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Abstract

Purpose: In recent years attention has been directed to the problem of solving the
Poisson equation, either in engineering scenarios (computational) or in regard to
crystal structure (theoretical).

Methods: In (Bailey et al. in J. Phys. A, Math. Theor. 46:115201, 2013,
doi:10.1088/1751-8113/46/11/115201) we studied a class of lattice sums that amount
to solutions of Poisson’s equation, utilizing some striking connections between these
sums and Jacobi ϑ -function values, together with high-precision numerical
computations and the PSLQ algorithm to find certain polynomials associated with
these sums. We take a similar approach in this study.

Results:We were able to develop new closed forms for certain solutions and to
extend such analysis to related lattice sums. We also alluded to results for the
compressed sum

φ2(x, y,d) :=
1
π 2

∑
m,n∈O

cos(πmx) cos(πn
√
dy)

m2 + dn2
, ()

where d > 0, x, y are real numbers andO denotes the odd integers. In this paper we
first survey the earlier work and then discuss the sum ()more completely.

Conclusions: As in the previous study, we find some surprisingly simple closed-form
evaluations of these sums. In particular, we find that in some cases these sums are
given by 1/π · logA, where A is an algebraic number. These evaluations suggest that a
deep theory interconnects all such summations.

PACS Codes: 02.30.Lt; 02.30.Mv; 02.30.Nw; 41.20.Cv
MSC: 06B99; 35J05; 11Y40

Keywords: lattice sums; Poisson equation; experimental mathematics;
high-precision computation

1 Background
In [], we analyzed various generalized lattice sums [], which have been studied for many
years in the mathematical physics community, for example, in [–]. More recently inter-
est was triggered by some intriguing research in image processing techniques []. These
developments have underscored the need to better understand the underlying theory be-
hind both lattice sums and the associated Poisson potential functions.
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In recent times, attention was directed to the problem of solving the Poisson equation,
either in engineering scenarios (computationally, say for image enhancement) or in regard
to crystal structure (theoretically). In [] we thus studied a class of lattice sums that amount
to Poisson solutions, namely the n-dimensional forms

φn(r, . . . , rn) =


π

∑
m,...,mn odd

eiπ (mr+···+mnrn)

m
 + · · · +m

n
.

By virtue of striking connections with Jacobi ϑ-function values, we were able to develop
new closed forms for certain values of the coordinates rk and extend such analysis to simi-
lar lattice sums. A primary result was that for rational x, y, the natural potential φ(x, y) is

π
logA where A is an algebraic number. Various extensions and explicit evaluations were

given. We also touched on results for the compressed sum

φ(x, y,d) :=


π

∑
m,n∈O

cos(πmx) cos(πn
√
dy)

m + dn
. ()

In this paper we discuss () inmore detail. More detailedmotivation can be found in [, ].
Such work is made possible by number-theoretical analysis, symbolic computation

and experimental mathematics, including extensive numerical computations using up to
,-digit arithmetic.
In Section ., we describe, consistent with [], the underlying equations along with ‘nat-

ural’ Madelung constants and relate them to the classical Madelung constants. In Sec-
tion ., we produce the solutions φn which, especially with n = , provide the central
objects of our study. In Section ., we describe rapid methods of evaluating φn and add
computational details in Section .. In Section . we discuss closed forms for φ(x, y). In
Section . we discuss closed forms for related sums in two dimensions. This leads to the
introduction of theta function formalism in the next two subsections and allows us to re-
solve much else. In Sections . and . we are then able to evaluate compressed potential
sums. Finally, we further discuss computational matters in Section ..

1.1 Madelung-type sums
In a recent treatment of ‘natural’ Madelung constants [], it is pointed out that the Poisson
equation for an n-dimensional point-charge source,

∇�n(r) = –δ(r), ()

gives rise to an electrostatic potential - we call it the bare-charge potential - of the form

�n(r) =
�(n/ – )
πn/


rn–

=:
Cn

rn–
, if n �= , ()

�(r) = –

π

log r =: C log r, ()
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where r := |r|. Since this Poisson solution generally behaves as r–n, the previous work []
defines a ‘natural’ Madelung constantNn as (here,m := |m|)

Nn := Cn

′∑
m∈Zn

(–)·m

mn– , if n �= ,

N := C

′∑
m∈Zn

(–)·m logm,

()

where in cases such as this log sumonemust infer an analytic continuation [], as the literal
sum is quite non-convergent. ThisNn coincides with the classical Madelung constant

Mn :=
′∑

m∈Zn

(–)·m

m
()

only for n =  dimensions, in which caseN = 
π
M. But in all other dimensions there is

no obviousM,N relation.
A method for gleaning information about Nn is to contemplate the Poisson equation

with a crystal charge source, modeled after NaCl (salt) in the sense of alternating lattice
charges:

∇φn(r) = –
∑
m∈Zn

(–)·mδ(m – r). ()

Accordingly - based on the Poisson equation () - solutions φn can be written in terms of
the respective bare-charge functions �n as

φn(r) =
∑
m∈Zn

(–)·m�n(r –m). ()

1.2 The crystal solutions φn

In [] it is argued that a solution to () is

φn(r) =


π

∑
m∈On

∏n
k= cos(πmkrk)

m , ()

whereO denotes the odd integers (including negative odds). These φn do give the potential
within the appropriate n-dimensional crystal, in thatφn vanishes on the surface of the cube
[–/, /]n, as is required via symmetry within an NaCl-type crystal of any dimension -
thus we have solved the Poisson equation subject to Dirichlet boundary conditions.
To render this representation more explicit and efficient, we could write equivalently

φn(r) =
n

π

∑
m,...,mn>,odd

cos(πmr) · · · cos(πmnrn)
m

 + · · · +m
n

.

It is also useful that - due to the symmetry inherent in having odd summation indices - we
can cavalierly replace the cosine product in () with a simple exponential:

φn(r) =


π

∑
m∈On

eiπm·r

m . ()
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This follows from the simple observation that
∏

exp(π imkrk) =
∏
(cos(πmkrk) + i×

sin(πmkrk)), so when the latter product is expanded out, the appearance of even a single
sin term is annihilating due to the bipolarity of every indexmk .
We observe that the convergence of these conditionally convergent sums is by nomeans

obvious, but that results such as [, Thm. . and Thm. .] ensure that

φn(r, s) :=


π

∑
m∈On

∏n
k= cos(πmkrk)

ms , ()

is convergent and analytic with abscissa σ for (n– )/≤ σ ≤ (n– )/, where Re(s) = σ .
For the central case herein, summing over increasing spheres is analytic in two dimensions
for σ ≤ / < / and in three dimensions for σ ≤ / < , but in general the best
estimate we have is σ ≤ n/–, so for n≥ , to avoid ambiguity, we work with the analytic
continuation of () from the region of absolute convergence with σ > n/. Indeed, all our
transform methods are effectively doing just that.

2 Methods
2.1 Fast series for φn

From previous work [] we know a computational series

φn(r) =

π

∑
R∈On–

sinh(πR(/ – |r|))∏n–
k= cos(πRkrk+)

R cosh(πR/)
()

suitable for any nonzero vector r ∈ [–/, /]n. The previous work also gives an improve-
ment in the case of n =  dimensions, namely the following form for which the logarithmic
singularity at the origin has been siphoned off:

φ(x, y) =

π

log
cosh(πx) + cos(πy)
cosh(πx) – cos(πy)

–

π

∑
m∈O+

cosh(πmx) cos(πmy)
m( + eπm)

. ()

These series, () and () are valid, respectively, for r,x ∈ [–, ].
For clarification, we give here the (n = )-dimensional case of the fast series:

φ(x, y, z) =

π

∑
p,q>,odd

sinh(π


√
p + q( – |x|)) cos(πpy) cos(πqz)√
p + q cosh(π



√
p + q)

. ()

Though it may not be manifest in this asymmetrical-looking series, it turns out that for
any dimension n the φn(r, . . . , rn) is invariant under permutations and sign-flips. For ex-
ample, φ(x, y, z) = φ(–y, z, –x) and so on. It thus behoves the implementor to consider
x - which appears only in the first sum of () - to be the largest in magnitude of the three
coordinates for optimal convergence. A good numerical test case is the exact evaluation
φ(/, /, /) =

√


π
, which we have confirmed to  digits.

2.2 Computational techniques
In this study, we employ an experimental scheme similar to that used in [], as well as
in numerous other studies that have been performed. In particular, we compute the key
expressions in this study to very high precision, then use the PSLQ algorithm in an attempt

http://www.boundaryvalueproblems.com/content/2013/1/75
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to recognize the computed numerical values in terms of relatively simple, closed-form
expressions. Given an n-long input vector (xi) of real numbers, the PSLQ algorithm finds
a nontrivial set of integer coefficients (ai) such that ax + ax + · · · + anxn =  if it exists
(to within the tolerance of the numeric system being used).
Numerous experimental evaluations ofminimal polynomials satisfied by exp(πφ(x, y))

(the case d = ), and a detailed description of the underlying computational method-
ology employed to find these evaluations, are presented in []. A similar computa-
tional scheme was employed in this study to obtain minimal polynomials satisfied by
exp(π

√
dφ(x,

√
dy,d)). For instance, we recover, among a myriad of other evaluations,

φ

(


,


, 

)
=


π

log

(
 + 

√




)
.

This computational scheme is as follows:
. Given x, y and d, select a conjectured polynomial degree m and a precision level P.

We typically set the numeric precision level P somewhat greater thanm digits.
. Compute φ(x, y

√
d,d) to P-digit precision using formula (). Evaluate the four

theta functions indicated using the very rapidly convergent formulas given in
[, p.] or [].

. Generate the (m + )-long vector (,α,α, . . . ,αm), where
α = exp(π

√
dφ(x, y

√
d,d)). Note: we have found that without the eight here, the

degree of the resulting polynomial would be eight times as high (but the larger
polynomials were in fourth or eighth powers). Given the very rapidly escalating
computational cost of higher degrees, many of the results in [] and herein would not
be feasible without this factor.

. Apply the PSLQ algorithm (we employed the two-level multipair variant of PSLQ for
d up to , and the three-level multipair variant for d ≥  []) to find a nontrivial
(m + )-long integer vector A = (a,a,a, . . . ,am) such that
a + aα + aα + · · · + amαm = , if such a vector exists. PSLQ (or one of its variants)
either finds a vector A, which then is the vector of coefficients of an integer
polynomial satisfied by α (certified to the ‘epsilon’ of the numerical precision used),
or else exhausts precision without finding a relation, in which case the algorithm
nonetheless provides a lower bound on the Euclidean norm of the coefficients of any
possible degree-m integer polynomial A satisfied by α.

. If no numerically significant relation is found, try again with a larger value of m and
correspondingly higher precision. If a relation is found, try with somewhat lower m,
until the minimal m is found that produces a numerically significant relation
vector A. Here ‘numerically significant’ means that the relation holds to at least 
digits beyond the level of precision required to discover it. To obtain greater
assurance that the polynomial produced by this process is in fact the minimal
polynomial for α, use the polynomial factorization facilities inMathematica or
Maple to attempt to factor the resulting polynomial.

3 Results and discussion
3.1 Closed forms for the φ2 potential
Provably we have the following results which were established by factorization of lattice
sums after being empirically discovered by themethods described in the next few sections.

http://www.boundaryvalueproblems.com/content/2013/1/75
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Theorem  ([]) We have

φ(/, /) =

π

log( + /
√
), ()

φ(/, /) =

π

log( +
√
), ()

φ(/, ) =

π

log( + 
√
). ()

Using the integer relation method PSLQ [] to hunt for results of the form

exp
(
πφ(x, y)

) ?= α ()

for α algebraic, we may obtain and further simplify many results as follows.

Conjecture  ([]) We have discovered and subsequently proven

φ(/, )
?=


π

logα, where
α + /α


=

√
 + ,

φ(/, /)
?=


π

log( + 
√
 + 

√
 + 

√
),

φ(/, /)
?=


π

logγ , where
γ + /γ


=

√
 + ,

φ(/, /)
?=


π

log τ , where
τ – /τ


= (

√
 – )/,

φ(/, /)
?=


π

log

(
 +

√
 –

√


√ – 

)
,

φ(/, /)
?=


π

logμ, where
μ + /μ


=  +

√
 +

√
 + 

√
,

where the notation ?= indicates that we originally only had experimental (extreme-precision
numerical) evidence of an equality.

Such hunts are made entirely practicable by (). Note that for general x and y we have
φ(y,x) = φ(x, y) = –φ(x,  – y), so we can restrict searches to / > x≥ y > .

Remark  (Algebraicity) In light of our current evidence, we conjectured that for x, y
rational,

φ(x, y)
?=
logα

π
()

for α algebraic. Theorem  proved this conjecture. We note that Theorem  proves that
all values should be algebraic but does not, a priori, establish the precise values we have
found. This will be addressed in Section ..

3.2 Madelung and ‘jellium’ crystals, and Jacobi ϑ -functions
We have studied

φ(x, y) :=


π

∑
a,b∈O

cos(πax) cos(πby)
a + b

, ()

http://www.boundaryvalueproblems.com/content/2013/1/75
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as a ‘natural’ potential for n =  dimensions in the Madelung problem. There is another
interesting series, namely

ψ(x, y) :=


π

′∑
a,b∈Z

cos(πax) cos(πby)
a + b

=


π

∑
a,b∈E

cos(πax) cos(πby)
a + b

, ()

where E denotes the even integers.
Now it is explained and illustrated in [] that thisψ function is the ‘natural’ potential for

a classical jellium crystal and relates to Wigner sums []. This involves a positive charge
at every integer lattice point, in a bath - a jelly - of uniform negative charge density. As
such, the ψ functions satisfy a Poisson equation but with different source term []. Note,
importantly, that ψ satisfies Neumann boundary conditions on the faces of the Delord
cube - in contrast with the Dirichlet boundary conditions satisfied in the Madelung case.
Briefly, a fast series for ψn has been worked out [] as follows:

ψn(r) =



+


r –



|r| + n–

π

∑
S∈Z+(n–)

cosh(πS( – |r|))∏n–
k= cos(πSkrk+)

S sinh(πS)
, ()

valid on the Delord n-cube, i.e., for r ∈ [–/, /]n.
In the following, we shall also use the general form of the general Jacobi theta functions,

defined as in [] and [, Sec. .]:

ϑ(z,q) = 
∞∑
n=

(–)nq(n+/)

sin

(
(n + )z

)
,

ϑ(z,q) = 
∞∑
n=

q(n+/)

cos

(
(n + )z

)
,

ϑ(z,q) =  + 
∞∑
n=

qn

cos(nz),

()

ϑ(z,q) =  + 
∞∑
n=

(–)nqn

cos(nz).

One useful relation is

ϑ
 (z,q)ϑ


 (,q) = ϑ

 (z,q)ϑ

 (,q) – ϑ

 (z,q)ϑ

 (,q). ()

3.3 Closed forms forψ2 and φ2

Using the series () for high-precision numerics, it was discovered (see [, Appendix])
that previous lattice-sum literature had concealed a longtime typographical error for cer-
tain two-dimensional sums, and that a valid closed form for ψ is actually

ψ(x, y) =
x


+


π

log

(
�(/)√
π�(/)

)
–


π

log
∣∣ϑ

(
π (ix + y), e–π

)∣∣. ()

http://www.boundaryvalueproblems.com/content/2013/1/75
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In the Madelung case, it then became possible to cast φ likewise in closed form, namely

φ(x, y) =

π

log
∣∣α(z)∣∣, where α(z) :=

ϑ
 (z,q)ϑ

 (z,q)
ϑ
 (z,q)ϑ

 (z,q)
()

for q := e–π , z := π
 (y + ix). (See [] and [, Appendix II] for details.)

Theorem  ([]) For z := π
 (y + ix),

φ(x, y) =

π

log

∣∣∣∣ϑ(z,q)ϑ(z,q)
ϑ(z,q)ϑ(z,q)

∣∣∣∣ = 
π

log

∣∣∣∣  – λ(z)√


 – /λ(z)√


∣∣∣∣ ()

and

ψ(x, y) = –

π

log
∣∣μ(z)(√λ(z) – 

)∣∣, ()

where

λ(z) :=
ϑ
 (z, e–π )

ϑ
 (z, e–π )

=
∞∏
n=

( –  cos(z)qn– + qn–)

( +  cos(z)qn– + qn–)
()

and

μ(z) := e–πx/ ϑ
 (z, e–π )

ϑ
 (, e–π )

= qx
/

∞∏
n=

( +  cos(z)qn– + qn–)

( + qn–)
()

with q := e–π .

We recall the general ϑ-transform giving for all z with Re t > 

ϑ–k
(
πz, e–tπ

)
=

√
/te–πz/tϑ+k

(
iπz/t, e–π/t) ()

for k = –, ,  (while ϑ(πz, e–tπ ) =
√
–/te–πz/tϑ(iπz/t, e–π/t)). In particular, with t = 

we derive that

ϑ–k
(
π (ix + y), e–π

)
= e–πzϑ+k

(
π (iy – x), e–π

)
, ()

which directly relates |μ(π (y + ix))| and |μ(π (x + iy))| in (). Let

κ(z) :=
ϑ
 (z, e–π )

ϑ
 (z, e–π )

. ()

Then

κ(ix + y) + λ(ix + y) =
√
 ()

or  –
√
κ(ix + y) =

√
λ(ix + y) – , and () then shows

λ(ix + y) = κ(–x + iy) =
√
 – λ(–x + iy). ()

http://www.boundaryvalueproblems.com/content/2013/1/75
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Likewise () is unchanged on replacing λ by κ . Hence, it is equivalent to () to prove
that for all z = π

 (y + ix) with x, y rational λ(z) in () is algebraic.

Theorem  (Algebraic values of λ and μ, []) For all z = π
 (y + ix) with x, y rational, the

values of λ(z) and μ(z) in () are algebraic. It follows that φ(x, y) = 
π

logα with α al-
gebraic. Similarly, ψ(x, y) = 

π
logβ for β algebraic.

This type of analysis also works for any singular value τ =
√
–d and q = exp(π iτ ) and

so applies to sums with n + dm in the denominator, as we see in the next section.

3.4 Explicit equations for degree 2, 3 and 5
We illustrate the complexity of �m(u, v), the algebraic polynomial linking the input and
output as we move from u = z to v =mz, by first considering m =  andm = .

Example  (λ(z) and λ(z)) As described in [],

λ(z)/ = /
ϑ
 (z, e–π ) – ϑ

 (z, e–π )
ϑ
 (z, e–π ) + ϑ

 (z, e–π )
, ()

and so letting τ (z) = ϑ
 (z, e–π )/ϑ

 (z, e–π ), we obtain

τ (z) =
√
λ(z) – , ()

λ(z) = /
(

λ(z) – τ (z)
 + τ (z)

)

. ()

Iteration yields �n . From this one may recursively compute λ(z/n) from λ(z) and watch
the tower of radicals grow. Correspondingly,

λ(z) = 
(λ(z)λ(z) – τ (z)τ (z))

( + τ (z)τ (z))λ(z)
, ()

where τ (z), τ (z), λ(z) are given by () and (). After simplification, we obtain

λ(z) = λ(z)
(

λ(z) – λ(z) + 
√
λ(z) – 

λ(z) – 
√
λ(z) + λ(z) – 

)

. ()

In addition, since we have an algebraic relation α = –λ/
√


–/λ/
√
 , this allows us computationally

to prove the evaluation of φ(x/, y/) and φ(x/, y/) once φ(x, y) is determined as it is
for the cases of Theorem .

We may perform the same work inductively for d = n +  using (n + )z ± nz in the
known addition formulas for ϑk [] to obtain � and so on. The inductive step is

λ
(
(n + )z

)
=


λ(z)

(
λ((n + )z)λ(nz) – τ ((n + )z)τ (nz)

 + τ ((n + )z)τ (nz)

)

. ()

Example  (Empirical computation of �d) Given z and u = λ(z), v = λ(dz), we compute
ujvk for  ≤ j ≤ J ,  ≤ k ≤ K up to degree J , K and look for a relation to precision D. This

http://www.boundaryvalueproblems.com/content/2013/1/75
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is a potential candidate for �d . If �d(λ(w),λ(dw)) ≈  at a precision significantly greater
than D and for various choices of w, we can reliably determine �d in this way [].

Example  We conclude this subsection by proving the following empirical evaluation:

φ(/, /)
?=


π

log/. ()

Let w = π
 ( + i) so that

φ(/, /) =
log |α(w)|

π
while –φ(/, /) =

log |α(w)|
π

since φ(/, /) = –φ(/, /). We may - with help from a computer algebra system -
solve for the stronger requirement that α(w) = –α(w) using Example . We obtain

α(w) =
√
i – 


so that |α(w)| = –/ and |α(w)| = /, as required. To convert this into a proof, we can
make an a priori estimate of the degree and length of α(w) - using (), () and () while
λ(w) =  - and then perform a high precision computation to show no other algebraic
number could approximate the answer well enough. The underlying result we appeal to
[, Exercise , p.] is given next in Theorem .
In this particular case, we use P(α) = α + α +  with � = , d =  and need to con-

firm that |P(α)| < D/L––D. A very generous estimate of L <  and D <  shows it
is enough to check |P(α(w))| ≤ –. This is very easy to confirm. Relaxing to L < ,
D <  requires verifying |P(α(w))| ≤ –,. This takes only a little longer.

Recall that the length of a polynomial is the sum of the absolute value of the coefficients.

Theorem  (Determining a zero) Suppose P is an integral polynomial of degree D and
length L. Suppose that α is algebraic of degree d and length �. Then either P(α) =  or

∣∣P(α)∣∣ ≥ max{, |α|}D
Ld–�D

.

Example  (λ(z)) Making explicit the recipe for λ(z), we eventually arrive at

λ(z) = λ(z)
(λ(z) – 

√
λ(z) + λ(z) – 

√
λ(z) + )

(λ(z) – 
√
λ(z) + λ(z) – 

√
λ(z) + )

× (λ(z) + 
√
λ(z) – λ(z) + 

√
λ(z) – λ(z) + 

√
λ(z) + λ(z) – 

√
λ(z) + )

(λ(z) – 
√
λ(z) + λ(z) + 

√
λ(z) – λ(z) + 

√
λ(z) – λ(z) + 

√
λ(z) + )

.

()

This shows how generous our estimates were in Example .

In similar fashion we can now computationally confirm all of the exact evaluations in
Conjecture  and the like. For example, we know that |α(π (/ + i/))| = |/α(π/(/ +

http://www.boundaryvalueproblems.com/content/2013/1/75
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i/))|. This solves to produce –α(π/(/+ i/)) = +/
√
 and establishes () of Theo-

rem . NowExample  can be used to produce α(π/(/+ i/)) is as given in Conjecture ,
and so on.
We now turn to our main focus.

3.5 ‘Compressed’ potentials
Yet another solution to the Poisson equation with crystal charge source, for d > , is

φ(x, y,d) :=


π

∑
m,n∈O

cos(πmx) cos(πn
√
dy)

m + dn
. ()

This is the potential inside a crystal compressed by /
√
d on the y-axis, in the sense that the

Delord-cube now becomes the cuboid {x, y} ∈ [–/, /] × [–/(
√
d), /(

√
d)]. Indeed,

φ(x, y,d) vanishes on the faces of this -cuboid (rectangle) for d >  and integer. This is
technically only a compression when d > .
Along the same lines as the analysis of (), we can posit a fast series

φ(x, y,d) =


π
√
d

∑
R∈O+

sinh(πR
√
d(/ – |x|)) cos(πR√

dy)
R cosh(πR

√
d/)

, ()

valid on theDelord cuboid, i.e., x ∈ [–/, /], y ∈ [–/(
√
d), /(

√
d)].Moreover, the log-

accumulation technique of [, Appendix] applied as with Theorem  yields the following.

Theorem  (ϑ-representation for compressed potential) We have

φ(x, y,d) =



√
dπ

log

∣∣∣∣ϑ(z,q)ϑ(z,q)
ϑ(z,q)ϑ(z,q)

∣∣∣∣, ()

where q := exp(–π
√
d) and z := 

π
√
d(y + ix).

This theorem is consistent with d =  in the sense φ(x, y, ) = φ(x, y). In addition, for
integers a,b≥ , we have

aφ

(
ax,ay,

b

a

)
:=


π

∑
m∈aO,n∈bO

cos(πmx) cos(πny)
m + n

. ()

We note that there are various trivial evaluations such as φ(x, /, ) =  for all x. More-
over, for each positive rational d, there is an analogue of Theorem  in which /

√
 is

replaced by the dth singular value kd [, ]. Thence, k =
√
 – , k = (

√
 – )/

√
, and

k = (
√
 – ). Precisely, we set

λd(z) :=
ϑ
 (z, exp(–π

√
d))

ϑ
 (z, exp(–π

√
d))

, κd(z) :=
ϑ
 (z, exp(–π

√
d))

ϑ
 (z, exp(–π

√
d))

,

τd(z) :=
ϑ
 (z, exp(–π

√
d))

ϑ
 (z, exp(–π

√
d))

()

http://www.boundaryvalueproblems.com/content/2013/1/75
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and have (where k′
d =

√
 – kd)

k′
dλd(z) + kdκd(z) = , kdλd(z) – k′

dκd(z) = τd(z), ()

(see [, Prop. .]). We observe that () can be written for all x, y as

φ(x, y,d) =



√
dπ

log

∣∣∣∣  – k′
dλd(z)

 – k′
d/λd(z)

∣∣∣∣, ()

on appealing to () and (). Hence we may now study λd exclusively.
Fix an integer m > . The addition formulas for the ϑ ’s as given in [, Section .]

ϑ(z +w,q)ϑ(z –w,q)ϑ
 (,q) = ϑ

 (z,q)ϑ

 (w,q) + ϑ

 (z,q)ϑ

 (w,q), ()

ϑ(z +w,q)ϑ(z –w,q)ϑ
 (,q) = ϑ

 (z,q)ϑ

 (w,q) – ϑ

 (z,q)ϑ

 (w,q), ()

ϑ(z +w,q)ϑ(z –w,q)ϑ(,q)ϑ(,q) = ϑ(z,q)ϑ(z,q)ϑ(w,q)ϑ(w,q)

+ ϑ(w,q)ϑ(w,q)ϑ(z,q)ϑ(z,q) ()

when replacing z by (m – )z and w by z, and appealing to (), allow one recursively to
write λd(mz) algebraically in terms of λd(z). We first give the equation for λd(z).

Example  (λd(z)) As for λ(z), which is the case d = , we have analytically

τd(z) =
λd(z) – k′

d
kd

, ()

λd(z) = k′–
d

(
λ
d(z) – τ 

d (z)
 + τ 

d (z)

)

. ()

This becomes

λd(z) = k′
d

(
 + λ

d(z) – λd(z)/k′
d

 + λ
d(z) – λd(z) · k′

d

)

, ()

and λd() = k′
d .

We turn to λd(z).

Example  (λd(z)) As for λ(z), which is the case d = , we have

τd(z) =
λd(z) – k′

d
kd

, τd(z) =
λd(z) – k′

d
kd

, ()

λd(z) =


k′
d λd(z)

(
λd(z)λd(z) – τd(z)τd(z)

 + τd(z)τd(z)

)

. ()

In tandem with () this becomes

λd(z) = λd
(λd – k′

d – λ
dk

′
d + λ

dk
′
d + λdk′

d )

(λ
d + k′

d – λ
dk

′
d – λ

dk
′
d + λ

dk
′
d )

()

since λd() = k′
d .

http://www.boundaryvalueproblems.com/content/2013/1/75
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This can also be determined by using the methods of Example  to obtain the algebraic
equation linking u = λd(z) and v = λd(z) and then carefully factoring the result - guided
by results such as Example . It could also have been rigorously proven by the method
used for corresponding formula with d =  in [].

We next exhibit several sample compressed-sum evaluations, of which () is the most
striking.

Theorem  (Some explicit compressed sums)

φ

(


,
√



, 
)
=



√
π

log( – 
√
), ()

φ

(


,
√



, 
)
=



√
π

log

(



)
, ()

φ

(


,


, 

)
=


π

log
(√

( +
√
)(

√
 –

√
)

)
, ()

φ

(


,


, 

)
=


π

log

(


( + 

√
 – 

√
)(

√
 – )( +

√
)

· (√ –
√
)

)
. ()

Proof Let us first sketch a proof of (). This requires showing α = exp(π
√
ψ(

√
, /,

d)) = /. Direct computer algebra using () shows that it suffices to prove that λ(z) =
/

√
 + /

√
 when z := π (/ + i

√
/). Now () becomes

λ(z) =
λ(λ – k′

 – λ
k′

 + λ
k′

 + λk′
 )

(λ
 + k′

 – λ
k′

 – λ
k′

 + λ
k′

 )
. ()

However, z is in the compressed lattice generated by , i/
√
 and so

λ(z) ∈
{
,∞,k′

 =
√
 + 

√


,λ

(
iπ

√



)
=

√



√
 – 

√


}
.

From this, we may deduce that λ(z) is a zero of the denominator of (), whose only real
root is /

√
 + /

√
.

To prove (), we similarly consider () and () with d =  so that k =
√
 –  and

z := π ( + i/
√
)/ is in the compressed lattice. Indeed, λ(z) = , and we now deduce

that

λ(z) =

√
 + 

√
 + i

√


√
 – 


,

and the result again follows.
To prove () requires an application of this method with d =  and x = / and y = /.

We likewise may prove () (with d = ). In this final case, x = / and y = /. In these
cases, we need to appeal to both () and () at least once. �

In general, the polynomial for α = exp(π
√
dψ(x, y

√
d,d)) with x, y rational can be cal-

culated as we describe in the next section.

http://www.boundaryvalueproblems.com/content/2013/1/75
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3.6 Further results for φ2(a/c,b/c
√
d,d)

As noted, we anticipated similarly algebraic evaluations for φ(a/c,b/c
√
d,d) for nonneg-

ative integer values of a, b, c, d. And, as we will show inmore examples in the next section,
this is indeed true. All such results can, in principle, be rigorously established by the tech-
niques of Example  and Example  or indeed Theorem , but we will not do this. We
do however give the first few polynomials, Pd , for exp(πφ(/d, /

√
d,d)), that is, with

a = b = , c = d.

Example  (Some explicit compressed polynomials for exp(π
√
dφ(/d, /

√
d,d))) We

present here the polynomials Pd when  ≤ d ≤ .

d minimal polynomial

  – α
  – α + ,α – α + α

  + α – α + α + α

  – ,α + ,α + ,α + ,α + ,α + ,α –
,α + α

  – α + α – α

  – ,α + ,,α – ,,,α + ,,,α –
,,,α – ,,,,α – ,,,,α +
,,,,α – ,,,,α – ,,,,α –
,,,α + ,,,α – ,,,α + ,,α –
,α + α

  + α – ,α + ,α + α – α – α

Note that reversing the order of the variables leads to a more intractable computation
since φ(/

√
d, /d,d) is not of the form covered by Theorem .

3.7 Computational results
Results that we have obtained for the special set of cases exp(π

√
dφ(/d, /

√
d,d)), for

integers d up to , are shown in Table . Our computations required up to ,-digit
precision, and, for large degrees and correspondingly high precision levels, were rather
expensive (over  processor-hours in some cases). We employed the ARPREC arbitrary
precision software [].
The degreem(d) of theminimal polynomial for exp(π

√
dφ(/d, /

√
d,d)), the number

of zeroes z(d) among the minimal polynomial coefficients, the numeric precision level P,
the run time in seconds T , and the approximate base- logarithmM of the absolute value
of the central coefficient are also shown in the table, together with the ratio (logM)/m(d).
We were not able to obtain relations for all cases d ≤ . Evidently, the precision lev-

els we employed in these cases (d =  and d = ) were still insufficient to recover the
underlying relations; a method to obtain the result for d =  is described in Remark 
- which works well because  =  × . It is interesting that in this work, as opposed to
the φ(x, y) constants we studied in [], odd values and prime values of d generally yielded
simpler relations than the even instances.
In the earlier study [], we included Jason Kimberley’s observation that the degreem(d)

of the minimal polynomial for exp(πφ(/d, /d)) appeared to be given for odd primes by
m(k+) = (k) · (k) andm(k+) = (k+) · (k+). If one setsm() = /, for notational

http://www.boundaryvalueproblems.com/content/2013/1/75
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Table 1 PSLQ runs to recover minimal polynomials satisfied by exp(8π
√
dφ2(1/d, 1/

√
d,d))

d m(d) P T log10M
log10M
m(d)

3 1 200 0.00
4 4 200 0.01 3.5230 0.8807
5 4 200 0.01 2.3222 0.5806
6 8 200 0.02 5.8061 0.7258
7 3 200 0.01 1.1461 0.3820
8 16 1, 000 0.85 14.0644 0.8790
9 6 200 0.01 3.9187 0.6531
10 16 1, 000 0.76 12.1262 0.7579
11 15 1, 000 0.55 7.5230 0.5015
12 16 1, 000 0.85 15.2686 0.9543
13 12 1, 000 0.45 9.5690 0.7974
14 48 4, 000 100.31 38.4539 0.8011
15 8 200 0.03 2.1139 0.2642
16 32 2, 000 12.51 33.7985 1.0562
17 32 2, 000 8.93 21.9952 0.6874
18 24 2, 000 4.32 21.1366 0.8807
19 27 2, 000 5.27 16.8591 0.6244
20 64 5, 000 415.78 58.8250 0.9191
21 24 2, 000 4.52 15.6374 0.6516
22 40 3, 000 64.33 41.4566 1.0364
23 33 3, 000 10.92 14.4705 0.4385
24 64 5, 000 412.59 60.3300 0.9427
25 20 2, 000 3.77 20.0766 1.0038
26 144 25, 000 71,680.30 121.91 0.8466
27 27 2, 000 5.70 18.9234 0.7009
28 48 4, 000 131.29 58.4901 1.2185
29 84 6, 000 1,375.38 60.0921 0.7154
30 64 5, 000 557.29 56.9952 0.8906
31 45 4, 000 38.89 19.8425 0.4409
33 40 4, 000 81.42 32.1363 0.8034
34  21, 300 45,993.71 123.9012 0.9680
35 72 12, 000 1,179.43 41.3569 0.5744
36  12, 000 95.3311 95.3311 0.9930
37 36 3, 000 29.11 43.5933 1.2110
39 48 4, 000 56.33 20.7849 0.4330
40  21, 300 127.3572 0.9950

Here m(d) is the degree, P is the precision level in digits, T is the run time in seconds, and log10M is the size in digits of the
central coefficient. Degrees in bold were obtained by Andrew Mattingly.

convenience, then it appears that for any prime factorization of an integer greater than ,

m

( k∏
i=

peii

)
?= k–

k∏
i=

p(ei–)i m(pi). ()

Unfortunately, we have not yet been able to find a similar formula for the minimal polyno-
mial degree in the compressed cases under study in Table . We are actively investigating
this at the present time.
With regards to the run times listed in Table  (given to . second accuracy), it should

be recognized that like all computer run times, particularly in a multicore or multiproces-
sor environment, they are only repeatable to two or three significant digits. They are listed
here only to emphasize the extremely rapid increase in computational cost as the degree
m and corresponding precision level P increase.

http://www.boundaryvalueproblems.com/content/2013/1/75
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Remark  (A refined approach) A referee has suggested making more more explicit the
relations with elliptic functions. We had opted to limit the theory needed so as to better
understand what experimental computation could produce for a wider audience.
(a) The basic quantity λ(z), which appears in Theorem , can be written in terms of the

Jacobian elliptic function dn(z) []. If z = π (y + ix)/, and k = k = /
√
 as above, then

λ(z) =
k

dn(yK + ixK ′;k′)
.

Notice thatK = K ′ in this case. Allmultiplication formulas for λ are then essentially special
cases of addition formulas for Jacobian elliptic functions. At least in outline this makes it
clear that λ(z) is algebraic, since elliptic functions evaluated at rational multiples of the
periods are always algebraic with respect to k. In [] some closely related lattice sums
(essentially linear combinations of some of the lattice sums being considered herein) are
evaluated in part by such reasoning.
(b) Similarly, for fixed  < k < , set

f (x) :=
 – cn(x;k)
 + cn(x;k)

, g(u) := u
( + u) – ku

( – u)
.

Then, in terms of the elliptic function cn [, ], we can write

φ(x, y,d) =


π
√
d
log

∣∣f (iK ′
d/d,kd

)∣∣, ()

and the corresponding duplication formula for f is f (x) = g(f (x)). Now the value of k and
the Landen transform [] yield

k =
 –

√
 – ( + 

√
 – 

√
 + 

√
)

 +
√
 – ( + 

√
 – 

√
 + 

√
)

,

[, Appendix] which makes the minimal polynomial for k easily expressible

x – ,x – ,x – ,x – ,x – ,x – ,x – ,x + 

= . ()

Let θ := f (iK ′
/,k). Observe,much as in earlier examples, that g(g(g(g(θ)))) = –.

Wemaynowobtain an algebraic equation relating k, θ by computing g(g(g(g(u)))) while
reducing repeatedly using (); finally, resolvant computations produce the equation for
d =  that we failed to find in Table .

4 Conclusions
In this study, we have obtained some explicit closed-form evaluations of certain summa-
tions that arise as solutions of the Poisson equation, which in turn arises in numerous are-
nas ranging from engineering to studies of crystal structures. Many of these evaluations
were first found experimentally by means of a process we have employed in other settings:
computing the relevant expressions to high precision, then applying the PSLQ algorithm

http://www.boundaryvalueproblems.com/content/2013/1/75
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to recognize the resulting numerical values in closed form. In this case, we computed the
constants exp(π

√
dφ(/d, /

√
d,d)), for various integers d, to a numeric precision of up

to , digits, then found the integer coefficients of a polynomial that is satisfied by the
constant up to a tolerance corresponding to the precision level. We then demonstrated
a theoretical framework whereby such experimentally discovered relations can, in many
cases, be formally proven.
For further details of the computation of lattice sums and related theta functions the

reader is referred to [–].
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