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1 Introduction
Fractional differential equations (FDEs) have been of great interest for the last three
decades [–]. It is caused both by the intensive development of the theory of fractional
calculus itself and by the applications of such constructions in the modeling of many phe-
nomena in various fields of science and engineering. Indeed, we can find numerous ap-
plications in viscoelasticity [], electrochemistry [], control, porous media [], etc.
Therefore, the theory of FDEs has been developed very quickly. Many qualitative theo-
ries of FDEs have been obtained. Many important results can be found in [–] and
references cited therein.
In this paper, we shall use the fixed point index theory of completely continuous opera-

tors to investigate the multiple positive solutions of a boundary value problem for a class
of α order nonlinear integro-differential equations in a Banach space.
Let E be a real Banach space, P be a cone in E and P denote the interior points of P.

A partial ordering in E is introduced by x≤ y if and only if y–x ∈ P. P is said to be normal if
there exists a positive constantN such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where θ denotes
the zero element of E, and the smallest constant N is called the normal constant of P. P is
called solid if P is nonempty. If x≤ y and x �= y, we write x < y. If P is solid and y – x ∈ P,
we write x � y. For details on cone theory, see [].
For the application in the sequel, we first state the following lemmas and definitions

which can be found in [, , ].

Lemma . Let P be a cone in a real Banach space E, and let � be a nonempty bounded
open convex subset of P. Suppose that A : � → P is completely continuous and A(�) ⊂ �,

© 2013 Liu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.boundaryvalueproblems.com/content/2013/1/79
mailto:ruirui0516@163.com
http://creativecommons.org/licenses/by/2.0


Liu et al. Boundary Value Problems 2013, 2013:79 Page 2 of 18
http://www.boundaryvalueproblems.com/content/2013/1/79

where � denotes the closure of � in P. Then the fixed point index

i(A,�,P) = .

Lemma . Let P be a cone in a real Banach space E, and let � = � ∪ �, where �i

(i = , ) are nonempty bounded open convex subsets of P and � ∩ � = ∅. Suppose that
A :� → P is a strict set contraction and A(�) ⊂ �. Then

i(A,�,P) = i(A,�,P) + i(A,�,P).

Lemma . If U ⊂ C[I,E] is bounded and equicontinuous, then αE(U(t)) is continuous on
I , and set

αC(U) =max
t∈I

αE
(
U(t)

)
, αE

(∫
I
u(t) dt : u ∈U

)
≤

∫
I
αE

(
U(t)

)
dt,

where I = [a,b], U(t) = {u(t) : u ∈U}.

Definition . The fractional integral of order α >  of a function f : (,∞) →R is given
by

Iα+f (t) =


�(α)

∫ t


(t – s)α–f (s) ds

provided the right-hand side is pointwise defined on (,∞).

Definition . The fractional derivative of order α >  of a function f : (,∞) → R is
given by

Dα
+f (t) =


�(n – α)

(
d
dt

)n ∫ t



f (s)
(t – s)α–n+

ds,

where n = [α] + , provided the right-hand side is pointwise defined on (,∞).

Lemma . Let α > , then

Iα+D
α
+x(t) = x(t) + ctα– + ctα– + · · · + cntα–n

for some ci ∈ E, i = , , , . . . ,n – , n = –[–α].

In this article, let J = [,+∞), BC[J ,E] = {u ∈ C[J ,E] : supt∈J
‖u(t)‖
+tα– < ∞}. It is easy to see

that BC[J ,E] is a Banach space with the norm

‖u‖B = sup
t∈J

‖u(t)‖
 + tα–

.

Consider the boundary value problem (BVP) for a fractional nonlinear integro-differen-
tial equation of mixed type in E:

⎧⎨
⎩Dα

u(t) + f (t,u(t), (Tu)(t), (Su)(t)) = θ ∀t ∈ J ,

u() = u′() = θ , Dα–
 u(+∞) =

∑m
i= βiu(ηi),

()
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where Dα
 is the standard Riemann-Liouville fractional derivative of order  < α < , f ∈

C[J × P × P × P,P], βi >  (i = , , . . . ,m),  < η < η < · · · < ηm,
∑m

i= βiη
α–
i < �(α) and

(Tu)(t) =
∫ t


K(t, s)u(s) ds, (Su)(t) =

∫ +∞


H(t, s)u(s) ds, ()

K ∈ C[D,R+], D = {(t, s) ∈ J × J : t ≥ s}, H ∈ C[J × J ,R+], R+ denotes the set of all nonneg-
ative real numbers.

2 Several lemmas
To establish the existence of multiple positive solutions in BC[J ,P] of (), let us list the
following assumptions.
(H) k∗ = supt∈J

∫ t
 K(t, s) ds < ∞, h∗ = supt∈J


+tα–

∫ +∞
 H(t, s)( + sα–) ds < ∞,∫ +∞

 (H(t′, s) –H(t, s))( + sα–) ds → , as t′ → t (t ∈ J).
(H) There exist a,b ∈ C[J ,R+] and g ∈ C[J × J × J ,R+] such that

∥∥f (t,u, v,w)∥∥ ≤ a(t) + b(t)g
(‖u‖,‖v‖,‖w‖) ∀t ∈ J ,u, v,w ∈ P.

(H) There exists c ∈ C[J ,R+] such that

‖f (t,u, v,w)‖
c(t)(‖u‖ + ‖v‖ + ‖w‖) → , as u, v,w ∈ P,‖u‖ + ‖v‖ + ‖w‖ → ∞

uniformly for t ∈ J , and

c∗ =
∫ +∞


c(t)

(
 + tα–

)
dt < ∞.

(H) There exists d ∈ C[J ,R+] such that

‖f (t, ( + tα–)u, ( + tα–)v, ( + tα–)w)‖
d(t)(‖u‖ + ‖v‖ + ‖w‖) → , as u, v,w ∈ P,‖u‖ + ‖v‖ + ‖w‖ → 

uniformly for t ∈ J , and

d∗ =
∫ +∞


d(t) dt < ∞.

(H) For any t ∈ J and r > , f (t,Pr ,Pr ,Pr) = {f (t,u, v,w) : u, v,w ∈ Pr} is relatively compact
in E, where Pr = {u ∈ P : ‖u‖ ≤ r}.
(H) P is normal and solid, and there exist u � θ ,  < t∗ < t∗ < ∞ and σ ∈ C[I,R+] such

that

f (t,u, v,w) ≥ σ (t)u ∀t ∈ I,u ≥ u, v ≥ θ ,w≥ θ

and

∫ t∗

t∗
γ (s)σ (s) > ,

where I = [t∗, t∗], γ (s) =mint∈I G(t, s).
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(H) There exist u > θ ,  < t∗ < t∗ < ∞ and σ ∈ C[I,R+] such that

f (t,u, v,w) ≥ σ (t)u ∀t ∈ I,u ≥ u, v ≥ θ ,w≥ θ

and

∫ t∗

t∗
γ (s)σ (s)≥ ,

where I = [t∗, t∗], γ (s) =mint∈I G(t, s).

Remark . It is clear that (H) is satisfied automatically when E is finite dimensional.

Remark . It is clear that assumption (H) is weaker than assumption (H).

We shall reduce BVP () to an integral equation in E. To this end, we first consider the
operator A defined by

(Au)(t) = –


�(α)

∫ t


(t – s)α–f

(
s,u(s), (Tu)(s), (Su)(s)

)
ds

–
λ

�(α)

m∑
i=

βitα–
∫ ηi


(ηi – s)α–f

(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ λtα–
∫ +∞


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds, ()

where λ = 
�(α)–

∑m
i= βiη

α–
i

.
In our main results, we make use of the following lemmas.

Lemma . Let assumption (H) be satisfied, then the operators T and S defined by () are
bounded linear operators from BC[J ,E] into BC[J ,P], and

‖T‖ ≤ k∗, ‖S‖ ≤ h∗. ()

Moreover,

T : BC[J ,P] → BC[J ,P], S : BC[J ,P] → BC[J ,P]. ()

Proof Inequalities () follow from two simple inequalities:

‖(Tu)(t)‖
 + tα–

≤
∫ t


K(t, s)

 + sα–

 + tα–
‖u(s)‖
 + sα–

ds ≤ k∗‖u‖B,

‖(Su)(t)‖
 + tα–

≤
∫ +∞


H(t, s)

 + sα–

 + tα–
‖u(s)‖
 + sα–

ds ≤ h∗‖u‖B,

and () is obvious. �

Lemma . Let assumptions (H), (H) and (H) be satisfied, then the operator A defined
by () is a continuous operator from BC[J ,E] into BC[J ,E].

http://www.boundaryvalueproblems.com/content/2013/1/79
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Proof Let

ε =


( + k∗ + h∗)

[(


�(α)
+ λ

)
c∗ +

λ

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–

(
a(s) +Mb(s)

)
ds

]–

,

where λ is defined in the operator A.
By virtue of assumptions (H) and (H), there exists an R >  such that

∥∥f (t,u, v,w)∥∥ ≤ εc(t)
(‖u‖ + ‖v‖ + ‖w‖)

∀t ∈ J ,u, v,w ∈ P,‖u‖ + ‖v‖ + ‖w‖ > R ()

and

∥∥f (t,u, v,w)∥∥ ≤ a(t) +Mb(t)

∀t ∈ J ,u, v,w ∈ P,‖u‖ + ‖v‖ + ‖w‖ ≤ R, ()

where

M =max
{
g(x,x,x) :  ≤ x,x,x ≤ R

}
.

It follows from () and () that for t ∈ J , u, v,w ∈ P, we have

∥∥f (t,u, v,w)∥∥ ≤ εc(t)
(‖u‖ + ‖v‖ + ‖w‖) + a(t) +Mb(t). ()

Let u ∈ BC[J ,P], we have, by () and Lemma .,

∥∥f (t,u, (Tu)(t), (Su)(t))∥∥ ≤ εc(t)
(
 + tα–

)(
 + k∗ + h∗)‖u‖B + a(t) +Mb(t), ()

which implies the convergence of the infinite integral

∫ +∞


f
(
t,u, (Tu)(t), (Su)(t)

)
ds

and
∫ +∞



∥∥f (t,u, (Tu)(t), (Su)(t))∥∥ds ≤ c∗ε
(
 + k∗ + h∗)‖u‖B + a∗ +Mb∗. ()

Thus, we have, by (), () and (),

‖(Au)(t)‖
 + tα–

≤ 
�(α)

∫ t



(t – s)α–

 + tα–
∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds

+
λ

�(α)

m∑
i=

βi
tα–

 + tα–

∫ ηi


(ηi – s)α–

∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
+

λtα–

 + tα–

∫ +∞



∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds

http://www.boundaryvalueproblems.com/content/2013/1/79
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≤
(


�(α)

+ λ

)∫ +∞



∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
+

λ

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–

∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
≤

(


�(α)
+ λ

)(
c∗ε

(
 + k∗ + h∗)‖u‖B + a∗ +Mb∗)

+
λε

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–εc(s)

(
 + sα–

)(
 + k∗ + h∗)‖u‖B ds

+
λ

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–

(
a(s) +Mb(s)

)
ds

≤ 

‖u‖B +

(


�(α)
+ λ

)(
a∗ +Mb∗)

+
λ

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–

(
a(s) +Mb(s)

)
ds. ()

It follows from () that

‖Au‖B ≤ 

‖u‖B +

(


�(α)
+ λ

)(
a∗ +Mb∗)

+
λ

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–

(
a(s) +Mb(s)

)
ds. ()

Thus, we have A(BC[J ,E])⊂ BC[J ,E].
Finally, we show that A is continuous. Let un, ũ ∈ BC[J ,E], ‖un – ũ‖B →  (n → ∞).

Then r = supn ‖un‖ < ∞ and ‖ũ‖B ≤ r. By (), we have

∥∥∥∥ (Aun)(t) + tα–
–
(Aũ)(t)
 + tα–

∥∥∥∥ ()

≤
∫ t



(t – s)α–

 + tα–
∥∥f (s,un(s), (Tun)(s), (Sun)(s)) – f

(
s, ũ(s), (Tũ)(s), (Sũ)(s)

)∥∥ds
+

λ

�(α)

m∑
i=

βi
tα–

 + tα–

∫ ηi


(ηi – s)α–

∥∥f (s,un(s), (Tun)(s), (Sun)(s))

– f
(
s, ũ(s), (Tũ)(s), (Sũ)(s)

)∥∥ds
+

λtα–

 + tα–

∫ +∞



∥∥f (s,un(s), (Tun)(s), (Sun)(s)) – f
(
s, ũ(s), (Tũ)(s), (Sũ)(s)

)∥∥ds
≤

(


�(α)
+ λ

)∫ +∞



∥∥f (s,un(s), (Tun)(s), (Sun)(s)) – f
(
s, ũ(s), (Tũ)(s), (Sũ)(s)

)∥∥ds
+

λ

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–

∥∥f (s,un(s), (Tun)(s), (Sun)(s))

– f
(
s, ũ(s), (Tũ)(s), (Sũ)(s)

)∥∥ds. ()

http://www.boundaryvalueproblems.com/content/2013/1/79
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It is clear that

f
(
t,un(t), (Tun)(t), (Sun)(t)

) → f
(
t, ũ(t), (Tũ)(t), (Sũ)(t)

)
, n→ ∞, ()

and by (),

∥∥f (t,un(t), (Tun)(t), (Sun)(t)) – f
(
t, ũ(t), (Tũ)(t), (Sũ)(t)

)∥∥
≤ εc(t)

(
 + tα–

)(
 + k∗ + h∗)‖u‖B + a(t) + Mb(t) = μ(t)

∀t ∈ J ,n = , , , . . . ,μ ∈ L
[
J ,R+]. ()

It follows from () and () and the dominated convergence theorem that

lim
n→∞

∫ +∞



∥∥f (t,un(t), (Tun)(t), (Sun)(t)) – f
(
t, ũ(t), (Tũ)(t), (Sũ)(t)

)∥∥ds =  ()

and

lim
n→∞

∫ ηi


(ηi – s)α–

∥∥f (t,un(t), (Tun)(t), (Sun)(t)) – f
(
t, ũ(t), (Tũ)(t), (Sũ)(t)

)∥∥ds
= , i = , , . . . ,m. ()

It follows from (), () and () that ‖Aun –Aũ‖B →  (n→ ∞), and the continuity of A
is proved. �

Lemma . Let assumptions (H), (H) and (H) be satisfied, then u ∈ BC[J ,E] is a solu-
tion of BVP () if and only if u ∈ BC[J ,E] is a solution of the following integral equation:

u(t) = –


�(α)

∫ t


(t – s)α–f

(
s,u(s), (Tu)(s), (Su)(s)

)
ds

–
λ

�(α)

m∑
i=

βitα–
∫ ηi


(ηi – s)α–f

(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ λtα–
∫ +∞


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds, ()

i.e., u is a fixed point of the operator A defined by () in BC[J ,E].

Proof If u ∈ BC[J ,E] is a solution of BVP (), then by applying Lemma . we reduce
Dα

u(t) + f (t,u(t), (Tu)(t), (Su)(t)) = θ to an equivalent integral equation

u(t) = –Iα+f
(
t,u(t), (Tu)(t), (Su)(t)

)
+ ctα– + ctα– + ctα– ()

for some c, c, c. () can be rewritten

u(t) = –


�(α)

∫ t


(t – s)α–f

(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ ctα– + ctα– + ctα–. ()

http://www.boundaryvalueproblems.com/content/2013/1/79
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By u() = u′() = θ , we have

c = c = . ()

By Dα–
 u(+∞) =

∑m
i= βiu(ηi), we obtain

c = λ

∫ +∞


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

–
λ

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–f

(
s,u(s), (Tu)(s), (Su)(s)

)
ds. ()

Now, substituting () and () into (), we see that u(t) satisfies integral equation ().
Conversely, if u is a solution of (), the direct differentiation of () gives

u′(t) = –


�(α – )

∫ t


(t – s)α–f

(
s,u(s), (Tu)(s), (Su)(s)

)
ds

–
λ

�(α – )

m∑
i=

βitα–
∫ ηi


(ηi – s)α–f

(
s,u(s), (Tu)(s), (Su)(s)

)
ds

+ λ(α – )tα–
∫ +∞


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds ()

and

Dα–
+ u(t) =

∫ t


f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds. ()

Consequently, u ∈ BC[J ,E], and by (), () and (), it is easy to see that u(t) satisfies
BVP (). �

Lemma . Integral equation () can be expressed as

u(t) =
∫ +∞


G(t, s)f

(
s,u(s), (Tu)(s), (Su)(s)

)
ds, ()

and G(t, s) >  for any t, s ∈ (,∞), where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–(t–s)α–(�(α)–
∑m

i= βiη
α–
i )–

∑m
i=j βit

α–(ηi–s)α–+�(α)tα–

(�(α)–
∑m

i= βiη
α–
i )�(α) ,

ηk– ≤ t ≤ ηk ,ηj– ≤ s ≤ ηj,k = , , . . . ,m,

j = , , . . . ,k –  or

ηk– ≤ t ≤ ηk , s ≤ t,k = , , . . . ,m;
–

∑m
i=j βit

α–(ηi–s)α–+�(α)tα–

(�(α)–
∑m

i= βiη
α–
i )�(α) ,

ηk– ≤ t ≤ ηk ,ηj– ≤ s ≤ ηj,k = , , . . . ,m,

j = k + , . . . ,m or

ηk– ≤ t ≤ ηk , t ≤ s,k = , , . . . ,m;
–(t–s)α–(�(α)–

∑m
i= βiη

α–
i )+�(α)tα–

(�(α)–
∑m

i= βiη
α–
i )�(α) , ηm ≤ s ≤ t;

tα–
�(α)–

∑m
i= βiη

α–
i

, t ≤ ηm ≤ s or ηm ≤ t ≤ s.

()
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Proof Let h(t) = f (t,u(t), (Tu)(t), (Su)(t)). For t ≤ η, one has

u(t) = –


�(α)

∫ t


(t – s)α–h(s) ds

–
λ

�(α)
βtα–

(∫ t


(η – s)α–h(s) ds +

∫ η

t
(η – s)α–h(s) ds

)

–
λ

�(α)
βtα–

(∫ t


(η – s)α–h(s) ds +

∫ η

t
(η – s)α–h(s) ds

+
∫ η

η

(η – s)α–h(s) ds
)

· · ·
–

λ

�(α)
βmtα–

(∫ t


(ηm – s)α–h(s) ds +

∫ η

t
(ηm – s)α–h(s) ds

+ · · · +
∫ ηm

ηm–

(ηm – s)α–h(s) ds
)

+ λtα–
(∫ t


h(s) ds +

∫ η

t
h(s) ds +

∫ η

η

h(s) ds

+ · · · +
∫ ηm

ηm–

h(s) ds +
∫ +∞

ηm

h(s) ds
)

=
∫ +∞


G(t, s)h(s) ds,

 < s ≤ t

G(t, s) =
λ

�(α)

[
–(t – s)α–

(
�(α) –

m∑
i=

βiη
α–
i

)
–

m∑
i=

βi(ηi – s)α–tα– + �(α)tα–
]

≥ λ

�(α)

[
–tα–

(
�(α) –

m∑
i=

βiη
α–
i

)
–

m∑
i=

βi(ηi – s)α–tα– + �(α)tα–
]

=
λ

�(α)

m∑
i=

βi
(
ηα–
i – (ηi – s)α–

)
tα– > ,

 < t ≤ s ≤ η

G(t, s) =
λ

�(α)

[
–

m∑
i=

βi(ηi – s)α–tα– + �(α)tα–
]

≥ λ

�(α)

(
�(α) –

m∑
i=

βiη
α–
i

)
tα– ≥ ,

ηj– ≤ s≤ ηj, j = , , . . . ,m

G(t, s) =
λ

�(α)

[
–

m∑
i=j

βi(ηi – s)α–tα– + �(α)tα–
]

≥ λ

�(α)

(
�(α) –

m∑
i=j

βiη
α–
i

)
tα– > ,
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ηm ≤ s

G(t, s) =
λ

�(α)
tα– > .

By simple calculation, we can prove the rest of the lemma. �

Lemma . Let assumptions (H), (H) and (H) be satisfied, and let U be a bounded
subset of BC[J ,E]. Then { (Au)(t)+tα–

: u ∈ U} is equicontinuous on any finite subinterval of J ,
and for any given ε > , there exists τ >  such that

∥∥∥∥ Au(t)
 + tα–

–
Au(t)
 + tα–

∥∥∥∥ < ε

uniformly with respect to u ∈U , as t, t ≥ τ .

Proof For u ∈U , t < t, by using (), we have

∥∥∥∥ Au(t)
 + tα–

–
Au(t)
 + tα–

∥∥∥∥
≤ 

�(α)

∫ t



∣∣∣∣ (t – s)α–

 + tα–
–
(t – s)α–

 + tα–

∣∣∣∣∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
+


�(α)

∫ t

t

(t – s)α–

 + tα–

∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
+

∣∣∣∣ tα–

 + tα–
–

tα–

 + tα–

∣∣∣∣
(

λ

∫ +∞



∥∥f (t,u, (Tu)(t), (Su)(t))∥∥ds
+


�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–

∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
)
. ()

This, together with () and (), implies that { Au(t)
+tα–

: u ∈ U} are equicontinuous on any
finite subinterval of J .
Now, we are going to prove that for any given ε > , there exists sufficiently large τ > ,

which satisfies

∥∥∥∥ Au(t)
 + tα–

–
Au(t)
 + tα–

∥∥∥∥ ≤ ε

for all u ∈U and t, t ≥ τ .
Together with (), we need only to show that for any given ε > , there exists sufficiently

large τ >  such that

∥∥∥∥
∫ t



(t – s)α–

 + tα–
f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

–
∫ t



(t – s)α–

 + tα–
f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

∥∥∥∥ < ε.

http://www.boundaryvalueproblems.com/content/2013/1/79
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It follows from () that for any given ε > , there exists a sufficiently large L >  such that

∫ +∞

L

∥∥f (t,u, (Tu)(t), (Su)(t))∥∥ds < ε


∀u ∈ U , ()

and there exists K >  such that∫ +∞



∥∥f (t,u, (Tu)(t), (Su)(t))∥∥ds ≤ K ∀u ∈U . ()

On the other hand, let g(t, s) = (t–s)α–
+tα– , s ∈ [,L], t ∈ [L, +∞), then we have

lim
t→∞ sup

s∈[,L]

∣∣g(t, s) – 
∣∣ ≤ lim

t→∞ g(t,L) = .

Thus, there exists τ >  such that for t, t ≥ τ ,

sup
s∈[,L]

∣∣g(t, s) – g(t, s)
∣∣

≤ sup
s∈[,L]

∣∣g(t, s) – 
∣∣ + sup

s∈[,L]

∣∣g(t, s) – 
∣∣

<
ε

K
. ()

Therefore, from (), () and () we have
∥∥∥∥
∫ t



(t – s)α–

 + tα–
f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

–
∫ t



(t – s)α–

 + tα–
f
(
s,u(s), (Tu)(s), (Su)(s)

)
ds

∥∥∥∥
≤

∫ L



∣∣∣∣ (t – s)α–

 + tα–
–
(t – s)α–

 + tα–

∣∣∣∣∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
+

∫ t

L

(t – s)α–

 + tα–

∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
+

∫ t

L

(t – s)α–

 + tα–

∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
≤ ε

K

∫ L



∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds + ε


+

ε


< ε.

Consequently, the proof is complete. �

Lemma . Let assumptions (H), (H) and (H) be satisfied, and let U be a bounded
subset of BC[J ,E]. Then

αB(AU) = sup
t∈J

αE

(
(Au)(t)
 + tα–

)
.

Proof By Lemma ., we know AU is a bounded subset of BC[J ,E]. Thus,

 =: sup
t∈J

αE

(
(AU)(t)
 + tα–

)
<∞.
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First, we claim that αB(AU)≤ .
In fact, by Lemma ., we know that for any given ε > , there exists a τ >  such that

∥∥∥∥ (Au)(t) + tα–
–
(Au)(t)
 + tα–

∥∥∥∥ < ε ()

uniformly with respect to u ∈U and t, t ≥ τ .
Since { (Au)(t)+tα– : u ∈U} is equicontinuous on [, τ ], by Lemma ., we know

αB(AU|[,τ ]) = max
t∈[,τ ]

αE

(
(Au)(t)
 + tα–

)
,

where

AU|[,τ ] =
{
u(t) : t ∈ [, τ ],u ∈U

}
,

that is, AU|[,τ ] is the restriction ofAU on [, τ ]. Therefore, there existsU,U, . . . ,Uk ⊂U
such that

U =
k⋃
i=

Ui

satisfying

AU|[,τ ] =
k⋃
i=

AUi|[,τ ], diamB(AUi) <  + ε, i = , , , . . . ,k, ()

where diamB(·) denote the diameters of bounded subsets of BC[J ,E].
At the same time, for any Au,Au ∈ AUi, by () and (), we obtain

∥∥∥∥ (Au)(t) + tα–
–
(Au)(t)
 + tα–

∥∥∥∥ ≤
∥∥∥∥ (Au)(t) + tα–

–
(Au)(t)
 + tα–

∥∥∥∥ +
∥∥∥∥ (Au)(t) + tα–

–
(Au)(t)
 + tα–

∥∥∥∥
+

∥∥∥∥ (Au)(t) + tα–
–
(Au)(t)
 + tα–

∥∥∥∥
≤ ε +  + ε + ε =  + ε ∀t ∈ [τ , +∞). ()

It follows from () and () that

diamB(AUi) ≤  + ε, i = , , , . . . ,k.

Then, by using AU =
⋃k

i=AUi, we have

αB(AU)≤ .

On the other hand, for any given ε > , there exist Vi ⊂U , i = , , , . . . , l, such that

AU =
l⋃

i=

AVi and diamB(AVi) ≤ αB(AU) + ε.

http://www.boundaryvalueproblems.com/content/2013/1/79
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Hence, for ∀t ∈ J , ∀u,u ∈Ui, i = , , , . . . , l, we have
∥∥∥∥ (Au)(t) + tα–

–
(Au)(t)
 + tα–

∥∥∥∥ ≤ ‖Au –Au‖B ≤ αB(AU) + ε. ()

Since (AU)(t) =
⋃l

i=(AVi)(t) together with (), we get

αE

(
(Au)(t)
 + tα–

)
≤ αB(AU) + ε,

that is,

sup
t∈J

αE

(
(Au)(t)
 + tα–

)
≤ αB(AU) + ε.

Because ε is arbitrary, we obtain

sup
t∈J

αE

(
(Au)(t)
 + tα–

)
≤ αB(AU).

Consequently, the proof is complete. �

3 Main results
In this section, we give and prove our main results.

Theorem . Let (H)-(H) be satisfied. Then BVP () has at least two positive solutions
u∗,u∗∗ ∈ BC[J ,P] such that u∗(t) � u for t ∈ I .

Proof By Lemma . and Lemma ., the operator A defined by () is continuous from
BC[J ,P] into BC[J ,P], and by Lemma ., we need only to show that A has two positive
fixed points u∗,u∗∗ ∈ BC[J ,P] such that u∗(t) � u for t ∈ I .
First, we shall prove A is compact.
Let U = {un} ⊂ BC[J ,E] be bounded and ‖un‖ ≤ K (n = , , , . . .). From (), we can

choose a sufficiently large τ >  such that for all u ∈U
∫ +∞

τ

∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds < ε. ()

It follows from Lemma . that{
(Aun)(t)
 + tα–

: n = , , , . . .
}

()

is equicontinuous on [, τ ]. Thus, by (), () and (), we have

αE

(
AU(t)
 + tα–

)
≤ 

�(α)

∫ τ


αE

(
f
(
s,U(s), (TU)(s), (SU)(s)

))
ds + ε

+


�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–αE

(
f
(
s,U(s), (TU)(s), (SU)(s)

))
ds

+
∫ τ


αE

(
f
(
s,U(s), (TU)(s), (SU)(s)

))
ds + λε, ()
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where AU(t)
+tα– = { Aun(t)+tα– : n = , , , . . .}, U(s) = {un(s) : n = , , , . . .}, (TU)(s) = {(Tun)(s) : n =

, , , . . .}, (SU)(s) = {(Sun)(s) : n = , , , . . .}.
Since U(s), (TU)(s), (SU)(s) ⊂ Pr∗ for s ∈ J , where r∗ = max{r,k∗r,h∗r}, we see that, by

virtue of assumption (H),

αE
(
f
(
s,U(s), (TU)(s), (SU)(s)

))
=  ∀t ∈ J . ()

It follows from () and () that

αE

(
AU(t)
 + tα–

)
≤ ( + λ)ε,

which implies, by virtue of the arbitrariness of ε, that

αE

(
AU(t)
 + tα–

)
=  ∀t ∈ J .

Using Lemma ., we have

αB(AU) = sup
t∈J

(
AU(t)
 + tα–

)
= .

Thus, we can conclude that AU is relatively compact in BC[J ,E], i.e., A is compact.
As in the proof of Lemma ., () holds. Choose

R∗ >

{
‖u‖, 

(


�(α)
+ λ

)(
a∗ +Mb∗)

+
λ

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–

(
a(s) +Mb(s)

)
ds

}
, ()

where u � θ is given in assumption (H), and let � = {u ∈ BC[J ,P] : ‖u‖ < R∗}. Then
� = {u ∈ BC[J ,P] : ‖u‖ ≤ R∗} and, by () and (), we have

A(�) ⊂ �. ()

By virtue of (H), there exists an r >  such that

∥∥f (t, ( + tα–
)
u,

(
 + tα–

)
v,

(
 + tα–

)
w

)∥∥ ≤ εd(t)
(‖u‖ + ‖v‖ + ‖w‖)

∀t ∈ J ,u, v,w ∈ P,‖u‖ + ‖v‖ + ‖w‖ ≤ r, ()

where

ε =


( + k∗ + h∗)

[(


�(α)
+ λ

)
d∗ +

λ

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–d(s) ds

]–

. ()

Let

r =
r

 + k∗ + h∗ .
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Then, for u ∈ BC[J ,P] with ‖u‖B ≤ r, we have by ()

∥∥f (t,u(t), (Tu)(t), (Su)(t))∥∥
=

∥∥∥∥f
(
t,

(
 + tα–

) u(t)
 + tα–

,
(
 + tα–

) (Tu)(t)
 + tα–

,
(
 + tα–

) (Su)(t)
 + tα–

)∥∥∥∥
≤ εd(t)

( ‖u(t)‖
 + tα–

+
‖(Tu)(t)‖
 + tα–

+
‖(Su)(t)‖
 + tα–

)

≤ εd(t)
(
 + k∗ + h∗)‖u‖B ∀t ∈ J . ()

It follows from (), () and () that

‖(Au)(t)‖
 + tα–

≤ 
�(α)

∫ t



∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
+

λ

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–

∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
+ λ

∫ +∞



∥∥f (s,u(s), (Tu)(s), (Su)(s))∥∥ds
≤

(


�(α)
+ λ

)
εd∗( + k∗ + h∗)‖u‖B

+
ε( + k∗ + h∗)

�(α)

m∑
i=

βi

∫ ηi


(ηi – s)α–d(s) ds

=


‖u‖B,

which implies

‖Au‖B ≤ 

‖u‖B, u ∈ BC[J ,P],‖u‖B ≤ r. ()

Choose

 < r <min

{ ‖u‖
N( + tα–∗ )

, r,R
}
. ()

Let � = {u ∈ BC[J ,P] : ‖u‖B < r}. Then � = {u ∈ BC[J ,P] : ‖u‖B ≤ r}, and we have, by
() and (),

A(�) ⊂ �. ()

Let � = {u ∈ BC[J ,P] : ‖u‖B < R,u(t) � u, t ∈ I}, and we are going to show that � is
an open set of BC[J ,P]. It is clear that we need only to show the following: for any ū ∈ �,
there exists η >  such that u ∈ BC[J ,P], ‖u – ū‖B < η implies that u(t) � u for t ∈ I . We
have ū(t) � u for t ∈ I . So, for any s ∈ I , there exists a ε = ε(s) >  such that

ū(s) ≥ ( + ε)u. ()

http://www.boundaryvalueproblems.com/content/2013/1/79
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Since u � θ and ū(t) is continuous on J , we can find an open interval I(s, δ) = (s– δ, s+ δ)
(δ > ) such that

εu +
[
ū(t) – ū(s)

] ≥ θ ∀t ∈ I(s, δ),

which implies by virtue of () that

ū(t) ≥ ( + ε)u ∀t ∈ I(s, δ).

Since I is compact, there is a finite collection of such intervals {I(sj, δj)} (j = , , . . . ,k) which
cover I , and

ū(t) ≥ ( + εj)u ∀t ∈ I(sj, δj) (j = , , . . . ,k),

where εj >  (j = , , . . . ,k). Consequently,

ū(t) ≥ (
 + ε∗)u ∀t ∈ I, ()

where ε∗ =min≤j≤k{εj} > . Since u � θ , there exists an η = ‖u‖
N(+tα∗ ) >  such that

ε∗u +
[
u(t) – ū(t)

] ≥ θ ∀t ∈ I, ()

whenever u ∈ BC[J ,P] satisfying ‖u– ū‖B < η, which implies by virtue of () and () that

u(t) ≥ (
 + ε∗)u � u, u ∈ BC[J ,P],‖u – ū‖B < η.

Thus, we have proved that � is open in BC[J ,P].
On the other hand, Lemma . and assumption (H) imply

(Au)(t) ≥
∫ t∗

t∗
G(t, s)f

(
s,u(s), (Tu)(s), (Su)(s)

)
ds

≥
∫ t∗

t∗
G(t, s)σ (s) ds u

≥
∫ t∗

t∗
γ (s)σ (s) ds u

� u ∀t ∈ I. ()

Hence

A(�) ⊂ �. ()

Since �, � and � are nonempty bounded convex open subsets of BC[J ,P], we see that
(), () and () imply by virtue of Lemma . the fixed point indices

i
(
A,�i,BC[J ,P]

)
=  (i = , , ). ()

http://www.boundaryvalueproblems.com/content/2013/1/79


Liu et al. Boundary Value Problems 2013, 2013:79 Page 17 of 18
http://www.boundaryvalueproblems.com/content/2013/1/79

On the other hand, for u ∈ �, we have u(t) � u, and so

‖u‖B ≥ ‖u(t∗)‖
 + tα–∗

≥ ‖u‖
N( + tα–∗ )

.

Consequently,

� ⊂ � ⊂ BC[J ,P], � ⊂ � ⊂ BC[J ,P], � ∩ � = ∅. ()

By (), () and the additivity of the fixed point index (Lemma .), we can obtain

i
(
A,�/(� ∪ �),BC[J ,P]

)
= i

(
A,�,BC[J ,P]

)
– i

(
A,�,BC[J ,P]

)
– i

(
A,�,BC[J ,P]

)
= –. ()

Finally, (), () and () imply that A has two fixed points u∗ ∈ � and u∗∗ ∈
�/(� ∪ �). We have, by (), u∗(t) � u for t ∈ I . The proof is complete. �

Remark . Assumption (H) and the continuity of f imply that f (t, θ , θ , θ ) = θ for t ∈ J .
Hence, under the assumptions of the theorem, BVP () has the trivial solution u(t) ≡ θ

besides two positive solutions u∗ and u∗∗.

Theorem . Let (H)-(H) and (H) be satisfied. Then BVP () has at least one positive
solution ũ(t) ∈ BC[J ,P] such that ũ(t) ≥ u for t ∈ I .

Proof By Lemma ., Lemma . and the proof of Theorem ., the operator A defined by
() is completely continuous from BC[J ,P] into BC[J ,P], and by Lemma ., we need only
to show that A has one positive fixed point ũ ∈ BC[J ,P] such that ũ(t) � u for t ∈ I .
As in the proof of Lemma ., () holds. Choose R satisfying () and let U = {u ∈

BC[J ,P] : ‖u‖ ≤ R,u(t) ≥ u ∀t ∈ I}, where u > θ is given by assumption (H). It is clear
that U is a nonempty bounded closed convex subset in BC[J ,P] (U �= ∅ because u ∈U).
Let u ∈U , by (), we have ‖Au‖ ≤ R∗. On the other hand, as in the proof of Theorem .,
Lemma . and assumption (H) imply

(Au)(t) ≥
∫ t∗

t∗
G(t, s)f

(
s,u(s), (Tu)(s), (Su)(s)

)
ds

≥
∫ t∗

t∗
G(t, s)σ (s) ds u

≥
∫ t∗

t∗
γ (s)σ (s) ds u

≥ u ∀t ∈ I. ()

Hence, Au ∈ W , and therefore AU ⊂ U . Thus, the Schauder fixed point theorem implies
that A has a fixed point ũ ∈U , and by () ũ(t)≥ u for t ∈ I . The proof is complete. �
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4 Conclusion
In this paper, the issue on the existence of multiple positive solutions of a boundary value
problem for α-order nonlinear integro-differential equations in a Banach space has been
addressed for the first time. Taking advantage of the fixed point index theory of completely
continuous operators, the existence conditions for such boundary value problems have
been established.
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