u(x, t) + cos t,  < α ≤ ,  < β ≤ , ()

u(x, ) = ex, u(, t) = et + sin t, ux(, t) = et + sin t. ()

The exact solution, for the special case α =  and β = , is given by

u(x, t) = etex + sin t.
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Now we can apply the series ()-() to u(x, t) for  < α ≤  and  < β ≤ , then we have

u(x, t) =
(
 +

tα

�(α + )
+

tα

�(α + )
+ · · ·

)(
 + x +

xβ

�(β + )
+

xβ+

�(β + )
+ · · ·

)

+
(

tα

�(α + )
–

tα

�(α + )
+

tα

�(α + )
– · · ·

)
.

Example  Let us consider the following space and time-fractional initial boundary value
problem:

Dα
t u(x, t) = Dβ

x u(x, t) +  sinx,  < α ≤ ,  < β ≤ , ()

u(x, ) = ex + sinx, u(, t) = et , ux(, t) = et + . ()

The exact solution, for the special case α =  and β = , is given by

u(x, t) = etex + sinx.

Now we can apply the series ()-() to u(x, t) for  < α ≤  and  < β ≤ , then we have

u(x, t) =
(
 +

tα

�(α + )
+

tα

�(α + )
+ · · ·

)(
 + x +

xβ

�(β + )
+

xβ+

�(β + )
+ · · ·

)

+
(
x –

xβ+

�(β + )
+

xβ+

�(β + )
–

xβ+

�(β + )
– · · ·

)
.

Figures - show the evolution results for the approximate solutions of problem ()-()
obtained for different values of α and β .

Figure 7 The surface shows the approximate solution u(x, t) of problem (23)-(24) for α = 1, β = 2.
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Figure 8 The surface shows the approximate solution u(x, t) of problem (23)-(24) for α = 0.75, β = 1.5.

Figure 9 The surface shows the approximate solution u(x, t) of problem (23)-(24) for α = 0.5, β = 1.75.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read, checked
and approved the final manuscript.

Author details
1Department of Mathematics, Kocaeli University, Umuttepe, Izmit, Kocaeli 41380, Turkey. 2Ardahan University, Ardahan,
75000, Turkey.

Acknowledgements
Dedicated to Professor Hari M Srivastava.
The research was supported by parts by the Scientific and Technical Research Council of Turkey (TUBITAK).

Received: 19 December 2012 Accepted: 11 March 2013 Published: 30 March 2013

References
1. Oldham, KB, Spanier, J: The Fractional Calculus. Academic Press, New York (1974)
2. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)

http://www.boundaryvalueproblems.com/content/2013/1/68


Demir et al. Boundary Value Problems 2013, 2013:68 Page 12 of 12
http://www.boundaryvalueproblems.com/content/2013/1/68

3. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier,
Amsterdam (2006)

4. He, JH: Nonlinear oscillation with fractional derivative and its applications. In: International Conference on Vibrating
Engineering’98, Dalian, China, pp. 288-291 (1998)

5. He, JH: Some applications of nonlinear fractional differential equations and their approximations. Bull Sci Technol 15,
86-90 (1999)

6. He, JH: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput
Methods Appl Mech Eng 167, 57-68 (1998)

7. Metzler, R, Klafter, J: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339,
1-77 (2000)

8. Gazizov, RK, Kasatkin, AA, Lukashchuk, SY: Group-invariant solutions of fractional differential equations. In: Tenreiro
Machado, JA, Luo, ACJ, Barbosa, RS, Silva, MF, Figueiredo, LB (eds.) Nonlinear Science and Complexity, 1st edn., vol. 1,
pp. 51-61. Springer, Dordrecht (2011)

9. Huang, F, Liu, F: The time-fractional diffusion equation and fractional advection-dispersion equation. ANZIAM J. 46,
1-14 (2005)

10. Huang, F, Liu, F: The fundamental solution of the space-time fractional advection-dispersion equation. J. Appl. Math.
Comput. 18(2), 339-350 (2005)

11. Momani, S: Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos Solitons
Fractals 28(4), 930-937 (2006)

12. Odibat, Z, Momani, S: Application of variational iteration method to nonlinear differential equations of fractional
order. Int. J. Nonlinear Sci. Numer. Simul. 1(7), 15-27 (2006)

13. Das, S: Solution of fractional vibration equation by the variational iteration method and modified decomposition
method. Int. J. Nonlinear Sci. Numer. Simul. 9, 361 (2008)

14. Momani, S, Odibat, Z: Numerical comparison of methods for solving linear differential equations of fractional order.
Chaos Solitons Fractals 31(5), 1248-1255 (2007)

15. Odibat, Z, Momani, S: Approximate solutions for boundary value problems of time-fractional wave equation. Appl.
Math. Comput. 181(1), 767-774 (2006)

16. Yildirim, A: An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy
perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 10, 445-451 (2009)

17. Ganji, ZZ, Ganji, DD, Jafari, H, Rostamian, M: Application of the homotopy perturbation method to coupled system of
partial differential equations with time fractional derivatives. Topol. Methods Nonlinear Anal. 31, 341 (2008)

18. Hang, X, Shi-Yun, L, Xiang-Cheng, Y: Analysis of nonlinear fractional partial differential equations with the homotopy
analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 1152-1156 (2009)

19. Saha, RS, Bera, RK: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339,
1-77 (2000)

20. Odibat, Z, Momani, S: Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math.
Model. 32, 28-39 (2008)

21. El-Sayed, AMA, Gaber, M: The Adomian decomposition method for solving partial differential equations of fractal
order in finite domains. Phys. Lett. A 359, 175-182 (2006)

22. Sheu, LJ, Tam, LM, Lao, SK: Parametric analysis and impulsive synchronization of fractional-order Newton-Leipnik
systems. Int. J. Nonlinear Sci. Numer. Simul. 10, 33-44 (2009)

23. Xu, C, Wu, G, Feng, JW, Zhang, WQ: Synchronization between two different fractional-order chaotic systems. Int. J.
Nonlinear Sci. Numer. Simul. 9, 89-95 (2008)

24. Yildirim, A: Homotopy perturbation method for solving the space-time fractional advection-dispersion equation.
Adv. Water Resour. 32, 1711-1716 (2009)

doi:10.1186/1687-2770-2013-68
Cite this article as: Demir et al.: Analysis of fractional partial differential equations by Taylor series expansion.
Boundary Value Problems 2013 2013:68.

http://www.boundaryvalueproblems.com/content/2013/1/68

	Analysis of fractional partial differential equations by Taylor series expansion
	Abstract
	Introduction
	Solution of FDEs including fractional derivative with respect to time
	Solution of FDEs including fractional derivative with respect to space variable
	Solution of FDEs including fractional derivative with respect to space variable and time
	Illustrative applications
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


