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1 Introduction

In recent years, multiple solutions of boundary value problems for impulsive differential
equations in scalar spaces had been extensively studied (see, for example, [–]). In recent
papers [] and [], Professor D. Guo discussed two infinite boundary value problems for
nth-order impulsive nonlinear singular integro-differential equations ofmixed type on the
half line in a Banach space. By constructing a bounded closed convex set, apart from the
singularities, and using the Schauder fixed-point theorem, he obtained the existence of
positive solutions for the infinite boundary value problems. But such equations are sub-
linear, and there are no results on existence of two positive solutions. Now, in this paper,
we shall discuss the existence of two positive solutions for first-order superlinear singular
equations by means of a different method, i.e., by using the fixed-point theorem of cone
expansion and compression with norm type (see [, ]), and the key point is to introduce
a new cone Q.
Let E be a real Banach space and P be a cone in E, which defines a partial ordering in

E by x ≤ y if and only if y – x ∈ P. P is said to be normal if there exists a positive constant
N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where θ denotes the zero element of E, and
the smallest N is called the normal constant of P. If x ≤ y and x �= y, we write x < y. Let
P+ = P\{θ}, i.e., P+ = {x ∈ P : x > θ}. For details on cone theory, see [].
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Consider the infinite three-point boundary value problem for a first-order impulsive
nonlinear singular integro-differential equation of mixed type on the half line in E:

⎧⎪⎪⎨
⎪⎪⎩
u′(t) = f (t,u(t), (Tu)(t), (Su)(t)), ∀t ∈ J ′+,

�u|t=tk = Ik(u(tk)) (k = , , , . . .),

u(∞) = γu(η) + βu(),

()

where J = [,∞), J+ = (,∞),  < t < · · · < tk < · · · , tk → ∞, J ′+ = J+\{t, . . . , tk , . . .}, f ∈
C[J+ × P+ × P × P,P], Ik ∈ C[P+,P] (k = , , , . . .),  ≤ γ < , β + γ > , tm– < η < tm (for
somem), u(∞) = limt→∞ u(t) and

(Tu)(t) =
∫ t


K(t, s)u(s)ds, (Su)(t) =

∫ ∞


H(t, s)u(s)ds, ()

K ∈ C[D,R+], D = {(t, s) ∈ J × J : t ≥ s}, H ∈ C[J × J ,R+], R+ denotes the set of all nonneg-
ative numbers. �u|t=tk denotes the jump of u(t) at t = tk , i.e.,

�u|t=tk = u
(
t+k

)
– u

(
t–k

)
,

where u(t+k ) and u(t
–
k ) represent the right and left limits of u(t) at t = tk , respectively. In the

following, we always assume that

lim
t→+

∥∥f (t,u, v,w)∥∥ = ∞, ∀u ∈ P+, v,w ∈ P ()

and

lim
u→θ+

∥∥f (t,u, v,w)∥∥ = ∞, ∀t ∈ J+, v,w ∈ P, ()

(where u → θ+ means u > θ , ‖u‖ → ), i.e., f (t,u, v,w) is singular at t =  and u = θ . We
also assume that

lim
u→θ+

∥∥Ik(u)∥∥ = ∞ (k = , , , . . .), ()

i.e., Ik(u) (k = , , , . . .) are singular at u = θ .
Let PC[J ,E] = {u : u is a map from J into E such that u(t) is continuous at t �= tk ,

left continuous at t = tk , and u(t+k ) exists, k = , , , . . .} and BPC[J ,E] = {u ∈ PC[J ,E] :
supt∈J ‖u(t)‖ < ∞}. It is clear that BPC[J ,E] is a Banach space with norm

‖u‖B = sup
t∈J

∥∥u(t)∥∥.
Let BPC[J ,P] = {u ∈ BPC[J ,E] : u(t) ≥ θ ,∀t ∈ J} and Q = {u ∈ BPC[J ,P] : u(t) ≥ β–( –
γ )u(s),∀t, s ∈ J}. Obviously, BPC[J ,P] and Q are two cones in space BPC[J ,E] and Q ⊂
BPC[J ,P]. u ∈ BPC[J ,P] ∩ C[J ′+,E] is called a positive solution of the infinite three-point
boundary value problem () if u(t) > θ for t ∈ J and u(t) satisfies (). Let Q+ = {u ∈ Q :
‖u‖B > } and Qpq = {u ∈Q : p ≤ ‖u‖B ≤ q} for q > p > .

http://www.boundaryvalueproblems.com/content/2013/1/69
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2 Several lemmas
Let us list some conditions.
(H) supt∈J

∫ t
 K(t, s)ds < ∞, supt∈J

∫ ∞
 H(t, s)ds < ∞ and

lim
t′→t

∫ ∞



∣∣H(
t′, s

)
–H(t, s)

∣∣ds = , ∀t ∈ J .

In this case, let

k* = sup
t∈J

∫ t


K(t, s)ds, h* = sup

t∈J

∫ ∞


H(t, s)ds.

(H) There exist a ∈ C[J+,R+] and g ∈ C[R++ × R+ × R+,R+] such that

∥∥f (t,u, v,w)∥∥ ≤ a(t)g
(‖u‖,‖v‖,‖w‖), ∀t ∈ J+,u ∈ P+, v,w ∈ P,

and

a* =
∫ ∞


a(t)dt < ∞,

where R++ = {x ∈ R+ : x > }.
(H) There exist γk ≥  (k = , , , . . .) and F ∈ C[R++,R+] such that

∥∥Ik(u)∥∥ ≤ γkF
(‖u‖), ∀u ∈ P+ (k = , , , . . .),

and

γ * =
∞∑
k=

γk < ∞.

(H) For any t ∈ J+ and r > p > , f (t,Ppr ,Pr ,Pr) = {f (t,u, v,w) : u ∈ Ppr , v,w ∈ Pr} and
Ik(Ppr) = {Ik(u) : u ∈ Ppr} (k = , , , . . .) are relatively compact in E, where Pr = {u ∈ P :
‖u‖ ≤ r} and Ppr = {u ∈ P : p ≤ ‖u‖ ≤ r}.

Remark Obviously, condition (H) is satisfied automatically when E is finite dimensional.

Remark It is clear: If condition (H) is satisfied, then the operators T and S defined by
() are bounded linear operators from BPC[J ,E] into BPC[J ,E] and ‖T‖ ≤ k*, ‖S‖ ≤ h*;
moreover, we have T(BPC[J ,P]) ⊂ BPC[J ,P] and S(BPC[J ,P]) ⊂ BPC[J ,P].

We shall reduce the infinite three-point boundary value problem () to an impulsive
integral equation. To this end, we consider the operator A defined by

(Au)(t) =


β + γ – 

{∫ ∞

η

f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ ( – γ )
∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

http://www.boundaryvalueproblems.com/content/2013/1/69
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+
∞∑
k=m

Ik
(
u(tk)

)
+ ( – γ )

m–∑
k=

Ik
(
u(tk)

)}

+
∫ t


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

∑
<tk<t

Ik
(
u(tk)

)
, ∀t ∈ J . ()

In what follows, we write J = [, t], Jk = (tk–, tk] (k = , , , . . .).

Lemma  Let cone P be normal and conditions (H)-(H) be satisfied. Then operator A
defined by () is a continuous operator from Q+ into Q;moreover, for any q > p > , A(Qpq)
is relatively compact.

Proof Let u ∈Q+ and ‖u‖B = r. Then r >  and

u(t) ≥ β–( – γ )u(s)≥ θ , ∀t, s ∈ J ,

so,

∥∥u(t)∥∥ ≥ N–β–( – γ )‖u‖B, ∀t ∈ J , ()

where N denotes the normal constant of cone P, and consequently,

N–β–( – γ )r ≤ ∥∥u(t)∥∥ ≤ r, ∀t ∈ J . ()

By condition (H) and (), we have

∥∥f (t,u(t), (Tu)(t), (Su)(t))∥∥ ≤ Ma(t), ∀t ∈ J , ()

where

M =max
{
g(x, y, z) :N–β–( – γ )r ≤ x≤ r,  ≤ y≤ k*r,  ≤ z ≤ h*r

}
,

which implies the convergence of the infinite integral

∫ ∞


f
(
t,u(t), (Tu)(t), (Su)(t)

)
dt ()

and
∥∥∥∥
∫ ∞


f
(
t,u(t), (Tu)(t), (Su)(t)

)
dt

∥∥∥∥ ≤
∫ ∞



∥∥f (t,u(t), (Tu)(t), (Su)(t))∥∥dt ≤ Ma*. ()

On the other hand, by condition (H) and (), we have

∥∥Ik(u(tk))∥∥ ≤ Dγk (k = , , , . . .), ()

where

D =max
{
F(x) :N–β–( – γ )r ≤ x≤ r

}
,

http://www.boundaryvalueproblems.com/content/2013/1/69
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which implies the convergence of the infinite series

∞∑
k=

Ik
(
u(tk)

)
()

and

∥∥∥∥∥
∞∑
k=

Ik
(
u(tk)

)∥∥∥∥∥ ≤
∞∑
k=

∥∥Ik(u(tk))∥∥ ≤ Dγ *. ()

It follows from (), (), and () that

∥∥(Au)(t)∥∥ ≤ 
β + γ – 

{∫ ∞

η

∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
+ ( – γ )

∫ η



∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
+

∞∑
k=m

∥∥Ik(u(tk))∥∥ + ( – γ )
m–∑
k=

∥∥Ik(u(tk))∥∥
}

+
∫ t



∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds + ∑
<tk<t

∥∥Ik(u(tk))∥∥

≤ 
β + γ – 

{∫ ∞



∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds + ∞∑
k=

∥∥Ik(u(tk))∥∥
}

+
∫ ∞



∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds + ∞∑
k=

∥∥Ik(u(tk))∥∥

=
β + γ

β + γ – 

{∫ ∞



∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds + ∞∑
k=

∥∥Ik(u(tk))∥∥
}

≤ β + γ

β + γ – 
(
Ma* +Dγ *), ∀t ∈ J ,

which implies that Au ∈ BPC[J ,P] and

‖Au‖B ≤ β + γ

β + γ – 
(
Ma* +Dγ *). ()

Moreover, by (), we have

(Au)(t) ≥ 
β + γ – 

{∫ ∞

η

f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ ( – γ )
∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+
∞∑
k=m

Ik
(
u(tk)

)
+ ( – γ )

m–∑
k=

Ik
(
u(tk)

)}
, ∀t ∈ J ()

http://www.boundaryvalueproblems.com/content/2013/1/69
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and

(Au)(t) ≤ 
β + γ – 

{∫ ∞

η

f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ ( – γ )
∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+
∞∑
k=m

Ik
(
u(tk)

)
+ ( – γ )

m–∑
k=

Ik
(
u(tk)

)}

+
∫ ∞


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

∞∑
k=

Ik
(
u(tk)

)
, ∀t ∈ J . ()

It is clear,

∫ ∞


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

∞∑
k=

Ik
(
u(tk)

)

≤ 
 – γ

{∫ ∞

η

f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds + ( – γ )

∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+
∞∑
k=m

Ik
(
u(tk)

)
+ ( – γ )

m–∑
k=

Ik
(
u(tk)

)}
, ()

so, () and () imply

(Au)(t) ≤
{


β + γ – 

+


 – γ

}{∫ ∞

η

f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ ( – γ )
∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+
∞∑
k=m

Ik
(
u(tk)

)
+ ( – γ )

m–∑
k=

Ik
(
u(tk)

)}
, ∀t ∈ J . ()

It follows from () and () that

(Au)(t) ≥ 
β + γ – 

(


β + γ – 
+


 – γ

)–

(Au)(s)

= β–( – γ )(Au)(s), ∀t, s ∈ J . ()

Hence, Au ∈Q, i.e., Amaps Q+ into Q.
Now, we are going to show thatA is continuous. Let un, ū ∈Q+, ‖un– ū‖B →  (n→ ∞).

Write ‖ū‖B = r̄ (r̄ > ) and we may assume that

r̄ ≤ ‖un‖B ≤ r̄ (n = , , , . . .).

So, by (),

N–β–( – γ )r̄ ≤ ∥∥un(t)∥∥ ≤ r̄, ∀t ∈ J (n = , , , . . .) ()

http://www.boundaryvalueproblems.com/content/2013/1/69
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and

N–β–( – γ )r̄ < N–β–( – γ )r̄ ≤ ∥∥ū(t)∥∥ ≤ r̄ < r̄, ∀t ∈ J . ()

Similar to (), it is easy to get

‖Aun –Aū‖B

≤ β + γ

β + γ – 

{∫ ∞



∥∥f (s,un(s), (Tun)(s), (Sun)(s)) – f
(
s, ū(s), (Tū)(s), (Sū)(s)

)∥∥ds
+

∞∑
k=

∥∥Ik(un(tk)) – Ik
(
ū(tk)

)∥∥}
(n = , , , . . .). ()

It is clear that

f
(
t,un(t), (Tun)(t), (Sun)(t)

) → f
(
t, ū(t), (Tū)(t), (Sū)(t)

)
as n→ ∞,∀t ∈ J , ()

and, similar to () and observing () and (), we have

∥∥f (t,un(t), (Tun)(t), (Sun)(t)) – f
(
t, ū(t), (Tū)(t), (Sū)(t)

)∥∥ ≤ Ma(t) = d(t),

∀t ∈ J (n = , , , . . .);d ∈ L[J ,R+], ()

where

M =max
{
g(x, y, z) :N–β–( – γ )r̄ ≤ x≤ r̄,  ≤ y ≤ k*r̄,  ≤ z ≤ h*r̄

}
.

It follows from (), (), and the dominated convergence theorem that

lim
n→∞

∫ ∞



∥∥f (t,un(t), (Tun)(t), (Sun)(t)) – f
(
t, ū(t), (Tū)(t), (Sū)(t)

)∥∥dt = . ()

On the other hand, for any ε > , we can choose a positive integer j such that

D
∞∑

k=j+

γk < ε, ()

where

D =max
{
F(x) :N–β–( – γ )r̄ ≤ x≤ r̄

}
.

And then, choose an positive integer n such that

j∑
k=

∥∥Ik(un(tk)) – Ik
(
ū(tk)

)∥∥ < ε, ∀n > n. ()

http://www.boundaryvalueproblems.com/content/2013/1/69
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From (), (), and observing condition (H) and (), (), we get

∞∑
k=

∥∥Ik(un(tk)) – Ik
(
ū(tk)

)∥∥ < ε + D
∞∑

k=j+

γk < ε, ∀n > n,

hence,

lim
n→∞

∞∑
k=

∥∥Ik(un(tk)) – Ik
(
ū(tk)

)∥∥ = . ()

It follows from (), (), and () that ‖Aun – Aū‖B →  as n → ∞, and the continuity
of A is proved.
Finally, we prove that A(Qpq) is relatively compact, where q > p >  are arbitrarily given.

Let vn ∈ A(Qpq) (n = , , , . . .). Then, by (),

N–β–( – γ )p≤ ∥∥vn(t)∥∥ ≤ q, ∀t ∈ J (n = , , , . . .). ()

Similar to (), (), (), and observing (), we have

∥∥f (t, vn(t), (Tvn)(t), (Svn)(t))∥∥ ≤ Ma(t), ∀t ∈ J+ (n = , , , . . .), ()∥∥Ik(vn(tk))∥∥ ≤ Dγk (k,n = , , , . . .) ()

and

‖Avn‖B ≤ β + γ

β + γ – 
(
Ma* +Dγ

*) (n = , , , . . .), ()

where

M =max
{
g(x, y, z) :N–β–( – γ )p ≤ x≤ q,  ≤ y≤ k*q,  ≤ z ≤ h*q

}
and

D =max
{
F(x) :N–β–( – γ )p ≤ x≤ q

}
.

Consider Ji = (ti–, ti] for any fixed i. By () and (), we have

∥∥(Avn)(t′) – (Avn)(t)
∥∥ ≤

∫ t′

t

∥∥f (s, vn(s), (Tvn)(s), (Svn)(s))∥∥ds
≤ M

∫ t′

t
a(s)ds, ∀t, t′ ∈ Ji, t′ > t (n = , , , . . .), ()

which implies that the functions {wn(t)} (n = , , , . . .) defined by

wn(t) =

⎧⎨
⎩(Avn)(t), ∀t ∈ Ji = (ti–, ti],

(Avn)(t+i–), ∀t = ti–
(n = , , , . . .) ()

http://www.boundaryvalueproblems.com/content/2013/1/69
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((Aun)(t+i–) denotes the right limit of (Aun)(t) at t = ti–) are equicontinuous on J̄i = [ti–, ti].
On the other hand, for any ε > , choose a sufficiently large τ > η and a sufficiently large
positive integer j >m such that

M

∫ ∞

τ

a(s)ds < ε, D

∞∑
k=j+

γk < ε. ()

We have, by (), (), (), (), and (),

wn(t) =


β + γ – 

{∫ τ

η

f
(
s, vn(s), (Tvn)(s), (Svn)(s)

)
ds

+
∫ ∞

τ

f
(
s, vn(s), (Tvn)(s), (Svn)(s)

)
ds

+ ( – γ )
∫ η


f
(
s, vn(s), (Tvn)(s), (Svn)(s)

)
ds +

j∑
k=m

Ik
(
vn(tk)

)

+
∞∑

k=j+

Ik
(
vn(tk)

)
+ ( – γ )

m–∑
k=

Ik
(
vn(tk)

)}
+

∫ t


f
(
s, vn(s), (Tvn)(s), (Svn)(s)

)
ds

+
i–∑
k=

Ik
(
vn(tk)

)
, ∀t ∈ J̄i (n = , , , . . .) ()

and

∥∥∥∥
∫ ∞

τ

f
(
s, vn(s), (Tvn)(s), (Svn)(s)

)
ds

∥∥∥∥ < ε (n = , , , . . .), ()
∥∥∥∥∥

∞∑
k=j+

Ik
(
vn(tk)

)∥∥∥∥∥ < ε (n = , , , . . .). ()

It follows from (), (), (), and ([], Theorem ..) that

α
(
W (t)

) ≤ 
β + γ – 

{

∫ τ

η

α
(
f
(
s,V (s), (TV )(s), (SV )(s)

))
ds + ε

+ ( – γ )
∫ η


α
(
f
(
s,V (s), (TV )(s), (SV )(s)

))
ds +

j∑
k=m

α
(
Ik

(
V (tk)

))
+ ε

+ ( – γ )
m–∑
k=

α
(
Ik

(
V (tk)

))}
+ 

∫ t


α
(
f
(
s,V (s), (TV )(s), (SV )(s)

))
ds

+
i–∑
k=

α
(
Ik

(
V (tk)

))
, ∀t ∈ J̄i, ()

where W (t) = {wn(t) : n = , , , . . .}, V (s) = {vn(s) : n = , , , . . .}, (TV )(s) = {(Tvn)(s) : n =
, , , . . .}, (SV )(s) = {(Svn)(s) : n = , , , . . .} and α(U) denotes the Kuratowski measure
of noncompactness of bounded set U ⊂ E (see [, Section .]). Since V (s) ⊂ Pp*q* and

http://www.boundaryvalueproblems.com/content/2013/1/69
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(TV )(s), (SV )(s)⊂ Pq* for s ∈ J , where p* =N–β–( – γ )p and q* =max{q,k*q,h*q}, we see
that, by condition (H),

α
(
f
(
s,V (s), (TV )(s), (SV )(s)

))
= , ∀s ∈ J ()

and

α
(
Ik

(
V (tk)

))
=  (k = , , , . . .). ()

It follows from () to () that

α
(
W (t)

) ≤ ε

β + γ – 
, ∀t ∈ J̄i,

which implies by virtue of the arbitrariness of ε that α(W (t)) =  for t ∈ J̄i.
By the Ascoli-Arzela theorem (see [, Theorem ..]), we conclude that W = {wn : n =

, , , . . .} is relatively compact in C[J̄i,E], hence, {wn(t)} has a subsequence which is con-
vergent uniformly on J̄i, so, {(Avn)(t)} has a subsequence which is convergent uniformly
on Ji. Since i may be any positive integer, so, by diagonal method, we can choose a sub-
sequence {(Avni )(t)} of {(Avn)(t)} such that {(Avni )(t)} is convergent uniformly on each Jk
(k = , , , . . .). Let

lim
i→∞(Avni )(t) = w(t), ∀t ∈ J .

It is clear that w ∈ PC[J ,P]. By (), we have

‖Avni‖B ≤ β + γ

β + γ – 
(
Ma* +Dγ

*) (i = , , , . . .),

which implies that w ∈ BPC[J ,P] and

‖w‖B ≤ β + γ

β + γ – 
(
Ma* +Dγ

*).
Let ε >  be arbitrarily given and choose a sufficiently large positive number τ such that

M

∫ ∞

τ

a(s)ds +D
∑
tk≥τ

γk < ε. ()

For any τ < t < ∞, we have, by (),

(Avni )(t) – (Avni )(τ ) =
∫ t

τ

f
(
s, vni (s), (Tvni )(s), (Svni )(s)

)
ds

+
∑

τ≤tk<t
Ik

(
vni (t)

)
(i = , , , . . .),

which implies by virtue of (), (), and () that

∥∥(Avni )(t) – (Avni )(τ )
∥∥ ≤ M

∫ t

τ

a(s)ds +D
∑

τ≤tk<t
γk < ε (i = , , , . . .). ()

http://www.boundaryvalueproblems.com/content/2013/1/69
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Letting i → ∞ in (), we get

∥∥w(t) –w(τ )
∥∥ ≤ ε, ∀t > τ . ()

On the other hand, since {(Avni )(t)} converges uniformly to w(t) on [, τ ] as i → ∞, there
exists a positive integer i such that

∥∥(Avni )(t) –w(t)
∥∥ < ε, ∀t ∈ [, τ ], i > i. ()

It follows from () to () that

∥∥(Avni )(t) –w(t)
∥∥ ≤ ∥∥(Avni )(t) – (Avni )(τ )

∥∥ +
∥∥(Avni )(τ ) –w(τ )

∥∥
+

∥∥w(τ ) –w(t)
∥∥ < ε, ∀t > τ , i > i. ()

By () and (), we have

‖Avni –w‖B ≤ ε, ∀i > i,

hence, ‖Avni –w‖B →  as i → ∞, and the relative compactness of A(Qpq) is proved. �

Lemma  Let cone P be normal and conditions (H)-(H) be satisfied. Then u ∈ Q+ ∩
C[J ′+,E] is a positive solution of the infinite three-point boundary value problem () if and
only if u ∈Q+ is a solution of the following impulsive integral equation:

u(t) =


β + γ – 

{∫ ∞

η

f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ ( – γ )
∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

∞∑
k=m

Ik
(
u(tk)

)
+ ( – γ )

m–∑
k=

Ik
(
u(tk)

)}

+
∫ t


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

∑
<tk<t

Ik
(
u(tk)

)
, ∀t ∈ J , ()

i.e., u is a fixed point of operator A defined by () in Q+.

Proof For u ∈ PC[J ,E]∩C[J ′+,E], it is easy to get the following formula:

u(t) = u() +
∫ t


u′(s)ds +

∑
<tk<t

[
u
(
t+k

)
– u(tk)

]
, ∀t ∈ J . ()

Let u ∈ Q+ ∩ C[J ′+,E] be a positive solution of the infinite three-point boundary value
problem (). By () and (), we have

u(t) = u() +
∫ t


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

∑
<tk<t

Ik
(
u(tk)

)
, ∀t ∈ J . ()

http://www.boundaryvalueproblems.com/content/2013/1/69
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Wehave shown in the proof of Lemma  that the infinite integral () and the infinite series
() are convergent, so, by taking limits as t → ∞ in both sides of (), we get

u(∞) = u() +
∫ ∞


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

∞∑
k=

Ik
(
u(tk)

)
. ()

On the other hand, by () and (), we have

u(∞) = γu(η) + βu() ()

and

u(η) = u() +
∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

m–∑
k=

Ik
(
u(tk)

)
. ()

It follows from () to () that

u() =


β + γ – 

{∫ ∞

η

f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ ( – γ )
∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+
∞∑
k=m

Ik
(
u(tk)

)
+ ( – γ )

m–∑
k=

Ik
(
u(tk)

)}
,

and, substituting it into (), we see that u(t) satisfies equation (), i.e., u = Au.
Conversely, assume that u ∈Q+ is a solution of Equation (). We have, by (),

u() =


β + γ – 

{∫ ∞

η

f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ ( – γ )
∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+
∞∑
k=m

Ik
(
u(tk)

)
+ ( – γ )

m–∑
k=

Ik
(
u(tk)

)}
()

and

u(η) =


β + γ – 

{∫ ∞

η

f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ ( – γ )
∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

∞∑
k=m

Ik
(
u(tk)

)
+ ( – γ )

m–∑
k=

Ik
(
u(tk)

)}

+
∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

m–∑
k=

Ik
(
u(tk)

)
. ()

http://www.boundaryvalueproblems.com/content/2013/1/69
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Moreover, by taking limits as t → ∞ in (), we see that u(∞) exists and

u(∞) =


β + γ – 

{∫ ∞

η

f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ ( – γ )
∫ η


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

∞∑
k=m

Ik
(
u(tk)

)

+ ( – γ )
m–∑
k=

Ik
(
u(tk)

)}
+

∫ ∞


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+
∞∑
k=

Ik
(
u(tk)

)
. ()

It follows from () to () that

γu(η) + βu() = u(∞).

On the other hand, direct differentiation of () gives

u′(t) = f
(
t,u(t), (Tu)(t), (Su)(t)

)
, ∀t ∈ J ′+,

and, it is clear, by (),

�u|t=tk = Ik
(
u(tk)

)
(k = , , , . . .).

Hence, u ∈ C[J ′+,E] and u(t) satisfies (). Since u ∈ Q+, so () holds and ‖u‖B > , hence
u(t) > θ for t ∈ J . Consequently, u(t) is a positive solution of the infinite three-point bound-
ary value problem (). �

Lemma  (The fixed-point theorem of cone expansion and compression with norm
type; see [, Theorem ] or [, Theorem ..]) Let P be a cone in real Banach space
E and 
, 
 be two bounded open sets in E such that θ ∈ 
, 
̄ ⊂ 
, and operator
A : P ∩ (
̄\
) → P be completely continuous, where θ denotes the zero element of E and

̄i denotes the closure of 
i (i = , ). Suppose that one of the following two conditions is
satisfied:

(a) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂
; ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂
,

where ∂
i denotes the boundary of 
i (i = , ).

(b) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂
; ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂
.

Then A has at least one fixed point in P ∩ (
̄\
).

Remark  Lemma  is different from the Krasnoselskii fixed-point theorem of cone ex-
pansion and compression (see [, Theorem .]). In Krasnoselskii’s theorem, the condi-
tion corresponding to (a) is

(
a′) Ax� x, ∀x ∈ P ∩ ∂
, Ax� x, ∀x ∈ P ∩ ∂
.

http://www.boundaryvalueproblems.com/content/2013/1/69
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It is clear, conditions (a) and (a′) are independent each other. On the other hand, in Kras-
noselskii’s theorem, 
 and 
 are balls with center θ .

3 Main theorems
Let us list more conditions.
(H) There exist u ∈ P+, b ∈ C[J+,R++] and τ ∈ C[P+,R+] such that

f (t,u, v,w) ≥ b(t)τ (u)u, ∀t ∈ J+,u ∈ P+, v,w ∈ P,

and

τ (u)
‖u‖ → ∞ as u ∈ P+,‖u‖ → ∞,

and

b* =
∫ ∞


b(t)dt < ∞.

Remark  Condition (H) means that f (t,u, v,w) is superlinear with respect to u.

(H) There exist u ∈ P+, c ∈ C[J+,R++] and σ ∈ C[P+,R+] such that

f (t,u, v,w) ≥ c(t)σ (u)u, ∀t ∈ J+,u ∈ P+, v,w ∈ P,

and

σ (u)→ ∞ as u ∈ P+,‖u‖ → ,

and

c* =
∫ ∞


c(t)dt <∞.

Theorem  Let cone P be normal and conditions (H)-(H) be satisfied.Assume that there
exists a ξ >  such that

N(β + γ )
β + γ – 

(
Mξa* +Dξ γ

*) < ξ , ()

where N denotes the normal constant of P, and

Mξ =max
{
g(x, y, z) :N–β–( – γ )ξ ≤ x ≤ ξ ,  ≤ y≤ k*ξ ,  ≤ z ≤ h*ξ

}
, ()

Dξ =max
{
F(x) :N–β–( – γ )ξ ≤ x≤ ξ

}
()

(for g(x, y, z), F(x), a* and γ *; see conditions (H) and (H)). Then the infinite three-point
boundary value problem () has at least two positive solutions u*,u** ∈Q+ ∩C[J ′+,E] such
that  < ‖u*‖B < ξ < ‖u**‖B.

http://www.boundaryvalueproblems.com/content/2013/1/69
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Proof By Lemma  and Lemma , operator A defined by () is continuous from Q+ into
Q and we need to prove that A has two fixed points u* and u** in Q+ such that  < ‖u*‖B <
ξ < ‖u**‖B.
By condition (H), there exists a r >  such that

τ (u) ≥ β(β + γ – )N

( – γ )b*‖u‖ ‖u‖, ∀u ∈ P+,‖u‖ ≥ r, ()

so,

f (t,u, v,w) ≥ β(β + γ – )N‖u‖
( – γ )b*‖u‖ b(t)u, ∀t ∈ J+,u ∈ P+, v,w ∈ P,‖u‖ ≥ r. ()

Choose

r >max
{
Nβ( – γ )–r, ξ

}
. ()

For u ∈ Q, ‖u‖B = r, we have by () and (),

∥∥u(t)∥∥ ≥ N–β–( – γ )‖u‖B =N–β–( – γ )r > r, ∀t ∈ J , ()

so, (), (), (), and () imply

(Au)(t) ≥  – γ

β + γ – 

(∫ ∞


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

)

≥ βN

( – γ )b*‖u‖
(∫ ∞



∥∥u(s)∥∥b(s)ds)u
≥ N‖u‖B

b*‖u‖
(∫ ∞


b(s)ds

)
u =

N‖u‖B
‖u‖ u, ∀t ∈ J , ()

and consequently,

‖Au‖B ≥ ‖u‖B, ∀u ∈ Q,‖u‖B = r. ()

By condition (H), there exists r >  such that

σ (u)≥ (β + γ – )Nξ

( – γ )c*‖u‖ , ∀u ∈ P+,  < ‖u‖ < r, ()

so,

f (t,u, v,w) ≥ (β + γ – )Nξ

( – γ )c*‖u‖ c(t)u, ∀t ∈ J+,u ∈ P+, v,w ∈ P,  < ‖u‖ < r. ()

Choose

 < r <min{r, ξ}. ()

For u ∈ Q, ‖u‖B = r, we have by () and (),

r >
∥∥u(t)∥∥ ≥ N–β–( – γ )‖u‖B =N–β–( – γ )r > , ()

http://www.boundaryvalueproblems.com/content/2013/1/69
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so, we get by (), (), and (),

(Au)(t) ≥  – γ

β + γ – 

(∫ ∞


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

)

≥ Nξ

c*‖u‖
(∫ ∞


c(s)ds

)
u =

Nξ

‖u‖u, ∀t ∈ J ,

which implies

∥∥(Au)(t)∥∥ ≥ ξ > r, ∀t ∈ J ,

and consequently,

‖Au‖B > ‖u‖B, ∀u ∈Q,‖u‖B = r. ()

On the other hand, for u ∈ Q, ‖u‖B = ξ , by condition (H), condition (H), (), and (),
we have

∥∥f (t,u(t), (Tu)(t), (Su)(t))∥∥ ≤ Mξa(t), ∀t ∈ J+ ()

and

∥∥Ik(u(tk))∥∥ ≤ Dξ γk (k = , , , . . .). ()

It is clear, by (),

(Au)(t) ≤ β + γ

β + γ – 

(∫ ∞


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds +

∞∑
k=

Ik
(
u(tk)

))
, ∀t ∈ J . ()

It follows from () to () that

‖Au‖B ≤ N(β + γ )
β + γ – 

(
Mξa* +Dξ γ

*). ()

Thus, () and () imply

‖Au‖B < ‖u‖B, ∀u ∈Q,‖u‖B = ξ . ()

From () and (), we know  < r < ξ < r, and by Lemma , A :Qrr →Q is completely
continuous, where Qrr = {u ∈ Q : r ≤ ‖u‖B ≤ r}, hence, (), (), (), and Lemma 
imply that A has two fixed points u*,u** ∈ Q+ such that r < ‖u*‖B < ξ < ‖u**‖B ≤ r. The
proof is complete. �

Theorem  Let cone P be normal and conditions (H)-(H) and (H) be satisfied. Assume
that

g(x, y, z)
x + y + z

→  as x → ∞ ()

http://www.boundaryvalueproblems.com/content/2013/1/69
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uniformly for y, z ∈ R+, and

F(x)
x

→  as x→ ∞ ()

(for g(x, y, z) and F(x), see conditions (H) and (H)).Then the infinite three-point boundary
value problem () has at least one positive solution u* ∈Q+ ∩C[J ′+,E].

Proof As in the proof of Theorem , we can choose r >  such that () holds (in this
case, we put ξ =  in () and ()). On the other hand, by () and (), there exists r > 
such that

g(x, y, z) ≤ ε(x + y + z), ∀x > r, y≥ , z ≥  ()

and

F(x)≤ εx, ∀x > r, ()

where

ε =
β + γ – 

N(β + γ )[( + k* + h*)a* + γ *]
. ()

Choose

r >max
{
Nβ( – γ )–r, r

}
. ()

For u ∈ Q, ‖u‖B = r, we have by () and (),

∥∥u(t)∥∥ ≥ N–β–( – γ )r > r, ∀t ∈ J

so, () and () imply

g
(∥∥u(t)∥∥,∥∥(Tu)(t)∥∥,∥∥(Su)(t)∥∥) ≤ ε

(∥∥u(t)∥∥ +
∥∥(Tu)(t)∥∥ +

∥∥(Su)(t)∥∥)
≤ ε

(
 + k* + h*

)
r, ∀t ∈ J ()

and

F
(∥∥u(tk)∥∥) ≤ ε

∥∥u(tk)∥∥ ≤ εr (k = , , , . . .). ()

It follows from (), conditions (H), condition (H), (), (), and () that

∥∥(Au)(t)∥∥ ≤ N(β + γ )
β + γ – 

{
ε

(
 + k* + h*

)
r

∫ ∞


a(s)ds + εr

∞∑
k=

γk

}

=
N(β + γ )εr

β + γ – 
{(
 + k* + h*

)
a* + γ *} = r, ∀t ∈ J ,

http://www.boundaryvalueproblems.com/content/2013/1/69
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and consequently,

‖Au‖B ≤ ‖u‖B, ∀u ∈ Q,‖u‖B = r. ()

Since r > r by virtue of (), we conclude from (), (), and Lemma  that A has a fixed
point u* ∈Q+ such that r < ‖u*‖B ≤ r. The theorem is proved. �

Example  Consider the infinite system of scalar first-order impulsive singular integro-
differential equations of mixed type on the half line:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
n(t) =

e–t
n

√
t { 

 (un+(t) +
∑∞

m= um(t)) +

 (

∑∞
m= um(t))–}

+ e–t
n

√
t {(

∫ t
 e

–(t+)sun(s)ds) + 
 (

∫ ∞


un+(s)ds
(+t+s) )

},
∀ < t < ∞, t �= k (k = , , , . . . ;n = , , , . . .),

�un|t=k = –k
n {un(k) + 

 (
∑∞

m= um(k))–

 } (k = , , , . . . ;n = , , , . . .),

un(∞) = 
un(


 ) + un() (n = , , , . . .).

()

Conclusion Infinite system () has at least two positive solutions {u*n(t)} (n = , , , . . .)
and {u**n (t)} (n = , , , . . .) such that

 < inf
≤t<∞

∞∑
n=

u*n(t)≤ sup
≤t<∞

∞∑
n=

u*n(t) <  < sup
≤t<∞

∞∑
n=

u**n (t),

inf
≤t<∞

∞∑
n=

u**n (t) > .

Proof Let E = l = {u = (u, . . . ,un, . . .) :
∑∞

n= |un| < ∞} with norm ‖u‖ =
∑∞

n= |un| and
P = {(u, . . . ,un, . . .) : un ≥ ,n = , , , . . .}. Then P is a normal cone in E with normal con-
stant N = , and infinite system () can be regarded as an infinite three-point bound-
ary value problem of form (). In this situation, u = (u, . . . ,un, . . .), v = (v, . . . , vn, . . .),
w = (w, . . . ,wn, . . .), tk = k (k = , , , . . .), K(t, s) = e–(t+)s,H(t, s) = ( + t + s)–, η = 

 , γ = 
 ,

β = , f = (f, . . . , fn, . . .) and Ik = (Ik, . . . , Ikn, . . .), in which

fn(t,u, v,w)

=
e–t

n
√
t

{



(
un+ +

∞∑
m=

um

)

+



( ∞∑
m=

um

)–}
+

e–t

n
√
t

(
vn +



w
n+

)
,

∀t ∈ J+ = (,∞),u ∈ P+ = {u ∈ P : ‖u‖ > }, v,w ∈ P (n = , , , . . .) ()

and

Ikn(u) =
–k

n

{
un +




( ∞∑
m=

um

)– 

}
, ∀u ∈ P+ (k = , , , . . . ;n = , , , . . .). ()
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It is easy to see that f ∈ C[J+ × P+ × P × P,P], Ik ∈ C[P+,P] (k = , , , . . .) and condition
(H) is satisfied and k* ≤ , h* ≤ . We have, by (),

 ≤ fn(t,u, v,w) ≤ e–t

n
√
t

{


(
‖u‖) + 


‖u‖–

}
+

e–t

n
√
t

(
‖v‖ + 


‖w‖

)

≤ e–t

n
√
t

(



‖u‖ + 


‖u‖– + 


‖v‖ + 


‖w‖
)
,

∀t ∈ J+,u ∈ P+, v,w ∈ P (n = , , , . . .), ()

so, observing the inequality
∑∞

n=

n < , we get

∥∥f (t,u, v,w)∥∥ =
∞∑
n=

fn(t,u, v,w) ≤ e–t√
t

(



‖u‖ + 


‖u‖– + 

‖v‖ + 


‖w‖

)
,

∀t ∈ J+,u ∈ P+, v,w ∈ P,

which implies that condition (H) is satisfied for

a(t) =
e–t√
t

and

g(x, y, z) =



x +


x
+


y +




z

with

a* =
∫ ∞



e–t√
t
dt <

∫ 



dt√
t
+

∫ ∞


e–t dt =  +



e– <




.

By (), we have

 ≤ Ikn(u) ≤ –k

n

(
‖u‖ + 


‖u‖– 



)
, ∀u ∈ P+ (k = , , , . . . ;n = , , , . . .), ()

so,

∥∥Ik(u)∥∥ ≤ 

–k

(
‖u‖ + 


‖u‖– 



)
, ∀u ∈ P+ (k = , , , . . .),

which implies that condition (H) is satisfied for γk = 


–k(γ * = 
 ) and

F(x) = x +



√
x
.

On the other hand, () implies

fn(t,u, v,w) ≥ e–t

n
√
t
‖u‖, ∀t ∈ J+,u ∈ P+, v,w ∈ P (n = , , , . . .)
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and

fn(t,u, v,w) ≥ e–t

n
√
t
‖u‖–, ∀t ∈ J+,u ∈ P+, v,w ∈ P (n = , , , . . .), ()

so, we see that condition (H) is satisfied for b(t) = e–t


√
t (b

* < 
, ), τ (u) = ‖u‖ and u =

(, . . . , 
n , . . .) and condition (H) is satisfied for c(t) = e–t


√
t (c

* < 
, ), σ (u) = ‖u‖– and

u = (, . . . , 
n , . . .). In addition, from (), we have

∥∥f (t,u, v,w)∥∥ ≥
( ∞∑

n=


n

)
e–t


√
t
‖u‖– > e–t


√
t
‖u‖–, ∀t ∈ J+,u ∈ P+, v,w ∈ P,

which implies that () and () hold, i.e., f (t,u, v,w) is singular at t =  and u = θ . Moreover,
from (), we get

Ikn(u) ≥ –k

n
‖u‖– 

 , ∀u ∈ P+ (k = , , , . . . ;n = , , , . . .),

and so,

∥∥Ik(u)∥∥ ≥
( ∞∑

n=


n

)
–k


‖u‖– 

 >
–k


‖u‖– 

 , ∀u ∈ P+ (k = , , , . . .),

which implies that () holds, i.e., Ik(u) (k = , , , . . .) are singular at u = θ . Now, we check
that condition (H) is satisfied. Let t ∈ J+ and r > p >  be fixed, and {z(m)} be any sequence
in f (t,Ppr ,Pr ,Pr), where z(m) = (z(m)

 , . . . , z(m)
n , . . .). Then, we have, by () and (),

 ≤ z(m)
n ≤ e–t

n
√
t

(



r +


p
+




r
)

(n,m = , , , . . .). ()

So, {z(m)
n } is bounded, and, by diagonal method, we can choose a subsequence {mi} ⊂ {m}

such that

z(mi)
n → z̄n as i→ ∞ (n = , , , . . .), ()

which implies by virtue of () that

 ≤ z̄n ≤ e–t

n
√
t

(



r +


p
+




r
)

(n = , , , . . .). ()

Consequently, z̄ = (z̄, . . . , z̄n, . . .) ∈ l = E. Let ε >  be given. Choose a positive integer n
such that

e–t√
t

( ∞∑
n=n+


n

)(



r +


p
+




r
)
<

ε


. ()

By (), we see that there exists a positive integer i such that

∣∣z(mi)
n – z̄n

∣∣ < ε

n
, ∀i > i (n = , , . . . ,n). ()
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It follows from () to () that

∥∥z(mi) – z̄
∥∥ =

∞∑
n=

∣∣z(mi)
n – z̄n

∣∣ ≤
n∑
n=

∣∣z(mi)
n – z̄n

∣∣ + ∞∑
n=n+

∣∣z(mi)
n

∣∣

+
∞∑

n=n+

|z̄n| < ε


+

ε


+

ε


= ε, ∀i > i,

hence, z(mi) → z̄ in E as i → ∞. Thus, we have proved that f (t,Ppr ,Pr ,Pr) is relatively com-
pact in E. Similarly, by using (), we can prove that Ik(Ppr) is relatively compact in E.
Hence, condition (H) is satisfied. Finally, we check that inequality () is satisfied for
ξ = . In this case,

M ≤ max

{
g(x, y, z) :




≤ x≤ ,  ≤ y≤ ,  ≤ z ≤ 
}

≤ 


+



+


+




=



and

D =max

{
F(x) :




≤ x≤ 
}

≤  +

√



< .,

so,

N(β + γ )
β + γ – 

(
Ma* +Dγ

*) < 


(



× 


+ .× 


)
=
,
,

< ,

i.e., inequality () is satisfied for ξ = . Hence, our conclusion follows from Theorem .�

Example  Consider the infinite system of scalar first order impulsive singular integro-
differential equations of mixed type on the half line:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
n(t) =



nt

 (+t)

{√un(t) + un+(t) + (
∑∞

m= um(t))–}
+ 

nt

 (+t)

{(∫ t


un(s)ds
+ts+s )


 + (

∫ ∞
 e–s sin(t – s)un(s)ds)


 },

∀≤ t < ∞, t �= k (k = , , , . . . ;n = , , , . . .);

�un|t=k = e–k
n (un+(k))


 + –k

n (
∑∞

m= um(k))–

(k = , , , . . . ;n = , , , . . .),

un(∞) = un() + un() (n = , , , . . .).

()

Conclusion Infinite system () has at least one positive solution {u*n(t)} (n = , , , . . .)
such that

inf
≤t<∞

∞∑
n=

u*n(t) > .

Proof Let E = l = {u = (u, . . . ,un, . . .) :
∑∞

n= |un| < ∞} with norm ‖u‖ = ∑∞
n= |un| and P =

{u = (u, . . . ,un, . . .) ∈ l : un ≥ ,n = , , , . . .}. Then P is a normal cone in E with normal
constant N = , and infinite system () can be regarded as an infinite three-point bound-
ary value problem of form () in E. In this situation, u = (u, . . . ,un, . . .), v = (v, . . . , vn, . . .),
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w = (w, . . . ,wn, . . .), tk = k (k = , , , . . .), K(t, s) = ( + ts + s)–, H(t, s) = e–s sin(t – s),
η = , γ = 

 , β = 
 , f = (f, . . . , fn, . . .) and Ik = (Ik, . . . , Ikn, . . .), in which

fn(t,u, v,w) =


nt 
 ( + t)

{√
un + un+ +

( ∞∑
m=

um

)–}
+


nt 

 ( + t)
(
v


n +w



n

)
,

∀t ∈ J+,u ∈ P+, v,w ∈ P (n = , , , . . .) ()

and

Ikn(u) =
e–k

n
u



n+ +

–k

n

( ∞∑
m=

um

)–

(k = , , , . . . ;n = , , , . . .). ()

It is clear that f ∈ C[J+ × P+ × P × P,P], Ik ∈ C[P+,P] (k = , , , . . .) and condition (H) is
satisfied and k* ≤ π

 , h
* ≤ . We have, by () and (),

 ≤ fn(t,u, v,w) ≤ 
nt 

 ( + t)
(√

‖u‖ + ‖u‖– + ‖v‖ 
 + ‖w‖ 


)
,

∀t ∈ J+,u ∈ P+, v,w ∈ P (n = , , , . . .)

and

 ≤ Ikn(u) ≤ –k

n
(‖u‖ 

 + ‖u‖–), ∀u ∈ P+ (k = , , , . . . ;n = , , , . . .),

so, observing

∞∑
n=


n

<
∞∑
n=


n

< ,

we get

∥∥f (t,u, v,w)∥∥ ≤ 
t 
 ( + t)

(

√

√‖u‖ + ‖u‖– + ‖v‖ 

 + ‖w‖ 

)
,

∀t ∈ J+,u ∈ P+, v,w ∈ P

and

∥∥Ik(u)∥∥ ≤ –k+
(‖u‖ 

 + ‖u‖–), ∀u ∈ P+ (k = , , , . . .),

which imply that conditions (H) is satisfied for

a(t) =


t 
 ( + t)

and

g(x, y, z) = 
√

√
x + x– + y


 + z
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with

a* =
∫ ∞



dt
t 
 ( + t)

<
∫ 



dt
t 

+

∫ ∞



dt
( + t)

=



and (H) is satisfied for γk = –k+ (γ * = ) and

F(x) = x

 + x–.

By (), we have

fn(t,u, v,w) ≥ 
nt 

 ( + t)
‖u‖–, ∀t ∈ J+,u ∈ P+, v,w ∈ P (n = , , , . . .) ()

so, condition (H) is satisfied for

c(t) =


t 
 ( + t)

(
c* = a* <




)
,

σ (u) = ‖u‖– and u = (, . . . , 
n , . . .). Moreover, () implies

∥∥f (t,u, v,w)∥∥ ≥
( ∞∑

n=


n

)


t 
 ( + t)

‖u‖– > 
t 
 ( + t)

‖u‖–,

∀t ∈ J+,u ∈ P+, v,w ∈ P,

so, () and () are satisfied, i.e., f (t,u, v,w) is singular at t =  and u = θ . Similarly, ()
implies

∥∥Ik(u)∥∥ ≥
( ∞∑

n=


n

)
–k‖u‖– > –k‖u‖–, ∀u ∈ P+ (k = , , , . . .),

so, () is satisfied, i.e., Ik(u) (k = , , , . . .) are singular at u = θ . Similar to the discussion
in Example , we can prove that f (t,Ppr ,Pr ,Pr) and Ik(Ppr) (for fixed t ∈ J+ and r > p > ;
k = , , , . . .) are relatively compact in E = l, so, condition (H) is satisfied. On the other
hand, we have

 <
g(x, y, z)
x + y + z

= 
√

(

x
x + y + z

) 

(x + y + z)–


 + x–(x + y + z)–

+ 
(

y
x + y + z

) 

(x + y + z)–


 + 

(
z

x + y + z

) 

(x + y + z)–




≤ 
√
x–


 + x– + x–


 + x–


 , ∀x > , y≥ , z ≥ ,

so, () is satisfied.Moreover, it is clear that () is satisfied. Hence, our conclusion follows
from Theorem . �
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