

RESEARCH Open Access

Multiple positive doubly periodic solutions for a singular semipositone telegraph equation with a parameter

Fanglei Wang^{1*} and Yukun An²

*Correspondence: wang-fanglei@hotmail.com ¹College of Science, Hohai University, Nanjing, 210098, P.R. China Full list of author information is available at the end of the article

Abstract

In this paper, we study the multiplicity of positive doubly periodic solutions for a singular semipositone telegraph equation. The proof is based on a well-known fixed point theorem in a cone.

MSC: 34B15; 34B18

Keywords: semipositone telegraph equation; doubly periodic solution; singular; cone; fixed point theorem

1 Introduction

Recently, the existence and multiplicity of positive periodic solutions for a scalar singular equation or singular systems have been studied by using some fixed point theorems; see [1–9]. In [10], the authors show that the method of lower and upper solutions is also one of common techniques to study the singular problem. In addition, the authors [11] use the continuation type existence principle to investigate the following singular periodic problem:

$$(|u'|^{p-2}u')' + h(u)u' = g(u) + c(t).$$

More recently, using a weak force condition, Wang [12] has built some existence results for the following periodic boundary value problem:

$$\begin{cases} u_{tt} - u_{xx} + c_1 u_t + a_{11}(t, x) u + a_{12}(t, x) v = f_1(t, x, u, v) + \chi_1(t, x), \\ v_{tt} - v_{xx} + c_2 v_t + a_{21}(t, x) u + a_{22}(t, x) v = f_2(t, x, u, v) + \chi_2(t, x). \end{cases}$$

The proof is based on Schauder's fixed point theorem. For other results concerning the existence and multiplicity of positive doubly periodic solutions for a single regular telegraph equation or regular telegraph system, see, for example, the papers [13–17] and the references therein. In these references, the nonlinearities are nonnegative.

On the other hand, the authors [18] study the semipositone telegraph system

$$\begin{cases} u_{tt} - u_{xx} + c_1 u_t + a_1(t, x) u = b_1(t, x) f(t, x, u, v), \\ v_{tt} - v_{xx} + c_2 v_t + a_2(t, x) v = b_2(t, x) g(t, x, u, v), \end{cases}$$

where the nonlinearities f, g may change sign. In addition, there are many authors who have studied the semipositone equations; see [19, 20].

Inspired by the above references, we are concerned with the multiplicity of positive doubly periodic solutions for a general singular semipositone telegraph equation

$$\begin{cases} u_{tt} - u_{xx} + cu_t + a(t, x)u = \lambda f(t, x, u), \\ u(t + 2\pi, x) = u(t, x + 2\pi) = u(t, x), \end{cases}$$
 (1)

where c > 0 is a constant, $\lambda > 0$ is a positive parameter, $a(t, x) \in C(R \times R, R)$, f(t, x, u) may change sign and is singular at u = 0, namely,

$$\lim_{u\to 0^+} f(t,x,u) = +\infty.$$

The main method used here is the following fixed-point theorem of a cone mapping.

Lemma 1.1 [21] Let E be a Banach space, and $K \subset E$ be a cone in E. Assume Ω_1 , Ω_2 are open subsets of E with $0 \in \Omega_1$, $\overline{\Omega}_1 \subset \Omega_2$, and let $T : K \cap (\overline{\Omega}_2 \setminus \Omega_1) \to K$ be a completely continuous operator such that either

- (i) $||Tu|| \le ||u||$, $u \in K \cap \partial \Omega_1$ and $||Tu|| \ge ||u||$, $u \in K \cap \partial \Omega_2$; or
- (ii) $||Tu|| \ge ||u||$, $u \in K \cap \partial \Omega_1$ and $||Tu|| \le ||u||$, $u \in K \cap \partial \Omega_2$.

Then T has a fixed point in K \cap ($\overline{\Omega}_2 \setminus \Omega_1$).

The paper is organized as follows. In Section 2, some preliminaries are given. In Section 3, we give the main result.

2 Preliminaries

Let T^2 be the torus defined as

$$T^2 = (R/2\pi Z) \times (R/2\pi Z).$$

Doubly 2π -periodic functions will be identified to be functions defined on \top^2 . We use the notations

$$L^p(\top^2)$$
, $C(\top^2)$, $C^{\alpha}(\top^2)$, $C^{\alpha}(\top^2)$, $C^{\alpha}(\top^2)$

to denote the spaces of doubly periodic functions with the indicated degree of regularity. The space $D'(\top^2)$ denotes the space of distributions on \top^2 .

By a doubly periodic solution of Eq. (1) we mean that a $u \in L^1(T^2)$ satisfies Eq. (1) in the distribution sense, *i.e.*,

$$\int_{\top_2} u \big(\varphi_{tt} - \varphi_{xx} - c \varphi_t + a(t,x) \varphi \big) \, dt \, dx = \lambda \int_{\top^2} f(t,x,u) \varphi \, dt \, dx.$$

First, we consider the linear equation

$$u_{tt} - u_{xx} + cu_t - \xi u = h(t, x), \quad \text{in } D'(T^2),$$
 (2)

where c > 0, $\mu \in R$, and $h(t, x) \in L^1(T^2)$.

Let \pounds_{ξ} be the differential operator

$$\pounds_{\varepsilon} u = u_{tt} - u_{xx} + cu_t - \xi u,$$

acting on functions on \top^2 . Following the discussion in [14], we know that if $\xi < 0$, \pounds_{ξ} has the resolvent R_{ξ} ,

$$R_{\xi}: L^{1}(T^{2}) \to C(T^{2}), \qquad h_{i}(t, x) \mapsto u_{i}(t, x),$$

where u(t,x) is the unique solution of Eq. (2), and the restriction of R_{ξ} on $L^p(\top^2)$ ($1) or <math>C(\top^2)$ is compact. In particular, $R_{\xi} : C(\top^2) \to C(\top^2)$ is a completely continuous operator.

For $\xi = -c^2/4$, the Green function G(t,x) of the differential operator \pounds_{ξ} is explicitly expressed; see Lemma 5.2 in [14]. From the definition of G(t,x), we have

$$\underline{G} := \operatorname{ess\,inf} G(t, x) = e^{-3c\pi/2}/(1 - e^{-c\pi})^2,$$

$$\overline{G}$$
 := ess sup $G(t,x) = (1 + e^{-c\pi})/2(1 - e^{-c\pi})^2$.

For convenience, we assume the following condition holds throughout this paper:

(H1)
$$a(t,x) \in C(T^2,R), 0 \le a(t,x) \le \frac{c^2}{4} \text{ on } T^2, \text{ and } \int_{T^2} a(t,x) dt dx > 0.$$

Finally, if $-\xi$ is replaced by a(t,x) in Eq. (2), the author [13] has proved the following unique existence and positive estimate result.

Lemma 2.1 Let $h(t,x) \in L^1(T^2)$. Then Eq. (2) has a unique solution u(t,x) = P[h(t,x)], $P: L^1(T^2) \to C(T^2)$ is a linear bounded operator with the following properties:

- (i) $P: C(T^2) \to C(T^2)$ is a completely continuous operator;
- (ii) If h(t,x) > 0, a.e $(t,x) \in T^2$, P[h(t,x)] has the positive estimate

$$\underline{G}\|h\|_{L^{1}} \le P[h(t,x)] \le \frac{\overline{G}}{G\|a\|_{L^{1}}} \|h\|_{L^{1}}.$$
(3)

3 Main result

Theorem 3.1 Assume (H1) holds. In addition, if f(t, x, u) satisfies

- (H2) $\lim_{u\to 0^+} f(t,x,u) = +\infty$, uniformly $(t,x) \in T^2$,
- (H3) $f: T^2 \times (0, +\infty) \to (-\infty, +\infty)$ is continuous,
- (H4) there exists a nonnegative function $h(t,x) \in C(T^2)$ such that

$$f(t,x,u) + h(t,x) > 0, \quad (t,x) \in T^2, u > 0,$$

(H5) $\int_{\mathbb{T}^2} F_{\infty}(t,x) dt dx = +\infty$, where the limit function $F_{\infty}(t,x) = \liminf_{u \to +\infty} \frac{f(t,x,u)}{u}$, then Eq. (1) has at least two positive doubly periodic solutions for sufficiently small λ .

 $C(\top^2)$ is a Banach space with the norm $||u|| = \max_{(t,x) \in \top^2} |u(t,x)|$. Define a cone $K \subset C(\top^2)$ by

$$K = \{u \in C(T^2) : u \ge 0, u(t, x) \ge \delta ||u||\},$$

where $\delta = \frac{G^2 \|a\|_{L^1}}{\overline{G}} \in (0,1)$. Let $\partial K_r = \{u \in K : \|u\| = r\}$, $[u]^+ = \max\{u,0\}$. By Lemma 2.1, it is easy to obtain the following lemmas.

Lemma 3.2 *If* $h(t,x) \in C(T^2)$ *is a nonnegative function, the linear boundary value problem*

$$\begin{cases} u_{tt} - u_{xx} + cu_t + a(t, x)u = \lambda h(t, x), \\ u(t + 2\pi, x) = u(t, x + 2\pi) = u(t, x) \end{cases}$$

has a unique solution $\omega(t,x)$. The function $\omega(t,x)$ satisfies the estimates

$$\lambda \underline{G} \|h\|_{L^1} \leq \omega(t,x) = \lambda P\big(h(t,x)\big) \leq \lambda \frac{\overline{G}}{\underline{G} \|a\|_{L^1}} \|h\|_{L^1}.$$

Lemma 3.3 If the boundary value problem

$$\begin{cases} u_{tt} - u_{xx} + cu_t + a(t,x)u = \lambda [f(t,x,[u(t,x) - \omega(t,x)]^+) + h(t,x)], \\ u(t+2\pi,x) = u(t,x+2\pi) = u(t,x) \end{cases}$$

has a solution $\widetilde{u}(t,x)$ with $\|\widetilde{u}\| > \lambda \frac{\overline{G}^2}{\underline{G}^3 \|a\|_{L^1}^2} \|h\|_{L^1}$, then $u^*(t,x) = \widetilde{u}(t,x) - \omega(t,x)$ is a positive doubly periodic solution of Eq. (1).

Proof of Theorem 3.1 Step 1. Define the operator *T* as follows:

$$(Tu)(t,x) = \lambda P[f(t,x,[u(t,x) - \omega(t,x)]^+) + h(t,x)].$$

We obtain the conclusion that $T(K \setminus \{u \in K : [u(t,x) - \omega(t,x)]^+ = 0\}) \subseteq K$, and $T : K \setminus \{u \in K : [u(t,x) - \omega(t,x)]^+ = 0\} \to K$ is completely continuous.

For any $u \in K \setminus \{u \in K : [u(t,x) - \omega(t,x)]^+ = 0\}$, then $[u(t,x) - \omega(t,x)]^+ > 0$, and T is defined. On the other hand, for $u \in K \setminus \{u \in K : [u(t,x) - \omega(t,x)]^+ = 0\}$, the complete continuity is obvious by Lemma 2.1. And we can have

$$(Tu)(t,x) = \lambda P[f(t,x,[u(t,x) - \omega(t,x)]^{+}) + h(t,x)]$$

$$\geq \lambda \underline{G} \| f(t,x,[u(t,x) - \omega(t,x)]^{+}) + h(t,x) \|_{L^{1}}$$

$$\geq \underline{G} \frac{\underline{G} \| a \|_{L^{1}}}{\overline{G}} \| T(u) \|$$

$$\geq \delta \| Tu \|.$$

Thus, $T(K \setminus \{u \in K : u(t,x) \le \omega(t,x)\}) \subseteq K$.

Now we prove that the operator T has one fixed point $\widetilde{u} \in K$ and $\|\widetilde{u}\| > \lambda \frac{\overline{G}^2}{\underline{G}^3 \|a\|_{L^1}^2} \|h\|_{L^1}$ for all sufficiently small λ .

Since $\int_{\mathbb{T}^2} F_{\infty}(t, x) dt dx = +\infty$, there exists $r_1 \ge 2$ such that

$$\int_{\mathbb{T}^2} \frac{f(t,x,u)}{u} dt dx \ge \frac{1}{\delta}, \quad u \ge \delta r_1.$$

Furthermore, we have $\int_{\mathbb{T}^2} f(t, x, \delta r_1) dt dx \ge r_1 \ge 2$. It follows that

$$\int_{\mathbb{T}^2} \left[\max \left\{ f(t, x, u) : \frac{\delta}{2} r_1 \le u \le r_1 \right\} + h(t, x) \right] dt \, dx$$
$$\ge \int_{\mathbb{T}^2} f(t, x, \delta r_1) \, dt \, dx \ge r_1 \ge 2.$$

Let $\Phi(t,x) = \max\{f(t,x,u) : \frac{\delta}{2}r_1 \le u \le r_1\} + h(t,x)$. Then $\Phi \in L^1(\top^2)$ and $\int_{\top^2} \Phi(t,x) \, dt \, dx > 0$. Set

$$\lambda^* = \min \left\{ \frac{\delta^2}{2\underline{G} \|h\|_{L^1}}, \frac{2\underline{G} \|a\|_{L^1}}{\overline{G} \|\Phi\|_{L^1}} \right\}.$$

For any $u \in \partial K_{r_1}$ and $0 < \lambda < \lambda^*$, we can verify that

$$u(t,x) - \omega(t,x) \ge \delta \|u\| - \omega(t,x)$$

$$= \delta r_1 - \omega(t,x)$$

$$\ge \delta r_1 - \lambda \frac{\overline{G}}{\underline{G} \|a\|_{L^1}} \|h\|_{L^1}$$

$$\ge \delta r_1 - \frac{\delta r_1}{2}$$

$$= \frac{\delta r_1}{2}.$$

Then we have

$$||Tu|| = \lambda ||P[f(t,x,[u(t,x) - \omega(t,x)]^{+}) + h(t,x)]||$$

$$\leq \lambda \frac{\overline{G}}{\underline{G}||a||_{L^{1}}} ||f(t,x,[u(t,x) - \omega(t,x)]^{+}) + h(t,x)||_{L^{1}}$$

$$\leq \lambda \frac{\overline{G}}{\underline{G}||a||_{L^{1}}} ||\Phi(t,x)||_{L^{1}}$$

$$< 2 \leq r_{1} = ||u||.$$

On the other hand,

$$\liminf_{u\to+\infty}\frac{f(t,x,u-\omega(t,x))}{u}=\liminf_{u\to+\infty}\frac{f(t,x,u)}{u}=F_{\infty}(t,x).$$

By the Fatou lemma, one has

$$\lim_{u \to +\infty} \inf \int_{\mathbb{T}^2} \frac{f(t, x, u - \omega(t, x)) + h(t, x)}{u} dt dx$$

$$\geq \int_{\mathbb{T}^2} \liminf_{u \to +\infty} \frac{f(t, x, u) + h(t, x)}{u} dt dx$$

$$= \int_{\mathbb{T}^2} F_{\infty}(t, x) dt dx = +\infty.$$

Hence, there exists a positive number $r_2 > \delta r_2 > r_1$ such that

$$\int_{\mathbb{T}^2} \frac{f(t,x,u-\omega(t,x))+h(t,x)}{u} dt dx \ge \lambda^{-1} \delta^{-1} \underline{G}^{-1} \big(4\pi^2\big)^{-1}, \quad u \ge \delta r_2.$$

Hence, we have

$$\int_{\mathbb{T}^2} f(t,x,u-\omega(t,x)) + h(t,x) dt dx \ge \lambda^{-1} \underline{G}^{-1} (4\pi^2)^{-1} r_2, \quad u \ge \delta r_2.$$

For any $u \in \partial K_{r_2}$, we have $\delta r_2 = \delta ||u|| \le u(t,x) \le ||u|| = r_2$. On the other hand, since $0 < \lambda < \lambda^*$, we can get

$$u(t,x) - \omega(t,x) \ge \delta r_2 - \omega(t,x)$$

$$\ge \delta \frac{r_2}{\delta} - \lambda \frac{\overline{G}}{\underline{G} ||a||_{L^1}}$$

$$\ge \delta r_2 - \delta$$

$$> 0.$$

From above, we can have

$$||Tu|| \ge \lambda P \Big[f \Big(t, x, \Big[u(t, x) - \omega(t, x) \Big]^+ \Big) + h(t, x) \Big]$$

$$\ge \lambda \underline{G} || f \Big(t, x, \Big[u(t, x) - \omega(t, x) \Big]^+ \Big) + h(t, x) ||_{L^1}$$

$$\ge \lambda \underline{G} 4\pi^2 \lambda^{-1} \underline{G}^{-1} \Big(4\pi^2 \Big)^{-1} r_2$$

$$= r_2.$$

Therefore, by Lemma 1.1, the operator T has a fixed point $\widetilde{u}(t,x) \in K$ and

$$r_2 \ge \|\widetilde{u}\| \ge r_1,$$

$$\widetilde{u}(t,x) - \omega(t,x) \ge \delta r_1 - \lambda \frac{\overline{G}}{G\|a\|_{L^1}} \|h\|_{L^1} \ge \delta r_1 - \frac{\overline{G}}{G\|a\|_{L^1}} \|h\|_{L^1} \frac{\delta^2}{G\|h\|_{L^1}} \ge \delta.$$

So, Eq. (1) has a positive solution $\widehat{u}(t,x) = \widetilde{u}(t,x) - \omega(t,x) \ge \delta$.

Step 2. By conditions (H2) and (H3), it is clear to obtain that

$$u_0 = \inf\{u \in K : f(t, x, u) \le 0, (t, x) \in T^2\} > 0.$$

Let $r_4 = \min\{\frac{\delta}{2}, \frac{\delta ||u_0||}{2}\}$. For any $u \in (0, r_4]$, we have f(t, x, u) > 0. Then define the operator A as follows:

$$(Au)(t,x)=\lambda\widehat{P}\big[f\big(t,x,u(t,x)\big)\big].$$

It is easy to prove that $A(K \cap \{u \in C(T^2) : 0 < ||u|| < r_4\}) \subseteq K$, and $A : K \cap \{u \in C(T^2) : 0 < ||u|| < r_4\} \to K$ is completely continuous.

And for any $\rho > 0$, define

$$M(\rho) = \max\{f(t, x, u) : u \in R^+, \delta \rho \le u \le \rho, (t, x) \in T^2\} > 0.$$

Furthermore, for any $u \in \partial K_{r_4}$, we have

$$\begin{aligned} \|Au\| &= \lambda \|\widehat{P}\big[f\big(t,x,u(t,x)\big)\big]\| \\ &\leq \lambda \frac{\overline{G}}{\underline{G}\|a\|_{L^{1}}} \|f\big(t,x,u(t,x)\big)\|_{L^{1}} \\ &\leq \lambda \frac{\overline{G}}{\underline{G}\|a\|_{L^{1}}} M(r_{4}) 4\pi^{2}. \end{aligned}$$

Thus, from the above inequality, there exists $\overline{\lambda}$ such that

$$||Au|| < ||u||$$
, for $u \in \partial K_{r_A}$, $0 < \lambda < \overline{\lambda}$.

Since $\lim_{u\to 0^+} f(t,x,u) = \infty$, then there is $0 < r_3 < \frac{r_4}{2}$ such that

$$f(t, x, u) > \mu u$$
, for $u \in R^+$ with $0 < u < r_3$,

where μ satisfies $\lambda \underline{G} \mu \delta > 1$. For any $u \in \partial K_{r_3}$, then we have

$$f(t, x, u) \ge \mu u(t, x)$$
, for $(t, x) \in T^2$.

By Lemma 2.1, it is clear to obtain that

$$||Au|| = \lambda ||\widehat{P}[f(t,x,u(t,x))]||$$

$$\geq \lambda \underline{G}||f(t,x,u(t,x))||_{L^{1}}$$

$$\geq \lambda \underline{G}\mu \delta r_{3}$$

$$> r_{3} = ||u||.$$

Therefore, by Lemma 1.1, A has a fixed point in $\overline{u}(t,x) \in K$ and $\|\overline{u}\| \le r_4 \le \frac{\delta}{2}$, which is another positive periodic solution of Eq. (1).

Finally, from Step 1 and Step 2, Eq. (1) has two positive doubly periodic solutions $\widehat{u}(t,x)$ and $\overline{u}(t,x)$ for sufficiently small λ .

Example Consider the following problem:

$$\begin{cases} u_{tt} - u_{xx} + 2u_t + \sin^2(t+x)u = \lambda \left[\frac{1}{u} + \min\{u^2, \frac{u}{|1 - \frac{t}{\pi}||1 - \frac{x}{\pi}|}\right\} - 10\right], \\ u(t+2\pi, x) = u(t, x + 2\pi) = u(t, x). \end{cases}$$

It is clear that f(t, x, u) satisfies the conditions (H1)-(H5).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

This paper is concerned with a singular semipositone telegraph equation with a parameter and represents a somewhat interesting contribution in the investigation of the existence and multiplicity of doubly periodic solutions of the telegraph equation. All authors typed, read and approved the final manuscript.

Author details

¹College of Science, Hohai University, Nanjing, 210098, P.R. China. ²Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China.

Acknowledgements

The authors would like to thank the referees for valuable comments and suggestions for improving this paper.

Received: 26 July 2012 Accepted: 29 December 2012 Published: 16 January 2013

References

- Chu, J, Torres, PJ, Zhang, M: Periodic solutions of second order non-autonomous singular dynamical systems. J. Differ. Equ. 239, 196-212 (2007)
- 2. Chu, J, Fan, N, Torres, PJ: Periodic solutions for second order singular damped differential equations. J. Math. Anal. Appl. 388, 665-675 (2012)
- 3. Chu, J, Zhang, Z: Periodic solutions of second order superlinear singular dynamical systems. Acta Appl. Math. 111, 179-187 (2010)
- Chu, J, Li, M: Positive periodic solutions of Hill's equations with singular nonlinear perturbations. Nonlinear Anal. 69, 276-286 (2008)
- Chu, J, Torres, PJ: Applications of Schauder's fixed point theorem to singular differential equations. Bull. Lond. Math. Soc. 39, 653-660 (2007)
- 6. Jiang, D, Chu, J, Zhang, M: Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differ. Equ. 211, 282-302 (2005)
- 7. Torres, PJ: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. Differ. Equ. 190, 643-662 (2003)
- 8. Torres, PJ: Weak singularities may help periodic solutions to exist. J. Differ. Equ. 232, 277-284 (2007)
- 9. Wang, H: Positive periodic solutions of singular systems with a parameter. J. Differ. Equ. 249, 2986-3002 (2010)
- DeCoster, C, Habets, P: Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results. In: Zanolin, F (ed.) Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations CISM-ICMS, vol. 371, pp. 1-78. Springer, New York (1996)
- 11. Jebelean, P, Mawhin, J: Periodic solutions of forced dissipative *p*-Liénard equations with singularities. Vietnam J. Math. **32**. 97-103 (2004)
- 12. Wang, F: Doubly periodic solutions of a coupled nonlinear telegraph system with weak singularities. Nonlinear Anal., Real World Appl. 12, 254-261 (2011)
- 13. Li, Y: Positive doubly periodic solutions of nonlinear telegraph equations. Nonlinear Anal. 55, 245-254 (2003)
- Ortega, R, Robles-Perez, AM: A maximum principle for periodic solutions of the telegraph equations. J. Math. Anal. Appl. 221, 625-651 (1998)
- Wang, F, An, Y: Nonnegative doubly periodic solutions for nonlinear telegraph system. J. Math. Anal. Appl. 338, 91-100 (2008)
- Wang, F, An, Y: Existence and multiplicity results of positive doubly periodic solutions for nonlinear telegraph system.
 J. Math. Anal. Appl. 349, 30-42 (2009)
- 17. Wang, F, An, Y: Nonnegative doubly periodic solutions for nonlinear telegraph system with twin-parameters. Appl. Math. Comput. 214, 310-317 (2009)
- 18. Wang, F, An, Y: On positive solutions of nonlinear telegraph semipositone system. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 16, 209-219 (2009)
- 19. Xu, X: Positive solutions for singular semi-positone three-point systems. Nonlinear Anal. 66, 791-805 (2007)
- 20. Yao, Q: An existence theorem of a positive solution to a semipositone Sturm-Liouville boundary value problem. Appl. Math. Lett. 23, 1401-1406 (2010)
- 21. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)

doi:10.1186/1687-2770-2013-7

Cite this article as: Wang and An: Multiple positive doubly periodic solutions for a singular semipositone telegraph equation with a parameter. Boundary Value Problems 2013 2013:7.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com