
Fialho and Minhós Boundary Value Problems 2013, 2013:81
http://www.boundaryvalueproblems.com/content/2013/1/81

RESEARCH Open Access

Higher order functional boundary value
problems without monotone assumptions
João F Fialho1,3* and Feliz Minhós2,3

*Correspondence:
jfzero@gmail.com
1School of Mathematics, Physics
and Technology, College of the
Bahamas, Nassau, Bahamas
3Research Centre on Mathematics
and Applications, University of Évora
(CIMA-UE), Rua Romão Ramalho, 59,
Évora, 7000-671, Portugal
Full list of author information is
available at the end of the article

Abstract
In this paper, given f : [a,b]× (C([a,b]))n–2 ×R

2 →R a L1-Carathéodory function, it is
considered the functional higher order equation

u(n)(x) = f (x,u,u′, . . . ,u(n–2)(x),u(n–1)(x))

together with the nonlinear functional boundary conditions, for i = 0, . . . ,n – 2

Li(u,u′, . . . ,u(n–1),u(i)(a)) = 0,

Ln–1(u,u′, . . . ,u(n–1),u(n–2)(b)) = 0.

Here, Li , i = 0, . . . ,n – 1, are continuous functions. It will be proved an existence and
location result in presence of not necessarily ordered lower and upper solutions,
without assuming any monotone properties on the boundary conditions and on the
nonlinearity f .

1 Introduction
In this paper, it is considered the functional higher order boundary value problem, for
n≥  composed by the equation

u(n)(x) = f
(
x,u, . . . ,u(n–),u(n–)(x),u(n–)(x)

)
()

for a.a. x ∈ I := [a,b], where f : I × (C(I))(n–) × R
 → R is a L-Carathéodory function,

and the function boundary conditions

Li
(
u,u′, . . . ,u(n–),u(i)(a)

)
= , i = , . . . ,n – ,

Ln–
(
u,u′, . . . ,u(n–),u(n–)(b)

)
= ,

()

where Li, i = , . . . ,n–, are continuous functions without assumingmonotone conditions
or another type of variation.
The functional differential equation () can be seen as a generalization of several types

of full differential and integro-differential equations and allow to consider delays, max-
ima or minima arguments, or another kind of global variation on the unknown function
or its derivatives until order (n – ). On the other hand, the functional dependence in ()
makes possible its application to a huge variety of boundary conditions, such as Lidstone,
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separated, multipoint, nonlocal and impulsive conditions, among others. As example, we
mention the problems contained in [–]. A detailed list about the potentialities of func-
tional problems and some applications can be found in [].
Recently, functional boundary value problems have been studied by several authors fol-

lowing several approaches, as it can be seen, for example, in [–]. In this work, the
lower and upper solutions method is applied together with topological degree theory, ac-
cording some arguments suggested in [–].
The novelty of this paper consists in the following items:
• There is no monotone assumptions on the boundary functions Li, i = , . . . ,n – , by
using adequate auxiliary functions and global arguments. This fact with the functional
dependence on the unknown function and its derivatives till order (n – ) will allow
that problem ()-() can include the periodic and antiperiodic cases, which were not
covered by the existent literature on functional boundary value problems. In this
sense, the results in this area, as for instance [–], are improved, even for n = ,
where equation () loses its functional part.

• No extra condition on the nonlinear part of () is considered, besides a Nagumo-type
growth assumption. In fact, as far as we know, it is the first time where lower and
upper solutions technique is used without such hypothesis on function f , by the use of
stronger definitions for lower and upper solutions.

• No order between lower and upper solutions is assumed. Putting the ‘well ordered’
case on adequate auxiliary functions, it allows that lower and upper solutions could be
well ordered, by reversed order or without a defined order.

The last section contains an example where the potentialities of the functional depen-
dence on the equation and on the boundary conditions are explored.

2 Definitions and auxiliary functions
In this section, it will be introduced the notations and definitions needed forward together
with some auxiliary functions useful to construct some ordered functions on the basis of
the not necessarily ordered lower and upper solutions of the referred problem.
A Nagumo-type growth condition, assumed on the nonlinear part, will be an important

tool to set an a priori bound for the (n – )th derivative of the corresponding solutions.
In the following, Wm,(I) denotes the usual Sobolev Spaces in I , that is, the subset of

Cm–(I) functions, whose (m – )th derivative is absolutely continuous in I and the mth
derivative belongs to L(I) and the usual norms

‖u‖p =
⎧⎨
⎩(

∫ 
 |u(x)|p dx)/p,  ≤ p < ∞,

sup{|u(x)| : x ∈ I}, p = ∞,

for spaces Lp,  ≤ p≤ ∞.
The function f : I × (C(I))(n–) × R

 → R is a L-Carathéodory function, that is,
f (x, ·, . . . , ·, ·, ·) is a continuous function for a.e. x ∈ I ; f (·, y, . . . , yn–, yn–) is measurable
for (y, . . . , yn–, yn–) ∈ (C(I))(n–) ×R

; and for everyM >  there is a real-valued function
ψM ∈ L(I) such that

∣∣f (x, y, y, y, y)∣∣ ≤ ψM(x), for a.e. x ∈ [, ]

and for every (y, y, y, y) ∈ (C(I))(n–) ×R
 with |yi| ≤ M, for i = , . . . ,n – .
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Themain tool to obtain the location part is the upper and lower solutionsmethod. How-
ever, in this case, they must be defined as a pair, which means that it is not possible to
define them independently from each other. Moreover, it is pointed out that lower and
upper functions, and the correspondent first derivatives, are not necessarily ordered.
To introduce ‘some order’, some auxiliary functions must be defined.
For any α,β ∈Wn–,(I) define functions αi,βi : I →R, i = , . . . ,n – , as it follows:

αn–(x) =min
{
α(n–)(a),β (n–)(a)

}
+

∫ x

a
α(n–)(s)ds,

βn–(x) =max
{
α(n–)(a),β (n–)(a)

}
+

∫ x

a
β (n–)(s)ds,

αi(x) =min
{
α(i)(a),β (i)(a)

}
+

∫ x

a
αi+(s)ds,

βi(x) =max
{
α(i)(a),β (i)(a)

}
+

∫ x

a
βi+(s)ds,

()

for i = , . . . ,n – .
The Nagumo-type condition is given by next definition.

Definition  Consider �i,γi ∈ C(I), i = , . . . ,n– , such that �i(x)≤ γi(x), ∀x ∈ I , and the
set

E =
{
(x, y, . . . , yn–) ∈ I ×R

n : γi(x) ≤ yi ≤ �i(x), i = , . . . ,n – 
}
.

A function f : I ×R
n → R is said to verify a Nagumo-type condition in E if there exists

ϕE ∈ C([, +∞), (, +∞)) such that

∣∣f (x, y, . . . , yn–)∣∣ ≤ ϕE
(|yn–|), ()

for every (x, y, . . . , yn–) ∈ E, and

∫ +∞

r

t
ϕE(t)

dt >max
x∈I

�n–(x) –min
x∈I γn–(x), ()

where r ≥  is given by

r :=max

{
�n–(b) – γn–(a)

b – a
,
�n–(a) – γn–(b)

b – a

}
.

The next result gives an a priori estimate for the (n– )th derivative of all possible solu-
tions of ().

Lemma  There exists K >  such that for every L-Carathéodory function f : I ×
(C(I))n– ×R

 →R satisfying () and () and every solution u of () such that

γi(x)≤ u(i)(x)≤ �i(x), a.e. x ∈ I, ()

http://www.boundaryvalueproblems.com/content/2013/1/81
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for i = , . . . ,n – , we have

∥∥u(n–)∥∥∞ < R. ()

Moreover, the constant R depends only on the functions ϕ and γi,�i (i = , . . . ,n – ) and
not on the boundary conditions.

Proof The proof is similar to [, Lemma .]. �

The upper and lower solution definition is then given by the following.

Definition  The functions α,β ∈ Wn,(I) are a pair of lower and upper solutions for
problem ()-() if α(n–)(x) ≤ β (n–)(x), on I , for all (v, . . . , vn–) ∈ A := [α,β] × · · · ×
[αn–,βn–], and for every (w,w) ∈ B := [α(n–),β (n–)]× [–K ,K], for some K > , the fol-
lowing inequalities hold for a.e. x ∈ [a,b],

α(n)(x)≥ f
(
x, v, . . . , vn–,α(n–)(x),α(n–)(x)

)
,

β (n)(x)≤ f
(
x, v, . . . , vn–,β (n–)(x),β (n–)(x)

)
,

()

and for j = , . . . ,n – ,

Lj
(
v, . . . , vn–,w,w,αj(a)

) ≥ ,

Ln–
(
v, . . . , vn–,w,w,α(n–)(a)

) ≥ ,

Ln–
(
v, . . . , vn–,w,w,α(n–)(b)

) ≥ ,

Lj
(
v, . . . , vn–,w,w,βj(a)

) ≤ ,

Ln–
(
v, . . . , vn–,w,w,β (n–)(a)

) ≤ ,

Ln–
(
v, . . . , vn–,w,w,β (n–)(b)

) ≤ .

()

3 Existence and location result
In this section, it is provided an existence and location theorem for the problem ()-().
More precisely, sufficient conditions are given for, not only the existence of a solution u,
but also to have information about the location of u, and all its derivatives up to the (n–)
order.
The arguments of the proof require the following lemma, given on [].

Lemma  For v,w ∈ C(I) such that v(x)≤ w(x), for every x ∈ I , define

q(x,u) =max
{
v,min{u,w}}.

Then, for each u ∈ C(I) the next two properties hold:
(a) d

dxq(x,u(x)) exists for a.e. x ∈ I .
(b) If u,um ∈ C(I) and um → u in C(I) then

d
dx

q
(
x,um(x)

) → d
dx

q
(
x,u(x)

)
for a.e. x ∈ I.

http://www.boundaryvalueproblems.com/content/2013/1/81
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Now, we are in a position to prove the main result of this paper.

Theorem  Assume that there exists a pair of lower and upper solutions (α,β) of problem
()-().
If f : I × (C(I))n– × R

 → R is a L-Carathéodory function, satisfying a Nagumo-type
condition in

E∗ =

⎧⎨
⎩(x, y, . . . , yn–) ∈ I ×R

n– : αi(x)≤ yi ≤ βi(x), i = , . . . ,n – ,

α(n–)(x)≤ yn– ≤ β (n–)(x),

then problem ()-() has at least one solution u such that

αi(x)≤ u(i)(x)≤ βi(x), i = , . . . ,n – ,

α(n–)(x)≤ u(n–)(x)≤ β (n–)(x), ∀x ∈ I

for every x ∈ I , and |u(n–)(x)| ≤ K , ∀x ∈ I , where

K =max
{
R,

∣∣α(n–)(x)
∣∣, ∣∣β (n–)(x)

∣∣} ()

and R >  is given by ().

Proof Define the continuous functions, for i = , . . . ,n – ,

δi(x, yi) =max
{
αi(x),min

{
yi,βi(x)

}}
,

δn–(x, yn–) =max
{
α(n–)(x),min

{
yn–,β (n–)(x)

}}
,

()

and the truncation, not necessarily continuous,

ξ (z) =max
{
–K ,min{z,K}},

with K given by ().
Consider the modified problem composed by the equation

u(n)(x) = f

(
x, δ(·,u), . . . , δn–(·,u(n–)),

δn–(x,u(n–)(x)), ξ ( d
dx (δn–(x,u

(n–)(x))))

)
()

and the boundary conditions, for i = , . . . ,n – ,

u(i)(a) = δi

(
a,u(i)(a) + Li

(
δ(·,u), . . . , δn–(·,u(n–)),

ξ ( d
dx (δn–(·,u(n–)))),u(i)(a)

))
,

u(n–)(b) = δn–

(
b,u(n–)(b) + Ln–

(
δ(·,u), . . . , δn–(·,u(n–)),

ξ ( d
dx (δn–(·,u(n–)))),u(n–)(b)

))
.

()

The proof will follow the next steps:

http://www.boundaryvalueproblems.com/content/2013/1/81
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Step . Every solution u of problem ()-(), satisfies

α(n–)(x)≤ u(n–)(x)≤ β (n–)(x),

αi(x)≤ u(i)(x)≤ βi(x), i = , . . . ,n – ,

and |u(n–)(x)| < K , for every x ∈ I , with K >  given in ().
Let u be a solution of the modified problem ()-(). Assume, by contradiction, that

there exists x ∈ I such that α(n–)(x) > u(n–)(x) and let x ∈ I be such that

min
x∈I (u – α)(n–)(x) := (u – α)(n–)(x) < .

As, by (), u(n–)(a) ≥ α(n–)(a) and u(n–)(b) ≥ α(n–)(b), then x ∈ (a,b). So, there is
(x,x) ⊂ (a,b) such that

u(n–)(x) < α(n–)(x), ∀x ∈ (x,x),

(u – α)(n–)(x) = (u – α)(n–)(x) = .
()

Therefore,

δn–
(
x,u(n–)(x)

)
= α(n–)(x), ∀x ∈ (x,x),

and

d
dx

δn–
(
x,u(n–)(x)

)
= α(n–)(x), a.e. x ∈ (x,x).

Now, since for all u ∈ Cn–(I) it is satisfied that (δ(·,u), . . . , δn–(·,u′)) ∈ A, we deduce
that

u(n)(x) = f

(
x, δ(·,u), . . . , δn–(·,u(n–)), δn–(x,u(n–)(x)),

ξ ( d
dx (δn–(x,u

(n–)(x))))

)

= f
(
x, δ(·,u), . . . , δn–

(·,u(n–)),α(n–)(x),α(n–)(x)
)

≤ α(n)(x) for a.e. x ∈ (x,x).

As (u – α)(n–)(x) =  and (u – α)(n–) is nonincreasing in (x,x), this contradicts the
definitions of x and x.
The inequality u(n–)(x)≤ β (n–)(x), in I , can be proved in same way and so,

α(n–)(x)≤ u(n–)(x)≤ β (n–)(x), ∀x ∈ I. ()

By () and (), the following inequalities hold for every x ∈ I :

u(n–)(x) = u(n–)(a) +
∫ x

a
u(n–)(s)ds≥ αn–(a) +

∫ x

a
α(n–)(s)ds

≥ min
{
α(n–)(a),β (n–)(a)

}
+

∫ x

a
α(n–)(s)ds = αn–(x).

Analogously, it can be obtained u(n–)(x)≤ βn–(x), for x ∈ I .

http://www.boundaryvalueproblems.com/content/2013/1/81
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The remaining inequalities are obtained by the same integration process.
Applying previous bounds in Lemma , and remarking that

∫ K

r

s
ϕ(s)

ds≥
∫ R

r

s
ϕ(s)

ds,

for K given by (), it is obtained, by Lemma , the a priori bound |u(n–)(x)| < K , for x ∈ I .
For details, see [, Lemma ].
Step . Problem ()-() has at least one solution.
For λ ∈ [, ] let us consider the homotopic problem given by

u(n)(x) = λf

(
x, δ(·,u), . . . , δn–(·,u(n–)),

δn–(x,u(n–)(x)), ξ ( d
dx (δn–(x,u

(n–)(x))))

)
()

and the boundary conditions, for i = , . . . ,n – ,

u(i)(a) = λδi

(
a,u(i)(a) + Li

(
δ(·,u), . . . , δn–(·,u(n–)),

ξ ( d
dx (δn–(·,u(n–)))),u(i)(a)

))
:= λLAi ,

u(n–)(b) = λδn–

(
b,u(n–)(b) + Ln–

(
δ(·,u), . . . , δn–(·,u(n–)),

ξ ( d
dx (δn–(·,u(n–)))),u(n–)(b)

))

:= λLB.

()

Let us consider the norms in Cn–(I) and in L(I)×R
n, respectively,

‖v‖Cn– =max
{‖v‖∞, . . . ,

∥∥v(n–)∥∥∞
}

and

∣∣(h,h, . . . ,hn)∣∣ =max
{‖h‖L ,max

{|h|, . . . , |hn|}}.
Define the operators L :Wn,(I) ⊂ Cn–(I)→ L(I)×R

n by Lu = (u(n),u(a), . . . ,u(n–)(a),
u(n–)(b)) and, for λ ∈ [, ], i = , . . . ,n – ,Nλ : Cn–(I) → L(I)×R

n by

Nλu =

⎛
⎜⎝λf

(
x, δ(·,u), . . . , δn–(·,u(n–)), δn–(x,u(n–)(x)),

ξ ( d
dx (δn–(x,u

(n–)(x))))

)
,

λLA , . . . ,λLAn– ,λLB

⎞
⎟⎠ .

Since L, . . . ,Ln– are continuous and f is a L-Carathéodory function, then, fromLemma,
Nλ is continuous. Moreover, as L– is compact, it can be defined the completely continu-
ous operator Tλ : Cn–(I) → Cn–(I) by Tλu =L–Nλ(u).
It is obvious that the fixed points of operator Tλ coincide with the solutions of problem

()-().
As Nλu is bounded in L(I) × R

n and uniformly bounded in Cn–(I), we have that any
solution of the problem ()-(), verifies the following a priori bound

‖u‖Cn– ≤ ∥∥L–∥∥
Cn–

∣∣Nλ(u)
∣∣ ≤ K̄ ,

for some K̄ >  independent of λ.

http://www.boundaryvalueproblems.com/content/2013/1/81
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In the set � = {u ∈ Cn–(I) : ‖u‖Cn– < K̄ +}, the degree d(I –Tλ,�, ) is well defined for
every λ ∈ [, ] and, by the invariance under homotopy, d(I – T,�, ) = d(I – T,�, ).
As the equation x = T(x) is equivalent to the problem

⎧⎨
⎩u(n)(x) = ,

u(i)(a) = u(n–)(b) = , i = , . . . ,n – ,

which has only the trivial solution, then d(I – T,�, ) = ±. So, by degree theory, the
equation x = T(x) has at least one solution, that is, the problem ()-() has at least a
solution in �.
Step . Every solution u of problem ()-() is a solution of ()-().
Let u be a solution of the modified problem ()-(). By previous steps, function u ful-

fills equation (). So, it will be enough to prove the following inequalities, for i = , . . . ,n–:

αi(a)≤ u(i)(a) + Li

(
δ(·,u), . . . , δn–(x,u(n–)(x)),

ξ ( d
dx (δn–(x,u

(n–)(x)))),u(i)(a)

)
≤ βi(a),

α(n–)(a)≤ u(n–)(a) + Ln–

(
δ(·,u), . . . , δn–(x,u(n–)(x)),

ξ ( d
dx (δn–(x,u

(n–)(x)))),u(n–)(a)

)

≤ β (n–)(a)

and

α(n–)(b) ≤ u(n–)(b) + Ln–

(
δ(·,u), . . . , δn–(x,u(n–)(x)),

ξ ( d
dx (δn–(x,u

(n–)(x)))),u(n–)(b)

)

≤ β (n–)(b).

Assume that

u(a) + L

(
δ(·,u), . . . , δn–(x,u(n–)(x)),
ξ ( d

dx (δn–(x,u
(n–)(x)))),u(a)

)
> β(a). ()

Then, by (), u(a) = β(a). By previous steps, it is obtained the following contradiction
with ():

u(a) + L

(
δ(·,u), . . . , δn–(x,u(n–)(x)),
ξ ( d

dx (δn–(x,u
(n–)(x)))),u(a)

)

= β(a) + L

(
δ(·,u), . . . , δn–(x,u(n–)(x)),
ξ ( d

dx (δn–(x,u
(n–)(x)))),β(a)

)

≤ β(a).

Applying similar arguments, it can be proved that

α(a)≤ u(a) + L

(
δ(·,u), . . . , δn–(x,u(n–)(x)),
ξ ( d

dx (δn–(x,u
(n–)(x)))),u(a)

)
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and analogously, for j = , . . . ,n – ,

αj(a)≤ u(j)(a) + Lj

(
δ(·,u), . . . , δn–(x·,u(n–)(x)),
ξ ( d

dx (δn–(x,u
(n–)(x)))),u(j)(a)

)
≤ βj(a).

Also, using the same arguments and the same techniques, it can be proved that

α(n–)(a)≤ u(n–)(a) + Ln–

(
δ(·,u), . . . , δn–(x,u(n–)(x)),

ξ ( d
dx (δn–(x,u

(n–)(x)))),u(n–)(a)

)

≤ β (n–)(a),

α(n–)(b)≤ u(n–)(b) + Ln–

(
δ(·,u), . . . , δn–(x,u(n–)(x)),

ξ ( d
dx (δn–(x,u

(n–)(x)))),u(n–)(b)

)

≤ β (n–)(b). �

4 Example
This section contains a problem composed by an integro-differential equation with some
functional boundary conditions, whose solvability is proved in presence of nonordered
lower and upper solutions. We remark that such fact was not possible with the results in
the current literature. This example does not model any particular problem arising in real
phenomena. Our purpose consists on emphasizing the powerful of the developed theory
in this paper by showing what kind of problems we can deal with.
Consider, for x ∈ [, ], the fourth-order equation

u(iv)(x) =
∫ x


u(s)ds + max

x∈[,]
{
u′(x)

}
+

(
u′′(x)

) – (
u′′′(x) + 

) 
 ()

coupled with the boundary value conditions

– min
x∈[,]

u′′(x) – u() = ,

u(s) –
(
u()

) +  = ,

max
x∈[,]

u(x) – u′′() = ,


√
u′′() = .

()

One can verify that functions

α(x) = –
x


– x + x –  and β(x) =

x


+ x + 

are, respectively, lower and upper solutions for the problem ()-(). Moreover, we de-
duce that

α(x) = –
x


– x –



, α(x) = –

x


– x –



x – ,

β(x) = x + x + , β(x) =
x


+ x + x +




http://www.boundaryvalueproblems.com/content/2013/1/81
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and

f (x, y, y, y, y) =
∫ x


y(s)ds + max

x∈[,]
{
y(x)

}
+

(
y(x)

) – (
y(x) + 

) 
 ,

L(z, z, z, z, z) = – min
x∈[,]

z – z,

L(z, z, z, z, z) = z – (z) + ,

L(z, z, z, z, z) = max
x∈[,]

z – z,

L(z, z, z, z, z) = – √z.

As the continuous function f verifies () and () for ϕE∗ (y) = ,
 + (y + )  in

E∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x, y, y, y, y) ∈ [, ]×R
 :

– x

 – x – 

x –  ≤ y ≤ x

 + x + x + 


– x


 – x – 

 ≤ y ≤ x + x + 
–x – ≤ y ≤ x + 

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

then, by Theorem , there is a nontrivial solution u for problem ()-() such that

–
x


– x –



x –  ≤ u(x) ≤ x



+ x + x +



,

–
x


– x –




≤ u′(x)≤ x + x + ,

–x – ≤ u′′(x)≤ x + ,

for all x ∈ [, ].
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