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1 Introduction
Non-smooth differential equations when the vector field is only piecewise smooth, occur
in various situations: in mechanical systems with dry frictions or with impacts, in control
theory, electronics, economics, medicine and biology (see [–] formore references). One
way of studying non-smooth systems is a regularization process consisting on approxima-
tion of the discontinuous vector field by a one-parametric family of smooth vector fields,
which is called a regularization of the discontinuous one. The main problem then is to
preserve certain dynamical properties of the original one to the regularized system. Ac-
cording to our knowledge, the regularization method has been mostly used to differential
equations with non-smooth nonlinearities, like dry friction nonlinearity (see [] and a sur-
vey paper []). As it is shown in [, ], the regularization process is closely connected to
a geometric singular perturbation theory [, ]. On the other hand, it is argued in []
that a harmonic oscillator with a jumping non-linearity with the force field nearly infinite
in one side is a better model for describing the bouncing ball, rather then its limit version
for an impact oscillator. This approach is used also in [] when an impact oscillator is
approximated by a one-parametric family of singularly perturbed differential equations,
but as discussed in [], the geometric singular perturbation theory does not apply.
In this paper, we continue in a spirit of [] as follows. Let� ⊂R

n be an open subset and
G : � →R a C-function, such thatG′(x) �=  for any x ∈ S := {x ∈ � |G(x) = } ⊂ �. Then
S is a smooth hyper-surface of � that we call impact manifold, (or hyper-surface). We set
�± = {x ∈ � | ±G(x) > } and consider the following regular-singular perturbed system:

{
εẋ = f+(x) + εg+(t,x, ε) for x ∈ �+,
ẋ = f–(x) + εg–(t,x, ε) for x ∈ �–

(.)
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for ε >  small. We assume that the system{
ẋ = f+(x) for x ∈ �+,
ẋ = f–(x) for x ∈ �–

(.)

has a continuous periodic solution q(t) crossing transversally the impactmanifold S, given
by

q(t) =

{
q–(t) ∈ �– for – T

– < t < ,
q+(t) ∈ �+ for  < t < T

+

and q–() = q+() ∈ S, q–(–T
–) = q+(T

+ ) ∈ S. By transversal crossing, we mean that

G′(q(±T
±

))
q̇±

(±T
±

)
<  <G′(q())q̇±().

We set Tε := T
– + εT

+ and assume that g±(t,x, ε) are Tε-periodic in t.
Transversal crossing implies that (.) has a family of continuous solutions q(t,α), α ∈

(an open neighborhood I of  ∈)Rn– crossing transversally the impact manifold S, given
by

q(t,α) =

{
q–(t,α) ∈ �– for – T–(α) < t < ,
q+(t,α) ∈ �+ for  < t < T+(α),

where q–(,α) = q+(,α) ∈ S, q–(–T–(α),α),q+(T+(α),α) ∈ S, and q±(t, ) = q±(t) and
T±() = T±. Moreover, T±(α) is C in α, and the maps α �→ q(,α) and α �→ q(±T±(α),α)
give smooth (C) parameterizations of the manifold S in small neighborhoods U of q()
and U± of q(T

+ ) = q(–T
–). Then the map R : U ∩ S → U+ ∩ S, q(,α) �→ q+(T+(α),α) is

C-smooth. In this paper, we study the problem of existence of a Tε-periodic solution of
the singular problem (.) in a neighborhood of the set

{
q–(t) | t ∈ [

–T
– , 

]} ∪ {
q+(t) | t ∈ [

,T
+

]}
.

As a matter of fact, in the time interval [,εT
+ ], resp. [–T

– , ], the periodic solutions will
stay close to q+(ε–t), resp. to q–(t), and hence it will pass from the point of S near q() to
the point of S near q+(T

+ ) in a very short time (of the size of εT
+ ). So, we may say that the

behavior of the periodic solutions of (.) in the interval [–T
– , εT

+ ] is quite well simulated
by the solution of the perturbed impact system

ẋ = f–(x),

R
(
q–(,α)

)
= q+

(
T+(α),α

)
.

(.)

It is now clear that our study has been mostly motivated by the paper [], where a
similar problem on planar perturbed harmonic oscillators is studied. However arguments
in [] are mainly based on averaging methods whereas, in this paper, we investigate a
general higher-dimensional singular equation such as (.) by using the Lyapunov-Schmidt
reduction. We focus on the existence of periodic solutions and do not check their local
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asymptotic properties as, for example, stability or hyperbolicity. This could be also done
by following our approach but we do not go into detail in this paper.
Our results (see Theorems . and .) state that if a certain Poincaré-Melnikov-like

function has a simple zero then the above problem has an affirmative answer. The proof
of this fact is accomplished in several steps. In Section , we show, for any α in a neigh-
borhood of α = , the existence of a unique continuous solution x(t) = x(t,α, ε) of (.)
near the set {q(t,α) | t ∈ [–T

– ,T
+ ]} which is defined in [–T– + τ , εT+ + τ ], T± 
 T± and

such that x(τ ) = q(,α), for some τ , and x(–T– + τ ,α, ε), x(εT+ + τ ,α, ε) belong to U± ∩ S.
Moreover, α �→ x(–T– + τ ,α, ε) and α �→ x(εT+ + τ ,α, ε) are C close to q±(±T±(α),α) and
then α �→ x(–T– +τ ,α, ε) and α �→ x(εT+ +τ ,α, ε) giveC parameterizations of S in neigh-
borhoods of q±(±T–(α),α). Hence, x(–T– + τ ,α, ε) �→ x(εT+ + τ ,α, ε) gives a Poincaré-like
map and a (T

– + εT
+ )-periodic solution is found by solving the equations

x(εT+ + τ ,α, ε) = x(–T– + τ ,α, ε),

T– + εT+ = T
– + εT

+ .

Thus, the bifurcation equation is obtained by putting conditions x(εT+ + τ ,α, ε) = x(–T– +
τ ,α, ε), T– + εT+ = T

– + εT
+ and the fact that the points x(εT+ + τ ,α, ε) and x(–T– + τ ,α, ε)

belong to S together. Then, in Section , we use the Lyapunov-Schmidt method to prove
that the above equations can be solved for (T–,T+, τ ,α) 
 (T

– ,T
+ , τ, ) as functions of

ε >  small provided a certain Poincaré-Melnikov-like function has a simple zero. We will
first study the case, that we call non-degenerate, when

∂

∂α

[
q+

(
T+(α),α

)
– q–

(
–T–(α),α

)]
α=w �= , ∀w ∈R

n– such that T ′
–()w = . (.)

Condition (.) has a simple geometrical meaning. The impact system (.) has a T
–-

periodic solution if and only if the following condition holds:

q+
(
T+(α),α

)
= q–

(
–T–(α),α

)
, T–(α) = T

– . (.)

Now, suppose there is a sequence  �= αn → , as n → ∞ such that (.) holds. Possibly
passing to a subsequence we can suppose that limn→∞ αn

|αn| = w, |w| = . Then, taking the
limit in the equalities:

q+(T+(αn),αn) – q–(–T–(αn),αn)
|αn| = ,

T–(αn) – T
–

|αn| = 

we see that condition (.) does not hold. Thus, (.) implies that, in a neighborhood of
α = , there are no other T

–-periodic solutions of (.) apart from q–(t).
In Section , we define the adjoint system to the linearization of the impact system⎧⎪⎨⎪⎩

ẋ = f–(x),
x() = q–(,α), x(–T–(α)) = R(x()),
G(x(–T–(α))) = , –T–(α)≤ t ≤ 

(.)

along the solution x(t) = q–(t, ) and relate the Poincaré-Melnikov function obtained in
Section  with the solutions of such an adjoint system.
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Section  is devoted to the extension of the result to the case (that we call degenerate)
where q+(T+(α),α) = q–(–T–(α),α) for any α ∈ I.We will see that our results can be easily
extended provided one of the following two conditions hold:

either T ′
–() �=  or T–(α) = T

– for any α ∈ I.
Section  is devoted to the construction of some planar examples, although our results

are given for an arbitrary finite dimension. Finally, the Appendix contains some technical
proofs.

2 The bifurcation equation
We set u+(t,α) = q+(ε–t,α), u–(t,α) = q–(t,α) and

u(t,α) =

{
u–(t,α) for – T–(α)≤ t < ,
u+(t,α) for  ≤ t < εT+(α).

Note that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εu̇+(t,α) = f+(u+(t,α)),
u̇–(t,α) = f–(u–(t,α)),
u+(,α) = u–(,α),
u+(εT+(α),α),u–(–T–(α),α) ∈ S

and that u(t, ) is a continuous periodic solution, of period T
– + εT

+ , of the piecewise
continuous singular system:

{
εẋ = f+(x) for x ∈ �+,
ẋ = f–(x) for x ∈ �–.

Obviously, u–(t,α) extends to a solution of the following impact system:

{
ẋ = f–(x) for x ∈ �–,
x(t+) = q+(T+(α),α) when x(t–) = q–(,α)

that can be written as{
ẋ = f–(x) for x ∈ �–,
x(t+) = R(x(t–)) when x(t–) ∈U ∩ S.

Our purpose is to find a Tε-periodic solution x(t, ε) of system (.), which is orbitally
close to u(t,α) for some α = α(ε)→ , as ε → + that is such that

sup
–T–≤t≤εT

+

∣∣x(
t + τ (ε), ε

)
– u

(
t,α(ε)

)∣∣ →  as ε → + (.)

for some (τ (ε),α(ε)) → (τ, ) as ε → . Thus, we may say that, in some sense, the im-
pact periodic solution u–(t, ) approximates the periodic solution x(t, ε) of the singular
perturbed equation (.).

http://www.boundaryvalueproblems.com/content/2013/1/71
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To this end, we first set x(t + τ ) = x+(t) +u+(t,α) in equation εẋ = f+(x) + εg+(t,x, ε). Then
x+(t) satisfies

εẋ – f ′
+
(
u+(t,α)

)
x = h+(t, τ ,x,α, ε) (.)

where

h+(t, τ ,x,α, ε)

= f+
(
x + u+(t,α)

)
– f+

(
u+(t,α)

)
– f ′

+
(
u+(t,α)

)
x + εg+

(
t + τ ,x + u+(t,α), ε

)
.

Since u+(,α) describes U ∩ S, we consider (.) with the initial condition x = . Let
X+(t,α) be the fundamental solution of ẋ = f ′

+(q+(t,α))x, such that X+(,α) = I. Then
X+(ε–t,α) is the fundamental solution of εẋ = f ′

+(u+(t,α))x, with X+(,α) = I. Let T+ be
near T

+ . By the variation of constants formula, the solution of (.) with the initial condi-
tion x =  satisfies

x+(t) = ε–
∫ t


X+

(
ε–t,α

)
X–
+

(
ε–s,α

)
h

(
s, τ ,x+(s),α, ε

)
ds.

Thus, we conclude that for ρ >  and T+ near T
+ equation εẋ = f+(x) + εg(t,x, ε) has a

solution x(t) such that sup≤t≤εT+ |x(t + τ ) – u+(t,α)| < ρ if and only if the map x(t) �→ x̂(t)
given by

x̂(t) = ε–
∫ t


X+

(
ε–t,α

)
X–
+

(
ε–s,α

)
h

(
s, τ ,x(s),α, ε

)
ds, (.)

has a fixed point whose sup-norm in [, εT+] is smaller than ρ . To show that (.) has a
fixed point of norm less than ρ , we set y(t) := x(εT+t), t ∈ [, ] and note that x(t) is a fixed
point of (.) of norm less than ρ , with  ≤ t ≤ εT+, if and only if y(t) is a fixed point of
norm less than ρ of the map:

ŷ(t) = T+

∫ t


X+(T+t,α)X–

+ (T+σ ,α)h
(
εT+σ , τ , y(σ ),α, ε

)
dσ , (.)

≤ t ≤ . Note that

h+(εT+t, τ ,x,α, ε) = f+
(
x + q+(tT+,α)

)
– f+

(
q+(tT+,α)

)
– f ′

+
(
q+(tT+,α)

)
x

+ εg+
(
εtT+ + τ ,x + q+(tT+,α), ε

)
,

and hence in the fixed-point equation (.), we may also take ε ≤ . Then since (x,T+,
α, ε) �→ h+(εT+τ , τ ,x,α, ε),  ≤ τ ≤  is a C-map and

∣∣h+(t, τ ,x,α, ε)∣∣ ≤ 	
(|x|)|x| +Ng |ε|,

where

Ng = sup
{∣∣g+(t, x̃, ε)∣∣ | t ∈ R, |̃x| ≤ ρ + sup

t∈[,T+(α)],α∈I

∣∣q+(t,α)∣∣, |ε| ≤ ε

}
,

	(ρ) = sup
{∣∣f ′(x + q+(t,α)

)
– f ′(q+(t,α))∣∣ | t ∈ [

,T+(α)
]
, |x| ≤ ρ,α ∈ I

}
,

http://www.boundaryvalueproblems.com/content/2013/1/71
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the map y(t) �→ ŷ(t) is a C-contraction on the Banach space of bounded continuous
functions on [, ] whose sup-norm is less than or equal to ρ provided ρ is sufficiently
small, T+ is near T

+ , |ε| is small, α ∈ I and τ ∈ R. Let y+(t, τ ,α,T+, ε) be the C-solution
of the fixed point (.). We emphasize the fact that ε may also be non-positive. Then
x+(t, τ ,α, ε) := y+(ε–T–

+ t, τ ,α,T+, ε) is a fixed point of (.) and

x+(εt, τ ,α, ε) := y+
(
T–
+ t, τ ,α,T+, ε

)
(.)

is C in all parameters and t.
Writing T–

+ t in place of t in (.) and using (.) we see that

x+(εt, τ ,α, ε) =
∫ t


X+(t,α)X–

+ (s,α)h+
(
εs, τ ,x+(εs, τ ,α, ε),α, ε

)
ds, (.)

≤ t ≤ T+. We have, by definition, x+(, τ ,α, ε) + u+(,α) = u+(,α) ∈ S and

x+(εT+, τ ,α, ε) + u+(εT+,α) ∈ S

if and only if (recall that u+(εT+,α) = q+(T+,α))

G
(
q+(T+,α) +

∫ T+


X+(T+,α)X–

+ (s,α)h+
(
εs, τ ,x+(εs, τ ,α, ε),α, ε

)
ds

)
= . (.)

We remark that equation (.) has meaning also when ε <  but its relevance for our prob-
lem is only when ε > .
As second step we consider the solution of the differential equation on �–:

ẋ = f–(x) + εg–(t,x, ε), x(τ ) = q(,α)

which is close to u–(t – τ ,α) on –T– + τ ≤ t ≤ τ , T– 
 T
– . Let X–(t,α) be the fundamental

solution of the linear system ẋ = f ′
–(u–(t,α))x such thatX–(,α) = I. Setting x(t+τ ) = x–(t)+

u–(t,α) we see that (for t ∈ [–T–, ]) x–(t) satisfies the equation:

{
ẋ – f ′

–(u–(t,α))x = h–(t, τ ,x,α, ε),
x() = ,

(.)

where

h–(t, τ ,x,α, ε)

= f–
(
x + u–(t,α)

)
– f–

(
u–(t,α)

)
– f ′

–
(
u–(t,α)

)
x + εg–

(
t + τ ,x + u–(t,α), ε

)
.

Again by the variation of constants formula we get the integral formula:

x–(t) =
∫ t


X–(t,α)X–(s,α)–h–

(
s, τ ,x–(s),α, ε

)
ds

http://www.boundaryvalueproblems.com/content/2013/1/71
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which, as before, has a unique solution of norm less than a given, small, ρ : x–(t, τ ,α, ε),
with –T– ≤ t ≤ . At t = –T– the solution of (.) takes the value:

–
∫ 

–T–
X–(–T–,α)X–(s,α)–h–

(
s, τ ,x–(s,α, ε),α, ε

)
ds.

Now, we want to solve the equation

x–(–T–, τ ,α, ε) + u–(–T–,α) = x+(εT+, τ ,α, ε) + u+(εT+,α)

that is [again using u+(εT+,α) = q+(T+,α) and u–(–T–,α) = q–(–T–,α)]:

q+(T+,α) +
∫ T+


X+(T+,α)X–

+ (s,α)h+
(
εs, τ ,x+(εs, τ ,α, ε),α, ε

)
ds

= q–(–T–,α) –
∫ 

–T–
X–(–T–,α)X–(s,α)–h–

(
s, τ ,x–(s, τ ,α, ε),α, ε

)
ds. (.)

Of course, when (.) holds, then (.) is equivalent to

G
(
q–(–T–,α) –

∫ 

–T–
X–(–T–,α)X–(s,α)–h–

(
s, τ ,x–(s, τ ,α, ε),α, ε

)
ds

)
= . (.)

So, our task reduces to solve the system formed by equations (.), (.) together with
the period equation:

T– + εT+ = T
– + εT

+

that is the equation F (T+,T–, τ ,α, ε) =  where:

F (T+,T–, τ ,α, ε)

:=

⎛⎜⎝ x–(–T–, τ ,α, ε) + q–(–T–,α) – x+(εT+, τ ,α, ε) – q+(T+,α)
G(q–(–T–,α) –

∫ 
–T– X–(–T–,α)X–

– (s,α)h–(s, τ ,x–(s, τ ,α, ε),α, ε), ε)ds)
T– – T

– + ε(T+ – T
+ )

⎞⎟⎠ .

According to the smoothness properties of x–(t, τ ,α, ε) and x+(εt, τ ,α, ε), it results that
F (T+,T–, τ ,α, ε) is C.

3 SolvingF (T+,T–,τ ,α,ε) = 0
In this section, we will give a criterion to solve equation F (T+,T–, τ ,α, ε) =  for
(T+,T–, τ ,α) in terms of ε for small ε > . We will use a Crandall-Rabinowitz type result
(see also [, Theorem .]) concerning the existence of a solution of a nonlinear equation
having a manifold of fixed point at a certain value of a parameter.
Our result is as follows. Consider the linear system

⎧⎪⎨⎪⎩
ψ *q̇+(T

+ , ) = 
ψ = [ψ * +ψG′(q(–T

– , ))]q̇–(–T
– , )

ψ *[ ∂q–
∂α

(–T
– , ) –

∂q+
∂α

(T
+ , )] +ψG′(q(–T

– , ))q̇–(–T
– , )T ′

–() = .
(.)

http://www.boundaryvalueproblems.com/content/2013/1/71
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We will prove that if (.) holds, system (.) has a unique solution, up to a multiplicative
constant, and the following result holds:

Theorem . Assume condition (.) holds and let (ψ ,ψ,ψ) ∈R
n ×R×R be the unique

(up to a multiplicative constant) solution of (.). If the Poincaré-Melnikov function

M(τ ) := ψ *
∫ T

+


X+

(
T
+ , 

)
X+(s, )–g+

(
τ ,u(, ), 

)
ds

+ψ *
∫ 

–T–

X–
(
–T

– , 
)
X–(s, )–g–

(
s + τ ,u–(s, ), 

)
ds

+ψG′(q(
–T

– , 
)) ∫ 

–T–

X–
(
–T

– , 
)
X–
– (s, )g–

(
s + τ ,q–(s, ), 

)
ds (.)

has a simple zero at τ = τ, then system (.) has a Tε-periodic solution x(t, ε) satisfying
(.).

Proof To start with, wemake few remarks on the functions x±(t, τ ,α, ε). First we note that
when ε =  equation (.) reads

{
ẋ = f–(x + u–(t,α)) – f–(u–(t,α)),
x() = 

which has the (unique) solution x(t) = . Thus,

x–(t, τ ,α, ) = .

Next, differentiating equation (.) with respect to ε we see that ∂x–
∂ε

(t, τ ,α, ) satisfies the
equation:

{
ẋ – f ′

–(u–(t,α))x = g–(t + τ ,u–(t,α), ),
x() = .

Hence,

x–,ε(t, τ ,α, ) :=
∂x–
∂ε

(t, τ ,α, ) =
∫ t


X–(t,α)X–(s,α)–g–

(
s + τ ,u–(s,α), 

)
ds.

Next, x+(, τ ,α, ε) =  by the definition and differentiating equation (.) with respect to
ε at ε =  and using the equalities:

x+(, τ ,α, ε) = , h–,t(, τ , ,α, ) = , h–,x(, τ , ,α, ) = 

we get

tẋ+(, τ ,α, ) =
∫ t


X+(t,α)X–

+ (s,α)g+
(
τ ,u+(,α), 

)
ds.

http://www.boundaryvalueproblems.com/content/2013/1/71
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So, equation (.) at ε =  and T± = T±(α) becomes

q–
(
–T–(α),α

)
= q+

(
T+(α),α

)
which is satisfied for α = . Now we look at equation (.). Since h–(t, τ , ,α, ) = , we
see that when ε =  and T– = T–(α) the equality is satisfied. As a consequence, we get

F
(
T+(α),T–(α), τ ,α, 

)
=

⎛⎜⎝q–(–T–(α),α) – q+(T+(α),α)


T–(α) – T
–

⎞⎟⎠ (.)

and F (T
+ ,T

– , τ , , ) = . Next we look at derivatives of F with respect to T+, T–, α and
ε at the point (T

+ ,T
– , τ , , ). We have

∂

∂T–

[
x–(–T–, τ ,α, ε) + q–(–T–,α) – x+(εT+, τ ,α, ε) – q+(T+,α)

]
= –ẋ–(–T–, τ ,α, ε) – q̇–(–T–,α) → –q̇–(–T–,α), as ε → ,

and similarly, using

εẋ+(εT+, τ ,α, ε) = f
(
x+(εT+, τ ,α, ε) + q+(T+,α)

)
– f

(
q+(T+,α)

)
+ εg

(
t + τ ,x+(εT+, τ ,α, ε) + q+(T+,α), ε

)
,

we get

∂

∂T+

[
x–(–T–, τ ,α, ε) + q–(–T–,α) – x+(εT+, τ ,α, ε) – q+(T+,α)

]
= –εẋ+(εT+, τ ,α, ε) – q̇+(T+,α)→ –q̇+(T+,α), as ε → .

Next

∂

∂α

[
x–(–T–, τ ,α, ε) + q–(–T–,α) – x+(εT+, τ ,α, ε) – q+(T+,α)

]
→ ∂q–

∂α
(–T–,α) –

∂q+
∂α

(T+,α), as ε → ,

and

∂

∂τ

[
x–(–T–, τ ,α, ε) + q–(–T–,α) – x+(εT+, τ ,α, ε) – q+(T+,α)

] →  as ε → .

So, the Jacobian matrix L of F at the point (T
+ ,T

– , τ , , ) is

L :=
∂F

∂(T+,T–, τ ,α)
(
T
+ ,T


– , τ , , 

)

=

⎛⎜⎝–q̇+(T
+ , ) –q̇–(–T

– , )  ∂q–
∂α

(–T
– , ) –

∂q+
∂α

(T
+ , )

 –G′(q(–T
– , ))q̇–(–T

– , )  G′(q(–T
– , ))

∂q–
∂α

(–T
– , )

   

⎞⎟⎠

http://www.boundaryvalueproblems.com/content/2013/1/71
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and (μ+,μ–, τ ,w) ∈R×R×R×R
n– belongs to the kernelNL of L if and only if⎧⎪⎨⎪⎩

μ– = ,
[ ∂q–

∂α
(–T

– , ) –
∂q+
∂α

(T
+ , )]w = q̇+(T

+ , )μ+,
G′(q–(–T

– , ))
∂q–
∂α

(–T
– , )w = .

(.)

From G(q–(–T–(α),α)) = , we get

G′(q(
–T

– , 
))[

–q̇–
(
–T

– , 
)
T ′
–() +

∂q–
∂α

(
–T

– , 
)]

=  (.)

thus, on account of the transversality condition G′(q(T
– , ))q̇–(–T

– , ) �= , (.) is equiv-
alent to⎧⎪⎨⎪⎩

[ ∂q–
∂α

(–T
– , ) –

∂q+
∂α

(T
+ , )]w = q̇+(T

+ , )μ+,
T ′
–()w = ,

μ– = .
(.)

Next, from G(q+(T+(α),α)) = , we get

G′(q(
T
+ , 

))[
q̇+

(
T
+ , 

)
T ′
+() +

∂q+
∂α

(
T
+ , 

)]
=  (.)

then subtracting (.) from (.) and using q(T
+ , ) = q(–T

– , ) we obtain:

G′(q(
T
+ , 

))[
q̇+

(
T
+ , 

)
T ′
+() + q̇–

(
–T

– , 
)
T ′
–()

]
=G′(q(

T
+ , 

))[
∂q–
∂α

(
–T

– , 
)
–

∂q+
∂α

(
T
+ , 

)]
.

So, if w ∈R
n– satisfies (.), we see that

G′(q(
T
+ , 

))
q̇+

(
T
+ , 

)
T ′
+()w =G′(q(

T
+ , 

))
q̇+

(
T
+ , 

)
μ+

and then, on account of transversality, T ′
+()w = μ+. Summarizing, we have seen that, if

(μ+,μ–, τ ,w) ∈NL then μ+ = T ′
+()w, μ– =  and w ∈R

n– satisfies{
[ ∂q–

∂α
(–T

– , ) –
∂q+
∂α

(T
+ , )]w = q̇+(T

+ , )T ′
+()w,

T ′
–()w = .

(.)

On the other hand, if w ∈ R
n– satisfies (.), then (T ′

+()w, , τ ,w) belongs to NL. So
NL = span{(, , , )} if and only if system (.) has the trivial solution w =  only. But
(.) is equivalent to{

∂
∂α
[q–(–T–(α),α) – q+(T+(α),α)]α=w = ,

T ′
–()w = ,

and hence (.) has the trivial solution if and only if the non-degenerateness condition (.)
holds. We emphasize the fact that, assuming condition (.), equation F (T+,T–, τ ,α, ) =

http://www.boundaryvalueproblems.com/content/2013/1/71


Battelli and Fečkan Boundary Value Problems 2013, 2013:71 Page 11 of 33
http://www.boundaryvalueproblems.com/content/2013/1/71

 has themanifold of fixed points (T+,T–, τ ,α) = (T
+ ,T

– , τ , ) and the linearization ofF at
these points is Fredholmwith index zerowith the one-dimensional kernel span{(, , , )}.
Hence, there is a unique vector, up to amultiplicative constant, ψ̃ ∈R

n+ such that ψ̃ *L = ,
i.e.,

ψ̃ *

⎛⎜⎝–q̇+(T
+ , ) –q̇–(–T

– , )  ∂q–
∂α

(–T
– , ) –

∂q+
∂α

(T
+ , )

 –G′(q(–T
– , ))q̇–(–T

– , )  G′(q(–T
– , ))

∂q–
∂α

(–T
– , )

   

⎞⎟⎠ = .

Writing ψ̃ * = (ψ *,ψ,ψ),ψ ∈R
n,ψ,ψ ∈Rwe see thatψ ,ψ,ψ satisfy (.). This proves

the claim before the statement of Theorem ..
We recall that our purpose is to solve the equation F (T+,T–, τ ,α, ε) =  for ε �=  and

that F (T+,T–, τ ,α, ) =  has the one-dimensional manifold of solutions (T+,T–, τ ,α) =
(T

+ ,T
– , τ , ) and its linearization along the points of this manifold is Fredholm with the

one-dimensional kernel span{(, , , )}. Hence, we are in position of applying the follow-
ing result that has been more or less proved in [].

Theorem. Let,X, Y be Banach spaces and F : X×R → Y a C-map such that F(x, ) =
 has a C, d-dimensional, manifold of solutions M = {x = ξ (μ) | μ ∈ R

d}. Assume that
for any μ in a neighborhood of μ =  the linearization L(μ) = DF(ξ (μ), ) has the null
space Tξ (μ)M = span{ξ ′(μ)}. Assume further that L(μ) is Fredholm with index zero and let
�(μ) : Y →RL(μ) a projection of Y onto the range of L(μ). Then if the Poincaré-Melnikov
function

[
I –�(μ)

]
DF

(
ξ (μ), 

)
has a simple zero at μ = , there exists ε̄ >  and a unique map (–ε̄, ε̄) �→ x(ε) ∈ X such
that F(x(ε), ε) = .Moreover, DF(x(ε), ε) is an isomorphism for ε �= .

Actually the statement in [, Theorem .] is slightly different from the above. Hence,
we give a proof of Theorem . in the Appendix.
We apply Theorem . to the map F (T+,T–, τ ,α, ε) with μ = τ . Then L(τ ) = L is in-

dependent of τ , and hence so is �(τ ) = �. Next [I – �]z = ψ̃*z
|ψ̃ | ψ̃ where RL = {ψ̃}⊥ and

ψ̃ * = (ψ *,ψ,ψ) ∈ R
n+, ψ ∈ R

n, ψ,ψ ∈ R, is any vector satisfying (.). To apply Theo-
rem ., we look at the derivative of F (T

+ ,T
– , τ , , ε) with respect to ε at ε = . First, we

have:

∂[x+(εT+,α, ε) – x–(–T–,α, ε)]
∂ε ε=

=
∫ T+


X+(T+,α)X+(s,α)–g+

(
τ ,u(,α), 

)
ds

+
∫ 

–T–
X–(–T–,α)X–(s,α)–g–

(
s + τ ,u–(s,α), 

)
ds

whereas differentiating (.) with respect to ε at ε =  we get

–G′(q–(–T–,α)
) ∫ 

–T–
X–(–T–,α)X–

– (s,α)g–
(
s + τ ,q–(s,α), 

)
ds.

http://www.boundaryvalueproblems.com/content/2013/1/71
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We obtain then

∂F
∂ε

(
T
+ ,T


– , τ , , 

)

=

⎛⎜⎜⎜⎜⎝
–

∫ T
+

 X+(T
+ , )X+(s, )–g+(τ ,q+(, ), )ds

–
∫ 
–T–

X–(–T
– , )X–(s, )–g–(s + τ ,q–(s, ), )ds

–G′(q(–T
– , ))

∫ 
–T–

X–(–T
– , )X–

– (s, )g–(s + τ ,q–(s, ), )ds


⎞⎟⎟⎟⎟⎠
and then the Poincaré-Melnikov function is:

M(τ )

:=ψ *
∫ T

+


X+

(
T
+ , 

)
X+(s, )–g+

(
τ ,u(, ), 

)
ds

+ψ *
∫ 

–T–

X–
(
–T

– , 
)
X–(s, )–g–

(
s + τ ,u–(s, ), 

)
ds

+ψG′(q(
–T

– , 
)) ∫ 

–T–

X–
(
–T

– , 
)
X–
– (s, )g–

(
s + τ ,q–(s, ), 

)
ds. (.)

The conclusion of Theorem . now easily follows from (.) and Theorem .. �

4 Poincaré-Melnikov function and adjoint system
In this section, we want to give a suitable definition of the adjoint system of the lineariza-
tion of (.) along q–(t) in such a way that the Poincaré-Melnikov function (.) can be
put in relation with the solutions of such an adjoint system.
Let R : U ∩ S → U+ ∩ S be the C-map defined in Introduction and recall the impact

equation (.):

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ = f–(x),
x() = q–(,α) ∈ S ∩U,
x(–T(α)) = R(x()),
G(x(–T(α))) = ,
–T(α)≤ t ≤ .

(.)

For α = , (.) has the solution x(t) = q–(t, ), –T
– ≤ t ≤ . We let x(t,α) denote the solu-

tion of the impact system (.) on [–T(α), ]. Then its derivative with respect to α at α = 
satisfies the linearized equation:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u̇ = f ′
–(q–(t, ))u,

u() = ∂q–
∂α

(, ),
R′(q(, ))u() = u(–T

–) – q̇–(–T
– , )T,

G′(q–(–T
– , ))[u(–T

–) – q̇–(–T
– , )T] = ,

T ′() = T : Rn– →R.

(.)

http://www.boundaryvalueproblems.com/content/2013/1/71
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Next, recalling (.), we consider a perturbed impact system of (.) (see also (.)) of the
form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ = f–(x) + εg–(t + τ ,x, ε),
x() = q–(,α) ∈ S ∩U,
x(–T(α, ε)) = R(τ ;x(), ε),
G(x(–T(α, ε))) = ,
–T(α, ε) ≤ t ≤ 

(.)

whereR :R×U∩S×(–δ, δ) →U+∩S is defined as follows:R(τ ; ξ , ε) = x+(εT+(ξ , τ , ε), τ , ε)
and x+(t, τ , ε) is the solution of

εẋ = f+(x) + εg+(t + τ ,x, ε),

x() = ξ .

Note that R is a C-map on R×U ∩ S ×R taking values on U+ ∩ S and R(τ ;q(,α), ) =
q+(T+(α),α); moreover, when g+ is autonomous then R is independent of τ , so wemay take
τ =  in its definition.We recall that for simplicity we write R(ξ ) instead of R(τ ; ξ , ), ξ ∈ S.
To study the problem of existence of solutions of system (.), we are then led to find

conditions on h(t), d and T so that the non-homogeneous linear equation:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u̇ – f ′
–(q–(t, ))u = h(t),

u() = ∂q–
∂α

(, )θ , θ ∈R
n–,

u(–T
–) – q̇–(–T

– , )T – R′(q(, ))u() = d ∈R
n,

G′(q–(–T
– , ))[u(–T

–) – q̇–(–T
– , )T] = ,

T = T

(.)

has a solution (u(t), θ ,T). Let us comment on equation (.) (and similarly on (.)) that
condition u(–T

–)– q̇–(–T
– , )T –R′(q(, ))u() = d only involves the derivative ofR(ξ ) on

the tangent space TξS since u() = ∂q–
∂α

(, ) ∈ TξS, ξ = q–(, ). So, it is independent of any
extension we take of R(ξ ) to a neighborhood of q–(, ). We also note that for simplicity
we denote again by T the value of the linear functional T in (.).
Since G(R(q–(,α))) = , we get

G′(R(
q–(, )

))
R′(q–(, ))∂q–

∂α
(, )θ = 

for any θ ∈R
n– and then

G′(R(
q–(, )

))
d =G′(R(

q–(, )
))[

u
(
–T

–
)
– q̇–

(
–T

– , 
)
T – R′(q(, ))∂q–

∂α
(, )θ

]
= .

So, if equation (.) has a solution, we must necessarily have

G′(R(
q–(, )

))
d = 

[⇔ G′(q+(
T
+ , 

))
d = 

]
.

http://www.boundaryvalueproblems.com/content/2013/1/71
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Next, we define two Hilbert spaces:

X :=
{
(u, θ ,T) ∈W ,([

–T
– , 

]
,Rn) ×R

n– ×R | u() = ∂q–
∂α

(, )θ
}

Y :=
{
(h,d,T) ∈ L

([
–T

– , 
]
,Rn) ×R

n– ×R×R |G′(R(
q–(, )

))
d = 

}
.

Note Y is a Hilbert space andX is a closed subspace of aHilbert spaceW ,([–T
– , ],Rn)×

R
n– ×R. Then (.) can be written as

A(u, θ ,T) = (h,d, ,T)

with

A(u, θ ,T) :=

⎛⎜⎜⎜⎝
u̇ – f ′

–(q–(t, ))u
u(–T

–) – q̇–(–T
– , )T – R′(q(, ))u()

G′(q–(–T
– , ))[u(–T

–) – q̇–(–T
– , )T]

T

⎞⎟⎟⎟⎠
and A : X → Y .

Lemma . The rangeRA is closed.

Proof Indeed, let A(un, θn,Tn) = (hn,dn, ,Tn
 ) → (h̄, d̄, , T̄). Then

un(t) =
∂q–
∂α

(t, )θn –
∫ 

t
X–(t)X–

– (t, s)hn(s)ds

and ⎧⎪⎨⎪⎩
R′(q(, )) ∂q–

∂α
(, )θn – ∂q–

∂α
(–T

– , )θn
= –dn –

∫ 
–T–

X–(–T
– , )X–(s, )–hn(s)ds – q̇–(–T

– , )Tn
 ,

G′(q–(–T
– , ))dn = .

Since

– dn –
∫ 

–T–

X–
(
–T

– , 
)
X–(s, )–hn(s)ds – q̇–

(
–T

– , 
)
Tn


→ –d̄ –
∫ 

–T–

X–
(
–T

– , 
)
X–(s, )–h̄(s)ds – q̇–

(
–T

– , 
)
T̄,

and R[R′(q(, )) ∂q–
∂α

(, ) · – ∂q–
∂α

(–T
– , ) · ] is closed, then G′(q–(–T

– , ))d̄ =  and there
exists θ̄ ∈R

n– so that

R′(q(, ))∂q–
∂α

(, )θ̄ –
∂q–
∂α

(
–T

– , 
)
θ̄

= –d̄ –
∫ 

–T–

X–
(
–T

– , 
)
X–(s, )–h̄(s)ds – q̇–

(
–T

– , 
)
T̄.

http://www.boundaryvalueproblems.com/content/2013/1/71
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By taking

ū(t) :=
∂q–
∂α

(t, )θ̄ –
∫ 

t
X–(t)X–

– (t, s)h̄(s)ds, T̄ = T̄,

we derive (h̄, d̄, , T̄) = A(ū, θ̄ , T̄) ∈RA. The proof is finished. �

Next, we prove the following result.

Proposition . Let (h,d,T) ∈ Y . Then the inhomogeneous system (.) has a solution
(u(t), θ ,T) ∈ X if and only if equation

∫ 

–T–

v(t)*h(t)dt +ψ *d +ψT =  (.)

holds for any solution v(t) of the adjoint system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v̇(t) + f ′

–(q–(t, ))*v(t) = ,
[ ∂q–

∂α
(, )]*[v() – R′(q–(, ))*ψ] = ,

v(–T
–) = ψ +ψG′(q–(–T

– , ))*,
ψ *q̇+(T

+ , ) = 

(.)

and ψ = ψ *q̇–(–T
– , ) +ψG′(q–(–T

– , ))q̇–(–T
– , ).

Proof Before starting with the proof we observe that, because of G′(q+(T
+ , ))d = , ψ is

not uniquely determined by equation (.) since changing it with ψ + λG′(q–(–T
– , ))*,

λ ∈ R, the equation remains the same. So, in equation (.), we look for ψ in a subspace
of Rn which is transverse to G′(q–(–T

– , ))*. It turns out that the best choice, from a com-
putational point of view, is to take ψ so that ψ *q̇+(T

+ , ) =  (see equation (.)).
First, we prove necessity. Assume that (.) can be solved for (u, θ ,T) ∈ X and let

(v(t),ψ ,ψ), v ∈W ,([–T
– , ],Rn), be a solution of equation (.). Then

h(t) = u̇(t) – f ′(q–(t, ))u(t),
d = u

(
–T

–
)
– q̇–

(
–T

– , 
)
T – R′(q(, ))∂q–

∂α
(, )θ ,

 =G′(q–(
–T

– , 
))[

u
(
–T

–
)
– q̇–

(
–T

– , 
)
T

]
,

T = T .

Plugging these equalities in the left-hand side of (.) and integrating by parts, (.) reads

v()*
∂q–
∂α

(, )θ – v
(
–T

–
)*u(

–T
–

)
–

∫ 

–T–

[
v̇(t) + f ′

–
(
q–(t, )

)*v(t)]*u(t)dt
+ψ *

[
u

(
–T

–
)
– q̇–

(
–T

– , 
)
T – R′(q(, ))∂q–

∂α
(, )θ

]
+ψG′(q–(

–T
– , 

))[
u

(
–T

–
)
– q̇–

(
–T

– , 
)
T

]
+ψT = 
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or {[
∂q–
∂α

(, )
]*[

v() – R′(q–(, ))*ψ]}*

θ

+
[
ψ – v

(
–T

–
)
+ψG′(q–(

–T
– , 

))*]*u(
–T

–
)

–
∫ 

–T–

[
v̇(t) + f ′

–
(
q–(t, )

)*v(t)]*u(t)dt
+

[
ψ –ψ *q̇–

(
–T

– , 
)
–ψG′(q–(

–T
– , 

))
q̇–

(
–T

– , 
)]
T =  (.)

because of the definition of ψ and the fact that (v(t),ψ ,ψ) satisfies (.).
To prove the sufficiency, we show that if (h,d,T) ∈ Y does not belong toRA, then there

exists a solution of the variational equation (.) such that (.) does not hold. So, as-
sume that (h,d, ,T) /∈ RA. By Lemma . and the Hahn-Banach theorem, there is an
(v̄, ψ̄ , ψ̄, ψ̄) ∈ Y such that

〈
(v̄, ψ̄ , ψ̄, ψ̄),A(u, θ ,T)

〉
= , ∀(u, θ ,T) ∈ X, (.)

and

〈
(v̄, ψ̄ , ψ̄, ψ̄), (h,d, ,T)

〉
= , (.)

where 〈·, ·〉 is the usual scalar product on Y . We already noted that we can assume that
ψ̄ *q̇+(T

+ , ) = , and (.)-(.) remain valid. Repeating our previous arguments, we see
that v(t) ∈W ,([–T

– , ],Rn) and that (.) implies (v̄, ψ̄ , ψ̄, ψ̄) solves the adjoint system
(.). Summarizing, if (h,d, ,T) /∈ RA there exists a solution of the adjoint system for
which (.) does not hold. This finishes the proof. �

Again we note that equation (.) only depends on the derivative R′(q–(, )) onTq–(,)S
since ∂q–

∂α
(, )*R′(q–(, ))*ψ = [q̇+(T

+ , )T ′
+() +

∂q+
∂α

(T
+ , )]*ψ = ∂q+

∂α
(T

+ , )*ψ , where we
use ψ *q̇+(T

+ , ) =  or, in other words, it is independent of any C-extension we take of
R(ξ ) to the whole U.
We now prove the following proposition.

Proposition . The adjoint system (.) has a solution if and only if (ψ ,ψ) satisfy the
first and the third equation in (.) (and we take the second equation in (.) as definition
of ψ).

Proof Indeed let v(t) be a solution of (.) then

v(t) = Y (t)Y
(
–T

–
)–v(–T

–
)

Y (t) = X–
– (t)* being the fundamental matrix of the linear equation v̇(t) + f ′

–(q–(t, ))* ×
v(t) = . Then, taking v(–T

–) = ψ +ψG′(q–(–T
– , ))* the two remaining condition in (.)

read:{
[ ∂q–

∂α
(, )]*[Y (–T

–)–[ψ +ψG′(q–(–T
– , ))*] – R′(q–(, )*ψ] = ,

ψ *q̇+(T
+ , ) = 
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that can be written as{
∂q–
∂α

(–T
– , )*[ψ +ψG′(q–(–T

– , ))*] – [ψ *R′(q–(, ) ∂q–
∂α

(, )]* = ,
ψ *q̇+(T

+ , ) = 

or else, on account of R(q–(,α)) = q+(T+(α),α):{
ψ *[ ∂q–

∂α
(–T

– , ) –
∂q+
∂α

(T
+ , )] +ψG′(q–(–T

– , ))
∂q–
∂α

(–T
– , ) = ,

ψ *q̇+(T
+ , ) = .

The proof is finished. �

We conclude this section giving another expression of the Poincaré-Melnikov function
(.) in terms of the solution of the adjoint system (.). To this end, let v(t) be a solution
of the adjoint system (.). Since a fundamental matrix of the linear equation

v̇ + f ′
–
(
q–(t, )

)
v = 

is X–
– (t)* we see that

v(t) = X–
– (t)*X–

(
–T

–
)*v(–T

–
)
= X–

– (t)*X–
(
–T

–
)*[

ψ +ψG′(q–(
–T

– , 
))*]

so:

v*(t) =
[
ψ * +ψG′(q–(

–T
– , 

))]
X–

(
–T

–
)
X–
– (t).

Then

M(τ ) = ψ *
∫ T

+


X+

(
T
+

)
X+(t)–g+

(
τ ,q+(, ), 

)
dt +

∫ 

–T–

v(t)*g–
(
t + τ ,q–(t, ), 

)
dt.

As for the first term in the above equality, we can show it is related to the impact R(τ ; ξ , ε).
Indeed, from Section  we know that the solution of the singular equation

ẋ = f+(x) + εg(t,x, ε)

can be written as

x(t + τ ) = x+(t) + q+
(
ε–t,α

)
with x+(εt) as in equation (.). Thus, ξ = x(τ ) = q+(,α) ∈ S and

R(τ ; ξ , ε) = x+(εT+) + q+(T+,α)

=
∫ T+


X+(T+,α)X–

+ (s,α)h+
(
εs, τ ,x+(εs),α, ε

)
ds + q+(T+,α)
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for some T+ = T+(τ ;α, ε). Then

∂R
∂ε

(
τ ;q–(, ), 

)
= q̇+

(
T
+ , 

)∂T+

∂ε
+

∫ T
+


X+

(
T
+

)
X–
+ (s)g+

(
τ ,q+(, ), 

)
ds

and then, using again ψ *q̇+(T
+ , ) =  we see that

ψ *
∫ T

+


X+

(
T
+

)
X–
+ (s)g+

(
τ ,q+(, ), 

)
ds = ψ * ∂R

∂ε

(
τ ;q–(, ), 

)
i.e.

M(τ ) = ψ * ∂R
∂ε

(
τ ;q–(, ), 

)
+

∫ 

–T–

v(t)*g–
(
t + τ ,q–(t, ), 

)
dt. (.)

When g+ is autonomous, then R is independent of τ , and the expression (.) of the
Poincaré-Melnikov function should be compared with the one given in [, Theorem .]
where a Poincaré-Melnikov function, characterizing transition to chaos, is given for al-
most periodic perturbations of autonomous impact equations with a homoclinic orbit.

5 The case of a manifold of periodic solutions
In this section we assume that q–(–T–(α),α) = q+(T+(α),α) for any α in (an open neigh-
borhood of α =  in) Rn–. Hence, from (.), we see that

F
(
T+(α),T–(α), τ ,α, 

)
=

⎛⎜⎝ 


T–(α) – T
–

⎞⎟⎠ .

We distinguish the two cases:T ′
–() �=  andT–(α) = T

– for all α in (an open neighborhood
of α =  in) Rn–. First, we assume that

T ′
–() �= .

Then a C, (n – )-dimensional submanifold S of (an open neighborhood of α =  in)
R

n– exists such that T–(α) = T
– for any α ∈ S . So, for ε = , F (T+,T–, τ ,α, ) =  has the

(n – )-dimensional manifold of solutions

(T+,T–, τ ,α) = ξ (α, τ ) :=
(
T+(α),T

– , τ ,α
)
, (α, τ ) ∈ S ×R.

So, we are in position to apply Theorem .. First, we have to verify that the kernel
NDF (ξ (α, τ ), ) equals the tangent space Tξ (α,τ )X , X = {ξ (α, τ ) | (α, τ ) ∈ S × R}, and
then that the Poincaré-Melnikov function (vector):

[
I –�(α, τ )

]
DF

(
ξ (α, τ ), 

)

http://www.boundaryvalueproblems.com/content/2013/1/71


Battelli and Fečkan Boundary Value Problems 2013, 2013:71 Page 19 of 33
http://www.boundaryvalueproblems.com/content/2013/1/71

has a simple zero at (α, τ ) = (, τ). Note that

Tξ (α,τ )X = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
T ′
+(α)v


v

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝





⎞⎟⎟⎟⎠ : v ∈ TαS

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

From (.), we get:

DF
(
ξ (α, τ ), 

)
=

⎛⎝–q̇+(T+(α),α) –q̇–(–T
– ,α)  ∂q–

∂α
(–T

– ,α) –
∂q+
∂α

(T+(α),α)
 –G′(q–(–T

– ,α))q̇–(–T
– ,α)  G′(q–(–T

– ,α))
∂q–
∂α

(–T
– ,α)

   

⎞⎠.

Note thatDF (ξ (α, τ ), ) does not depend on τ . UsingG(q–(–T
– ,α)) =  and q–(–T

– ,α) =
q+(T+(α),α) for any α ∈ S we easily see that

DF
(
ξ (α, τ ), 

)
|Tξ (α,τ )X

= 

for any v ∈ TαS . On the other hand, assume that

⎛⎜⎝μ+

μ–

w

⎞⎟⎠

∈N

⎛⎜⎝–q̇+(T+(α),α) –q̇–(–T
– ,α)

∂q–
∂α

(–T
– ,α) –

∂q+
∂α

(T+(α),α)
 –G′(q–(–T

– ,α))q̇–(–T
– ,α) G′(q–(–T

– ,α))
∂q–
∂α

(–T
– ,α)

  

⎞⎟⎠
for some μ+,μ– ∈R and w ∈R

n–. Then μ– =  and (μ+,w) satisfies{
–q̇+(T+(α),α)μ+ + [ ∂q–

∂α
(–T

– ,α) –
∂q+
∂α

(T+(α),α)]w = ,
G′(q–(–T

– ,α))
∂q–
∂α

(–T
– ,α)w = 

that, on account of q–(–T
– ,α) = q+(T+(α),α) is equivalent to{

q̇+(T+(α),α)[T ′
+(α)w –μ+] = ,

G′(q–(–T
– ,α))

∂q–
∂α

(–T
– ,α)w = .

Now, from G(q–(–T–(α),α)) =  we get, for any w ∈ R
n–:

G′(q–(
–T–(α),α

))∂q–
∂α

(
–T–(α),α

)
w =G′(q–(

–T–(α),α
))
q̇–

(
–T–(α),α

)
T ′
–(α)w

and hence

G′(q–(
–T

– ,α
))∂q–

∂α
(–T–,α)w =  ⇔ G′(q–(

–T
– ,α

))
q̇–

(
–T

– ,α
)
T ′
–(α)w = 
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which, in turn, is equivalent to w ∈ TαS because of transversality and the fact that TαS =
NT ′

–(α).
Hence, we conclude thatNDF (ξ (α, τ ), ) = Tξ (α,τ )X .
Now we consider the second condition. The Poincaré-Melnikov function (vector) [I –

�(α, τ )]DF (ξ (α, τ ), ), α ∈ S can be written as

ψ *(α, τ )DF
(
ξ (α, τ ), 

)
, (.)

whereψ *(α, τ ) is amatrix whose rows are left eigenvectors of zero eigenvalue of thematrix
DF (ξ (α, τ ), ), that is,

ψ *(α, τ )DF
(
ξ (α, τ ), 

)
= . (.)

Note that ψ(α, τ ) = ψ(α) does not depend on τ since so does DF (ξ (α, τ ), ). Then (.)
reads:

M(α, τ ) :=ψ *(α)
∫ T

+


X+

(
T
+ ,α

)
X+(s,α)–g+

(
τ ,q(,α), 

)
ds

+ψ *(α)
∫ 

–T–

X–
(
–T

– ,α
)
X–(s,α)–g–

(
s + τ ,q–(s,α), 

)
ds

+ψ(α)G′(q(
–T

– ,α
)) ∫ 

–T–

X–
(
–T

– ,α
)
X–
– (s,α)g–

(
s + τ ,q–(s,α), 

)
ds.

Arguing as in Section , equation (.) is equivalent to⎧⎪⎨⎪⎩
ψ *(α)q̇+(T+(α),α) = ,
ψ(α) = [ψ *(α) +ψ(α)G′(q(–T

– ,α))]q̇–(–T
– ,α),

ψ *(α)[ ∂q–
∂α

(–T
– ,α) –

∂q+
∂α

(T+(α),α)] +ψ(α)G′(q(–T
– ,α))

∂q–
∂α

(–T
– ,α) = .

(.)

Moreover, the adjoint variational system along q–(t,α) is defined as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v̇(t) + f ′

–(q–(t,α))*v(t) = ,
[ ∂q–

∂α
(,α)]*[v() – R′(q–(,α))*ψ(α)] = ,

v(–T
–) = ψ(α) +ψ(α)G′(q–(–T

– ,α))*,
ψ *(α)q̇+(T+(α),α) = ,

(.)

where (ψ *(α),ψ(α),ψ(α)) satisfy equation (.). Then the Poincaré-Melnikov vector can
be written as

M(α, τ ) = ψ *(α)
∫ T+(α)


X+

(
T+(α),α

)
X+(t,α)g+

(
τ ,q+(,α), 

)
dt

+
∫ 

–T–

v(t,α)*g–
(
t + τ ,q–(t,α), 

)
dt (.)

or else

M(α, τ ) = ψ *(α)
∂R
∂ε

(
τ ;q–(,α), 

)
+

∫ 

–T–

v(t,α)*g–
(
t + τ ,q–(t,α), 

)
dt (.)
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v(t,α) being the solution of (.) and X+(t,α) the fundamental matrix of the linear equa-
tion

ẋ = f ′
+
(
q+(t,α)

)
x.

Of course the only difference between the cases T ′
–() �=  and T–(α) = T

– for all α ∈ S is
that in the first case the Poincaré-Melnikov function is defined for (α, τ ) ∈ S × R while
in the second it is defined for (α, τ ) ∈ O × R for an open neighborhood O of  ∈ R

n–.
Summarizing, we proved the following result.

Theorem . Assume that q–(–T–(α),α) = q+(T+(α),α) for any α in a neighborhood of
α = , and that either T ′

–() �=  or T–(α) = T
– for any α (in the same neighborhood). Then

system (.) has a d-dimensional space of solutions where d = n or d = n +  according
to which of the two conditions T ′

–() �=  or T–(α) = T
– holds. Moreover, if the Poincaré-

Melnikov function (.) (or (.)) has a simple zero at (, τ) then system (.) has a Tε-
periodic solution x(t, ε) satisfying (.).

Finally, we note that when we can show that a Brouwer degree of a Poincaré-Melnikov
function from either Theorem . or . is non-zero then by following [] we can show
existence results.

6 Examples
We consider a second-order equation{

εẍ = f+(x, ẋ) + εg+(t,x, ẋ, ε), x > ,
ẍ = f–(x) + εg–(t,x, ẋ, ε), x < 

with the line x =  as discontinuity manifold (i.e., with G(x, ẋ) = x). We write q±(t,α) =( q±
 (t,α)

q̇±
 (t,α)

)
with q–(,α) =

( 
α+α

)
(i.e. q±

 (,α) =  and q̇– (,α) = α + α). We also write

q+(T+(α),α) =
( 

ϕ(α)
)
so that

R :

(


α + α

)
�→

(


ϕ(α)

)

i.e., we take

R(x,x) =

(


ϕ(x – α)

)

in the plane coordinates (x,x). According to equation (.), the adjoint variational system
reads, with ψ(α) =

( ψ ′(α)
ψ ′′(α)

)
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇ = –f ′
–(q– (t,α))v,

v̇ = –v,
v() – ϕ′(α)ψ ′′(α) = ,
v(–T

–) = ψ ′(α) +ψ(α),
v(–T

–) = ψ ′′(α),
ψ ′(α)ϕ(α) +ψ ′′(α)f+(,ϕ(α)) = 
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which can be written as (with v = w and v = –ẇ):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẅ = f ′
–(q– (t,α))w,

w() – ϕ′(α)w(–T
–) = ,

ψ ′′ = w(–T
–),

ψ ′ϕ(α) +ψ ′′f+(,ϕ(α)) = ,
ψ = –ẇ(–T

–) –ψ ′.

(.)

Note that (when ϕ(α) �= ) the last three equation are actually the definitions of ψ(α) =( ψ ′(α)
ψ ′′(α)

)
, and ψ(α) in terms of the unique (up to a multiplicative constant) bounded solu-

tion of the boundary value problem:{
ẅ = f ′

–(q– (t,α))w,
w() – ϕ′(α)w(–T

–) = 

and the Poincaré-Melnikov function (.) reads:

M(α, τ ) = w
(
–T

– ,α
) (

– f+(,ϕ(α))
ϕ(α) 

) ∂R
∂ε

(
τ ;q–(,α), 

)
+

∫ 

–T–

w(t,α)g–
(
t + τ ,q–(t,α), 

)
dt

whereas (.) reads:

M(τ ) = w
(
–T

–
) (

– f+(,ϕ())
ϕ() 

) ∂R
∂ε

(
τ ;q–(, ), 

)
+

∫ 

–T–

w(t)g–
(
t + τ ,q–(t, ), 

)
dt.

As an example, we take f–(x) = –x that is we consider the equation

ẍ + x = εg–(t,x, ẋ, ε).

The unperturbed equation ẍ + x =  with the condition ẋ() =  has the solutions:

q–(t,α) = (α + α)

(
sin t
cos t

)
, –π ≤ t ≤ 

and T–(α) = π . Note that, to have q–(t,α) ∈ {(x,x) | x < } for –π < t <  we need α +
α > .
We assume we are in the first (non degenerate) case that is it holds (.), which now has

the form

R
(
q–(, )

)
= q–(–π , ),

∂

∂α

[
R

(
q–(,α)

)
– q–(–π ,α)

]
α= �= . (.)

Note T ′
–() =  for this case. Since

R
(
q–(,α)

)
– q–(–π ,α) =

(


ϕ(α) + α + α

)
,
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(.) is equivalent to

ϕ() = –α, ϕ′() +  �= . (.)

Then it is easily seen that system (.), with α = , reads

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẅ +w = ,
w() – ϕ′()w(–π ) = ,
ψ ′′ = w(–π ),
–ψ ′α +ψ ′′f+(,–α) = ,
ψ = –ẇ(–π ) –ψ ′.

Solving ẅ + w = , we get w(t) = a cos(t + t) and the boundary condition reads: a( +
ϕ′()) cos t = . So, we can take w(t) = cos(t – π

 ) = sin t. Since ϕ() = –α �= , then

ψ ′′ = , ψ ′ = , ψ = 

and the Poincaré-Melnikov function reads

M(τ ) =
∫ 

–π

g–(t + τ ,α sin t,α cos t, ) sin t dt.

For example, taking g–(t,x, ẋ, ε) = –ẋ cos( π

π+εT
+
)t, where T

+ is the time the solution of
equation ẍ = f+(x, ẋ), x() = , ẋ() = α takes to reach the discontinuity manifold x = , we
get

M(τ ) =
π


α sin(τ )

which has a simple zero at τ = .
To conclude the example we need to find a second-order equation ẍ = f+(x, ẋ) such that

(.) holds. We consider

ẍ + x = f+(x, ẋ) := f
(
x + ẋ – 

)
g(x, ẋ)

with f () =  and f ′() �= . It has the solution x = sin t and y = cos t. So, we take q+(t) =
(sin t, cos t) and then T

+ = π . Note q+(T+(α),α) =
( 

ϕ(α)
)
is equivalent to q+ (T+(α),α) = 

and q̇+ (T+(α),α) = ϕ(α). Then ϕ() = –, so we take α = . Furthermore,

ϕ′() = q̈+ (π , )T
′
+() +

∂

∂α
q̇+ (π , ) =

∂

∂α
q̇+ (π , ).

Setting ζ (t) := ∂
∂α
q+ (t, ), we have

ζ̈ + ζ = f ′()g(sin t, cos t)(ζ sin t + ζ̇ cos t). (.)
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Since q+ (,α) =  and q̇+ (,α) = α + , we obtain ζ () =  and ζ̇ () = . Clearly, (.) has a
solution ζ(t) = cos t. Then the second solution is

ζ(t) = cos t
∫ t



ef ′()
∫ s
 cosσ g(sinσ ,cosσ )dσ

cos s
ds = sin tef

′()
∫ t
 cosσ g(sinσ ,cosσ )dσ

+ f ′() cos t
∫ t


g(sin s, cos s)ef

′()
∫ s
 cosσ g(sinσ ,cosσ )dσ sin s ds.

Hence,

ζ̇(t) = cos tef
′()

∫ t
 g(sinσ ,cosσ ) cosσ dv

+ f ′() sintg(sin t, cos t)ef
′()

∫ t
 g(sinσ ,cosσ ) cosσ dσ

– f ′() sin t
∫ t


sin sg(sin s, cos s)ef

′()
∫ s
 g(sinσ ,cosσ ) cosσ dσ ds

+ f ′() sintg(sin t, cos t)ef
′()

∫ t
 g(sinσ ,cosσ ) cosσ dσ .

This implies

ϕ′() = ζ̇(π ) = –ef
′()

∫ π
 g(sinσ ,cosσ ) cosσ dσ .

Consequently, if∫ π


g(sinσ , cosσ ) cosσ dσ �= 

then ϕ′() �= –. So, we conclude with the following.

Corollary . Let f (r) and g(x, ẋ), g–(t,x, ẋ, ε) be C functions such that f () =  �= f ′(),
g–(t,x, ẋ, ε) = g–(t + ( + ε)π ,x, ẋ, ε) and∫ π


g(sin t, cos t) cos t dt �= .

Suppose, also, that the function

M(τ ) :=
∫ 

–π

g–(t + τ , sin t, cos t, ) sin t dt

has a simple zero at τ = .Then, for ε > , sufficiently small the singularly perturbed system{
εẍ + x = f (x + ẋ – )g(x, ẋ) if x > ,
ẍ + x = εg–(t,x, ẋ, ε) if x < 

has a ( + ε)π -periodic solution orbitally near the set {(sin t, cos t) | –π ≤ t ≤ π}.

To get a second example, we change the above as follows: we take

�+ =
{
(x, ẋ) | x < , ẋ > 

}
and �– =R

 \ �+
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with equations:

{
ẍ + x = εg–(t,x, ẋ, ε) for (x, ẋ) ∈ �–,
εẍ + x + 

x
 =  for (x, ẋ) ∈ �+.

It should be noted that the discontinuity line is the union of the two half lines {x = , ẋ > }
and {x < , ẋ = } which is not C. However, all results hold true as long as we remain
outside a (small) neighborhood of (, ).
The unperturbed equation on �– has the solutions:

q–(t,α) = (α + )

(
– cos t
sin t

)
, –



π ≤ t ≤ 

with q–(,α) = –(α + )
( 


)
and q–(–

π ,α) = (α + )
( 


)
. Then q+(T+(α),α) = R(q–(,α)) is

the value of the solution
( z+(t,α)
ż+(t,α)

)
of

ẍ + x +


x = , x() = –( + α), ẋ() = 

at the timeT+(α) where z+(T+(α),α) = . Since the equation has theHamiltonianH+(x, ẋ) =
ẋ + (x + )x, we see that z+(t,α) satisfies

ż(t) +
(
z(t) + 

)
z(t) = ( – α)( + α), z() = – – α, (.)

and hence

R
(
q–(,α)

)
= q+

(
T+(α),α

)
=

(


( + α)
√
 – α

)
. (.)

We observe that T
+ is the first positive time such that x(T

+ ) =  where x(t) = z+(t, ) is the
solution of

ẋ + (x + )x = , x() = –,

hence

T
+ =

∫ 

–

dx√
 – x(x + )


 .. (.)

More related results are derived in the Appendix.
Then equations (.) have to be changed to

R
(
q–(, )

)
= q–

(
–


π , 

)
,

∂

∂α

[
R

(
q–(,α)

)
– q–

(
–


π ,α

)]
α=

�= .
(.)
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But

R
(
q–(,α)

)
– q–

(
–


π ,α

)
= ( + α)

(
√

 – α – 

)

and (.) easily follows. Now we compute the variational equation and the Poincaré-
Melnikov function. From (.) and q–(,α) =

( –(α+)


)
, it follows that we can take

R(x,x) =

(


–x
√
x + 

)

from which we get

R′(q–(, )) = (
 
– 

 

)
.

Note ẍ+x+ 
x

 =  has a homoclinic solution –
 ( tanh[

t√
 ]

 –), so the solution q+(t,α)
is a part of a periodic solution inside of �+ bounded by the homoclinic one (see Figure ).
Then, since in a neighborhood of q–(–

π , ) =
( 


)
we have G(x,x) = –x we get

G′
(
q–

(
–


π , 

))
=

(
–


)
.

Finally, since the equations on �+ can be written as

{
ẋ = x,
ẋ = –x – 

x



Figure 1 The upper parts of homoclinic and periodic orbits of ẍ + 2x + 3
2 x

2 = 0.
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we get

f+
(
q+

(
T+(α),α

))
= f+

(
, ( + α)

√
 – α

)
=

(
( + α)

√
 – α



)
.

Putting all together we see that the adjoint variational system reads:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẅ +w = ,( –


)*[( –ẇ()
w()

)
–

( – 
ψ ′′


)
] = ,( –ẇ(– 

π )
w(– 

π )

)
=

( ψ ′
ψ ′′

)
+ψ

( –


)
,( ψ ′

ψ ′′
) · ( 



)
= 

⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẅ +w = ,
ẇ() = 

ψ
′′,

w(–
π ) = ψ ′′,

ẇ(–
π ) = –ψ ′ +ψ,

ψ ′ = .

The first three equations give the boundary value problem

ẅ +w = , ẇ() –w
(
–


π

)
= 

possessing the unique solution (up to a multiplicative constant) w(t) = cos t which gives

ψ ′ = , ψ ′′ = , ψ = –

and, since g+(t,x, ε) = , the Poincaré-Melnikov function is

M(τ ) =
∫ 

– 
π

g–(t + τ , – cos t, sin t, ) cos t dt. (.)

We conclude with the following.

Corollary . Let T
+ be as in equation (.), g–(t,x, ẋ, ε) be a (π + εT

+ )-periodic, C func-
tion and suppose that the function (.) has a simple zero at τ = . Then, for ε > , suffi-
ciently small the singularly perturbed system{

εẍ + x + 
x

 =  if x <  and ẋ > ,
ẍ + x = εg–(t,x, ẋ, ε) elsewhere

has a (π + εT
+ )-periodic solution orbitally near the set {(– cos t, sin t) | –

π ≤ t ≤ } ∪
{(z+(t, ), ż+(t, )) |  ≤ t ≤ T

+ }.

As an example of the second situation, we consider the case where f+(x) = f–(x) = –x,
�– = {(x, ẋ) | x < }, �+ = {(x, ẋ) | x > }, i.e., we take{

εẍ + x =  if x > ,
ẍ + x = εg–(t,x, ẋ, ε) if x < 

(.)

where g–(t,x, ẋ, ε) is a ( + ε)π-periodic, C function. Since

q+(t,α) = (α + α)

(
sin t
cos t

)
,  ≤ t ≤ π
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we get ϕ(α) = –α – α for any α in a neighborhood of α =  and α > . Hence, we are in
the degenerate case considered in Section . The adjoint variational equation along q–(t,α)
reads now

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẅ +w = ,
w() +w(–π ) = ,
ψ ′′ = w(–π ),
–(α + α)ψ ′ = ,
ψ = –ẇ(–π ) –ψ ′.

The first two equations have the two-dimensional family of solutions w(t) = c cos(t + t).
We take the two independent solutions:w(t) = cos t andw(t) = sin t with the correspond-
ing vectors:

ψ ′′
 = –, ψ ′

 = , ψ
()
 = ,

ψ ′′
 = , ψ ′

 = , ψ
()
 = .

With g+(t,x, ẋ, ε) =  (which implies R(τ ; ξ , ε) is independent of ε) the Poincaré-Melnikov
vector is then

M(α, τ ) =

(∫ 
–π

g–(t + τ ,α sin t,α cos t, ) cos t dt∫ 
–π

g–(t + τ ,α sin t,α cos t, ) sin t dt

)
.

Then we obtain the following corollary.

Corollary . Let g–(t,x, ẋ, ε) be a (+ε)π -periodic,C function and suppose thatM(α, τ )
has a simple zero at α = α, τ = . Then the singularly perturbed system (.) has a ( +
ε)π -periodic solution orbitally near the set {(sin t, cos t) | –π ≤ t ≤ π}.

Appendix
A.1 Further properties of the solution of (6.5)
From the identity

ż+(t,α) +
(
z+(t,α) + 

)
z+(t,α) = ( – α)( + α)

we derive

ż+(t,α)
( – α)( + α) – (z+(t,α) + )z+(t,α)

= . (.)

Note that

( – α)( + α) – (x + )x = –( + α + x)
(
– + α + x – αx + x

)
= (Aα – x)(x – Bα)(x –Cα),
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where

Aα =
– + α +

√
 – α – α


, Bα = – – α,

Cα =
– + α –

√
 – α – α



and, for α sufficiently small (in fact for α ∈ (–,  ))

Aα >  > Bα > Cα .

Using formula .. in [, p.] we know that, for any A≥ u > B > C:

∫ u

B

dx√
(A – x)(x – B)(x –C)

=
F(κ ,p)√
A –C

,

where

κ := arcsin

√
(A –C)(u – B)
(A – B)(u –C)

, p :=
√

A – B
A –C

and F is the elliptic integral of the first kind.
Next note – – α ≤ z+(t,α) ≤ , ż+(t,α) ≥  for t ∈ [,T+(α)] and z+(,α) = – – α,

z+(T+(α),α) = . Hence, (.) gives

T+(α) =
∫ T+(α)


dt =

∫ T+(α)



ż+(t,α)√
( – α)( + α) – (z+(t,α) + )z+(t,α)

=
∫ 

Bα

dx√
(Aα – x)(x – Bα)(x –Cα)

=
F(κα ,pα)√
Aα –Cα

where

κα = arcsin

[√
 + α

 + α + 
√
 – α – α

]

pα =

√
 + α +

√
 – α – α


√
( – α)( + α)

.

So,

T+(α) =
F(κα ,pα)

√ – α – α
.

We are interested in α = . Then

κ = arcsin

[√


 + 
√


]
, p =

√
 +

√
√

 √
,
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and hence

T+() =
F(arcsin[

√


+
√

],

√
+

√
√

 √
)

√
.= .. (.)

On the other hand, by (.), we directly verify that T+()
.= . by a numerical inte-

gration. But we derived (.) to get an explicit formula for T+() and in general for T+(α).
Furthermore, the above computations also give

t =
∫ z+(t,α)

Bα

dx√
(Aα – x)(x – Bα)(x –Cα)

=
F(κα(t),pα)
√ – α – α

(.)

for any  ≤ t ≤ T+(α) and

κα(t)

= arcsin

[


√ √
( – α)( + α)( + α + z+(t,α))

( + α +
√
 – α – α)( – α +

√
 – α – α + z+(t,α))

]
. (.)

Solving (.), we obtain

κα(t) = am

(
√ – α – α t


,pα

)
,

where am is the Jacobi amplitude function. Solving (.), we obtain

z+(t,α)

=
( + α)(– +

√
 – α – α – α(– +Hα(t)) + ( +

√
 – α – α)Hα(t))

 –
√
 – α – α – α(– +Hα(t)) –Hα(t) –

√
 – α – αHα(t)

(.)

for

Hα(t) := cos
(
κα(t)

)
= cn

(
√ – α – α t


,pα

)
, (.)

where cn is the Jacobi elliptic function. Formulas (.) and (.) give explicit solution
z+(t,α). For α = , we derive

z+(t, ) =
– +

√
 + ( +

√
) cn( √ t

 ,
√

+
√
√

 √
)

 –
√
 – ( +

√
) cn( √ t

 ,
√

+
√
√

 √
)

. (.)

We can also compute the Taylor series of (.) integrating by series the equation ẍ + x +

x

 =  with x() = –, ẋ() = . Setting

x(t) = – +
∞∑
n=

an
n!
tn
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we see that the following recurrence condition holds:

an+
n!

+ 
an
n!

+



n∑
h=

an–h
(n – h)!

ah
h!

=  ⇔ an+ + an +



n∑
h=

(
n
h

)
an–hah = ,

wherewe set
( 


)
=  and a = –, a = . Since a = , we see by the induction that ak+ = 

for any k ∈N (note that in the product ahak+–h one of the two indexes is odd). So,

x(t) = – +
∞∑
n=

an
tn

(n)!

and

a(n+) + an +



n∑
h=

(
n
h

)
a(n–h)ah = .

For the first few indexes, we get

a = a =


, a = a – a = –



, a = a – aa = –,

a = a – aa – a =



a = a – aa – aa = 

so that:

z+(t, ) = – +


 · ! t
 +


 · ! t

 –


 · ! t
 –


!
t +


 · ! t

 +

!

t + · · · .

On the other hand, using Mathematica, we can expand (.) to get

z+(t, ) = –  +
t


+

t


–

t

,
–

t

,
+

t

,,
+

t

,,

+
,t

,,,
–

,t

,,,,
–

,t

,,,,

+
,,t

,,,,,
+ · · · ,

which coincides with our above analytical expansion.

A.2 Proof of Theorem 3.2
Here, we prove Theorem .. We emphasize the fact that proof mainly follows the idea in
[, Theorem .].

Proof of Theorem . The existence part is quite standard so we sketch it and give em-
phasis to the proof of invertibility of DF(x(ε), ε) for ε �= . Since F(ξ (μ), ) = , we get
L(μ)ξ ′(μ) =  and, differentiating twice, D

F(ξ (μ), )(ξ ′(μ), ξ ′(μ)) + L(μ)ξ ′′(μ) = . As a
consequence, ξ ′(μ) ∈NL(μ) and

D
F

(
ξ (μ), 

)
(v,w) ∈RL(μ) for any v,w ∈NL(μ).
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Let �(μ) : Y → RL(μ) as in the statement of the theorem. We write x = z + ξ (μ), with
z ∈ NL(μ)⊥. Applying the Implicit Function Theorem to the map (z,μ, ε) �→ �(μ)F(z +
ξ (μ), ε), we get the existence of a unique C-solution z = z(μ, ε) ∈NL(μ)⊥ of the equation
�(μ)F(z + ξ (μ), ε) = . From uniqueness, we obtain also

z(μ, ) = .

Next, differentiating the equality �(μ)F(z(μ, ε) + ξ (μ), ε) =  with respect to μ and to ε at
(μ, ), we get:

�(μ)L(μ)
[
zμ(μ, ) + ξ ′(μ)

]
=  ⇒ zμ(μ, ) ∈NL(μ),

�(μ)
[
L(μ)zε(μ, ) +DF

(
ξ (μ), 

)]
=  ⇒ L(μ)zε(μ, ) = –�(μ)DF

(
ξ (μ), 

)
.

Next, for ε �= , equation [I –�(μ)]F(z(μ, ε) + ξ (μ), ε) =  is equivalent to ε–[I –�(μ)]×
F(z(μ, ε)+ ξ (μ), ε) = , but the l.h.s. tends, for ε →  to [I–�(μ)]DF(ξ (μ), ) which gives
the Poincaré-Melnikov condition. We conclude that, if the Poincaré-Melnikov condition
is satisfied, for ε �=  (small) there exists a unique solution of equation F(x, ε) = , x = x(ε) =
z(μ(ε), ε) + ξ (μ(ε)), with μ() = .
Now we prove the invertibility of DF(x(ε), ε). Since DF(x(ε), ε) is Fredholm with index

zero, it is enough to prove that equationDF(x(ε), ε)z =  has, for ε �= , the unique solution
z = . Although F (z, ε) := DF(x(ε), ε)z is only C with respect to ε, it is linear in z. Thus,
we can still apply the existence and uniqueness argument given above. Of course, F (z, )
vanishes on the linear subspace M̃ := {z ∈NL()}, and clearlyNDF (z, ) = {z ∈NL()}.
Next RDF (z, ) =RL() so that �̃(μ) = �(). Thus, from the existence and uniqueness
result it follows thatNDF(x(ε), ε) = {} if the following condition is satisfied:

z ∈NL() and
[
I –�()

][
D

F(, )x
′() +DDF(, )

]
z =  ⇒ z = .

On account of x(ε) = z(μ(ε), ε) + ξ (μ(ε)) we are led to look at the solutions of

[
I –�()

][
D

F(, )
(
zμ(, )μ′() + zε(, ) + ξ ′()μ′()

)
+DDF(, )

]
z = 

with z ∈NL(). From the previous remarks, we get:

D
F(, )

(
zμ(, )μ′(), z

) ∈RL() and D
F(, )

(
ξ ′()μ′(), z

) ∈RL()

for any z ∈NL(), since zμ(, )μ′(), ξ ′()μ′() ∈NL(). So, the claim to be proved is

[
I –�()

][
D

F(, )zε(, ) +DDF(, )
]
ξ ′() �= ,

where we have replaced z with ξ ′() since NL() = span{ξ ′()}. Now we differentiate the
equality

L(μ)zε(μ, ) = –�(μ)DF
(
ξ (μ), 

)
=M(μ) –DF

(
ξ (μ), 

)
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with respect to μ at μ =  to get

D
F(, )zε(, )ξ ′() + L()zεε(, ) =M′() –DDF(, )ξ ′().

Hence,

[
I –�()

][
D

F(, )zε(, ) +DDF(, )
]
ξ ′() =

[
I –�()

]
M′() �= 

since, from [I –�(μ)]M(μ) =M(μ) andM() =  we get [I –�()]M′() =M′(). The
proof of Theorem . is complete. �
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