
Zhai and Hao Boundary Value Problems 2013, 2013:85
http://www.boundaryvalueproblems.com/content/2013/1/85

RESEARCH Open Access

Mixed monotone operator methods for the
existence and uniqueness of positive
solutions to Riemann-Liouville fractional
differential equation boundary value
problems
Chengbo Zhai* and Mengru Hao

*Correspondence:
cbzhai215@sohu.com
School of Mathematical Sciences,
Shanxi University, Taiyuan, Shanxi
030006, P.R. China

Abstract
This work is concerned with the existence and uniqueness of positive solutions for
the following fractional boundary value problem:

⎧⎪⎨
⎪⎩
–Dν

0+y(t) = f (t, y(t), y(t)) + g(t, y(t)), 0 < t < 1,n – 1 < ν ≤ n,

y(i)(0) = 0, 0≤ i ≤ n – 2,

[Dα
0+y(t)]t=1 = 0, 1≤ α ≤ n – 2,

where Dν
0+ is the standard Riemann-Liouville fractional derivative of order ν , and

n ∈ N, n > 3. Our analysis relies on two new fixed point theorems for mixed monotone
operators with perturbation. Our results can not only guarantee the existence of a
unique positive solution, but also be applied to construct an iterative scheme for
approximating it. An example is given to illustrate the main result.
MSC: 26A33; 34B18; 34B27
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1 Introduction
In this paper, we investigate the existence and uniqueness of positive solutions for the
fractional boundary value problem (FBVP for short) of the form:

⎧⎪⎪⎨
⎪⎪⎩
–Dν

+y(t) = f (t, y(t), y(t)) + g(t, y(t)),  < t < ,n –  < ν ≤ n,

y(i)() = ,  ≤ i ≤ n – ,

[Dα
+y(t)]t= = ,  ≤ α ≤ n – ,

(.)

where Dν
+ is the standard Riemann-Liouville fractional derivative of order ν , and n ∈ N ,

n > .
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Fractional differential equations arise in many fields such as physics, mechanics, chem-
istry, economics, engineering and biological sciences, etc.; see [–] for example. In the
recent years, there has been a significant development in ordinary and partial differen-
tial equations involving fractional derivatives; see the monographs of Miller and Ross [],
Podlubny [], Kilbas et al. [], and the papers [–] and the references therein. In these
papers, many authors have investigated the existence of positive solutions for nonlinear
fractional differential equation boundary value problems. On the other hand, the unique-
ness of positive solutions for nonlinear fractional differential equation boundary value
problems has been studied by some authors; see [, , ] for example.
In [], Goodrich utilized the Krasnoselskii’s fixed point theorem to study a FBVP of the

form:

⎧⎪⎪⎨
⎪⎪⎩
–Dν

+y(t) = f (t, y(t)),  < t < ,n –  < ν ≤ n,

y(i)() = ,  ≤ i≤ n – ,

[Dα
+y(t)]t= = ,  ≤ α ≤ n – ,

(.)

and established the existence of at least one positive solution for FBVP (.). By using the
same fixed point theorem, Goodrich [] considered the existence of a positive solution
to the following systems of differential equations of fractional order:

⎧⎨
⎩
–Dν

+y(t) = λa(t)f (y(t), y(t)),

–Dν
+y(t) = λa(t)g(y(t), y(t)),

where t ∈ (, ), ν,ν ∈ (n – ,n] for n >  and n ∈ N , and λ,λ > , with the following
boundary value conditions:

y(i) () =  = y(i) (),  ≤ i≤ n – ,
[
Dα

+y(t)
]
t= =  =

[
Dα

+y(t)
]
t=,  ≤ α ≤ n – ,

under the assumptions that a, a, f , g are nonnegative and continuous. But the uniqueness
of positive solutions is not treated in these papers.
Different from the works mentioned above, motivated by the work [], we will use two

fixed point theorems for mixed monotone operators with perturbation to show the exis-
tence and uniqueness of positive solutions for FBVP (.). To our knowledge, there are still
very few to utilize the fixed point results onmixedmonotone operators with perturbation
to study the existence and uniqueness of a positive solution for nonlinear fractional dif-
ferential equation boundary value problems. So, it is worthwhile to investigate FBVP (.)
by using our new fixed point theorems in []. Our results can not only guarantee the ex-
istence of a unique positive solution, but also be applied to construct an iterative scheme
for approximating it.
With this context in mind, the outline of this paper is as follows. In Section  we recall

certain results from the theory of fractional calculus and some definitions, notations and
results of mixed monotone operators. In Section  we provide some conditions, under
which the problem FBVP (.) has a unique positive solution. Finally, in Section , we
provide an example, which explicates the applicability of our result.
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2 Preliminaries
For the convenience of the reader, we present here some definitions, lemmas and basic
results that will be used in the proofs of our theorems.

Definition . (See []) Let ν >  with ν ∈ R. Suppose that y : [a, +∞)→ R. Then the νth
Riemann-Liouville fractional integral is defined to be

D–ν
a+y(t) :=


�(ν)

∫ t

a
y(s)(t – s)ν– ds,

whenever the right-hand side is defined. Similarly, with ν >  and ν ∈ R, we define the νth
Riemann-Liouville fractional derivative to be

Dν
a+y(t) :=


�(n – ν)

dn

dtn

∫ t

a

y(s)
(t – s)ν+–n

ds,

where n ∈N is the unique positive integer satisfying n –  ≤ ν < n and t > a.

Lemma . (See []) Let g ∈ C[, ] be given. Then the unique solution to problem
–Dν

+y(t) = g(t) together with the boundary conditions y(i)() =  = [Dα
+y(t)]t=, where

 ≤ α ≤ n –  and  ≤ i ≤ n – , is

y(t) =
∫ 


G(t, s)g(s)ds, (.)

where

G(t, s) =

⎧⎨
⎩

tν–(–s)ν–α––(t–s)ν–
�(ν) ,  ≤ s≤ t ≤ ,

tν–(–s)ν–α–

�(ν) ,  ≤ t ≤ s≤ ,
(.)

is the Green function for this problem.

Lemma . (See []) Let G(t, s) be as given in the statement of Lemma .. Then we have
(i) G(t, s) is a continuous function on the unit square [, ]× [, ];
(ii) G(t, s)≥  for each (t, s) ∈ [, ]× [, ].

Lemma . The function G(t, s) defined by (.) satisfies the following conditions:

[
 – ( – s)α

]
( – s)ν–α–tν– ≤ �(ν)G(t, s)≤ ( – s)ν–α–tν–, t, s ∈ [, ].

Proof Evidently, the right inequality holds. So, we only need to prove the left inequality. If
 ≤ s ≤ t ≤ , then we have  ≤ t – s ≤ t – ts = ( – s)t, and thus

(t – s)ν– ≤ ( – s)ν–tν–.

Hence,

�(ν)G(t, s) = tν–( – s)ν–α– – (t – s)ν–

≥ tν–( – s)ν–α– – tν–( – s)ν–

http://www.boundaryvalueproblems.com/content/2013/1/85
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= tν–
[
( – s)ν–α– – ( – s)ν–

]
=

[
 – ( – s)α

]
( – s)ν–α–tν–.

When ≤ t ≤ s ≤ , we have

�(ν)G(t, s) = tν–( – s)ν–α–

≥ tν–
[
( – s)ν–α– – ( – s)ν–

]
=

[
 – ( – s)α

]
( – s)ν–α–tν–.

So, the proof is complete. �

In the sequel, we present some basic concepts in ordered Banach spaces for complete-
ness and two fixed point theorems which we will be used later. For convenience of readers,
we suggest that one refers to [–] for details.
Suppose that (E,‖ · ‖) is a real Banach space which is partially ordered by a cone P ⊂ E,

i.e., x ≤ y if and only if y – x ∈ P. If x ≤ y and x 	= y, then we denote x < y or y > x. By θ we
denote the zero element of E. Recall that a non-empty closed convex set P ⊂ E is a cone if
it satisfies (i) x ∈ P, λ ≥  ⇒ λx ∈ P; (ii) x ∈ P, –x ∈ P ⇒ x = θ .
P is called normal if there exists a constant N >  such that, for all x, y ∈ E, θ ≤ x ≤ y

implies ‖x‖ ≤ N‖y‖; in this case, N is called the normality constant of P. If x,x ∈ E, the
set [x,x] = {x ∈ E | x ≤ x ≤ x} is called the order interval between x and x. We say
that an operator A : E → E is increasing (decreasing) if x ≤ y implies Ax ≤ Ay (Ax≥ Ay).
For all x, y ∈ E, the notation x ∼ y means that there exist λ >  and μ >  such that

λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h ≥ θ and h 	= θ ), we
denote by Ph the set Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P.

Definition . (See [, ]) A : P × P → P is said to be a mixed monotone operator if
A(x, y) is increasing in x and decreasing in y, i.e., ui, vi (i = , ) ∈ P, u ≤ u, v ≥ v imply
A(u, v) ≤ A(u, v). Element x ∈ P is called a fixed point of A if A(x,x) = x.

Definition . An operator A : P → P is said to be sub-homogeneous if it is satisfies

A(tx) ≥ tA(x), ∀t ∈ (, ),x ∈ P. (.)

Definition . Let D = P and β be a real number with  ≤ β < . An operator A :D → D
is said to be β-concave if it satisfies

A(tx) ≥ tβA(x), ∀t ∈ (, ),x ∈D. (.)

Lemma . (See Theorem . in []) Let h > θ and β ∈ (, ). A : P × P → P is a mixed
monotone operator and satisfies

A
(
tx, t–y

) ≥ tβA(x, y), ∀t ∈ (, ),x, y ∈ P. (.)

B : P → P is an increasing sub-homogeneous operator. Assume that
(i) there is h ∈ Ph such that A(h,h) ∈ Ph and Bh ∈ Ph;
(ii) there exists a constant δ >  such that A(x, y)≥ δBx, ∀x, y ∈ P.

http://www.boundaryvalueproblems.com/content/2013/1/85
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Then:
() A : Ph × Ph → Ph and B : Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v,u) + Bv ≤ v;

() the operator equation A(x,x) + Bx = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–,xn–) + Byn–, n = , , . . . ,

we have xn → x∗ and yn → x∗ as n→ ∞.

Lemma . (See Theorem . in []) Let h > θ and β ∈ (, ). A : P × P → P is a mixed
monotone operator and satisfies

A
(
tx, t–y

) ≥ tA(x, y), ∀t ∈ (, ),x, y ∈ P. (.)

B : P → P is an increasing β-concave operator. Assume that
(i) there is h ∈ Ph such that A(h,h) ∈ Ph and Bh ∈ Ph;
(ii) there exists a constant δ >  such that A(x, y)≤ δBx, ∀x, y ∈ P.

Then:
() A : Ph × Ph → Ph and B : Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v,u) + Bv ≤ v;

() the operator equation A(x,x) + Bx = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–,xn–) + Byn–, n = , , . . . ,

we have xn → x∗ and yn → x∗ as n→ ∞.

Remark . (i) If we take B = θ in Lemma ., then the corresponding conclusion is still
true (see Corollary . in []); (ii) if we take A = θ in Lemma ., then the conclusion
obtained is also true (see Theorem . in []).

3 Main results
In this section, we apply Lemma . and Lemma . to study FBVP (.), and we obtain
some new results on the existence and uniqueness of positive solutions. The method used
here is relatively new to the literature and so are the existence and uniqueness results to
the fractional differential equations.
In our considerations, we work in the Banach space C[, ] = {x : [, ] → R is contin-

uous} with the standard norm ‖x‖ = sup{|x(t)| : t ∈ [, ]}. Notice that this space can be
equipped with a partial order given by

x, y ∈ C[, ], x ≤ y ⇔ x(t)≤ y(t) for t ∈ [, ].

http://www.boundaryvalueproblems.com/content/2013/1/85
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Set P = {x ∈ C[, ] | x(t) ≥ , t ∈ [, ]}, the standard cone. It is clear that P is a normal
cone in C[, ] and the normality constant is .

Theorem . Assume that

(H) f : [, ] × [, +∞) × [, +∞) → [, +∞) is continuous and g : [, ] × [, +∞) →
[, +∞) is continuous;

(H) f (t,u, v) is increasing in u ∈ [, +∞) for fixed t ∈ [, ] and v ∈ [, +∞), decreasing in
v ∈ [, +∞) for fixed t ∈ [, ] and u ∈ [, +∞), and g(t,u) is increasing in u ∈ [, +∞)
for fixed t ∈ [, ];

(H) g(t, ) 	≡  and g(t,λu)≥ λg(t,u) for λ ∈ (, ), t ∈ [, ], u ∈ [, +∞), and there exists
a constant β ∈ (, ) such that f (t,λu,λ–v) ≥ λβ f (t,u, v), ∀t ∈ [, ], λ ∈ (, ), u, v ∈
[, +∞);

(H) there exists a constant δ >  such that f (t,u, v) ≥ δg(t,u), t ∈ [, ], u, v ≥ .

Then:
() there exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v and

u(t) ≤
∫ 


G(t, s)

[
f
(
s,u(s), v(s)

)
+ g

(
s,u(s)

)]
ds, t ∈ [, ],

v(t) ≥
∫ 


G(t, s)

[
f
(
s, v(s),u(s)

)
+ g

(
s, v(s)

)]
ds, t ∈ [, ],

where h(t) = tν–, t ∈ [, ] and G(t, s) is given as in (.);
() FBVP (.) has a unique positive solution u∗ in Ph;
() for any x, y ∈ Ph, constructing successively the sequences

xn+(t) =
∫ 


G(t, s)

[
f
(
s,xn(s), yn(s)

)
+ g

(
s,xn(s)

)]
ds, n = , , , . . . ,

yn+(t) =
∫ 


G(t, s)

[
f
(
s, yn(s),xn(s)

)
+ g

(
s, yn(s)

)]
ds, n = , , , . . . ,

we have ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n→ ∞.

Proof To begin with, from Lemma ., FBVP (.) has an integral formulation given by

u(t) =
∫ 


G(t, s)

[
f
(
s,u(s),u(s)

)
+ g

(
s,u(s)

)]
ds,

where G(t, s) is given as in (.).
Define two operators A : P × P → E and B : P → E by

A(u, v)(t) =
∫ 


G(t, s)f

(
s,u(s), v(s)

)
ds, (Bu)(t) =

∫ 


G(t, s)g

(
s,u(s)

)
ds.

It is easy to prove that u is the solution of FBVP (.) if and only if u = A(u,u) + Bu.
From (H), we know that A : P × P → P and B : P → P. In the sequel, we check that A,
B satisfy all the assumptions of Lemma ..

http://www.boundaryvalueproblems.com/content/2013/1/85
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Firstly, we prove that A is a mixed monotone operator. In fact, for ui, vi ∈ P, i = , 
with u ≥ u, v ≤ v, we know that u(t) ≥ u(t), v(t) ≤ v(t), t ∈ [, ], and by (H) and
Lemma .,

A(u, v)(t) =
∫ 


G(t, s)f

(
s,u(s), v(s)

)
ds ≥

∫ 


G(t, s)f

(
s,u(s), v(s)

)
ds = A(u, v)(t).

That is, A(u, v)≥ A(u, v).
Further, it follows from (H) and Lemma . that B is increasing. Next we show that A

satisfies the condition (.). For any λ ∈ (, ) and u, v ∈ P, by (H) we have

A
(
λu,λ–v

)
(t) =

∫ 


G(t, s)f

(
s,λu(s),λ–v(s)

)
ds

≥ λβ

∫ 


G(t, s)f

(
s,u(s), v(s)

)
ds

= λβA(u, v)(t).

That is, A(λu,λ–v) ≥ λβA(u, v) for λ ∈ (, ), u, v ∈ P. So, the operator A satisfies (.).
Also, for any λ ∈ (, ), u ∈ P, from (H) we know that

B(λu)(t) =
∫ 


G(t, s)g

(
s,λu(s)

)
ds≥ λ

∫ 


G(t, s)g

(
s,u(s)

)
ds = λBu(t),

that is, B(λu)≥ λBu for λ ∈ (, ), u ∈ P. That is, the operator B is sub-homogeneous. Now
we show that A(h,h) ∈ Ph and Bh ∈ Ph. On the one hand, from (H), (H) and Lemma .,
for any t ∈ [, ], we have

A(h,h)(t) =
∫ 


G(t, s)f

(
s,h(s),h(s)

)
ds

=
∫ 


G(t, s)f

(
s, sν–, sν–

)
ds

≤ 
�(ν)

h(t)
∫ 


( – s)ν–α–f (s, , )ds.

On the other hand, also from (H), (H) and Lemma ., for any t ∈ [, ], we obtain

A(h,h)(t) =
∫ 


G(t, s)f

(
s,h(s),h(s)

)
ds

=
∫ 


G(t, s)f

(
s, sν–, sν–

)
ds

≥ 
�(ν)

h(t)
∫ 



[
 – ( – s)α

]
( – s)ν–α–f (s, , )ds.

From (H), (H), we have

f (s, , )≥ f (s, , )≥ δg(s, )≥ .

http://www.boundaryvalueproblems.com/content/2013/1/85
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Since g(t, ) 	≡ , we get

∫ 


f (s, , )ds≥

∫ 


f (s, , )ds≥ δ

∫ 


g(s, )ds > ,

and in consequence,

l :=


�(ν)

∫ 


( – s)ν–α–f (s, , )ds > ,

l :=


�(ν)

∫ 



[
 – ( – s)α

]
( – s)ν–α–f (s, , )ds > .

So, lh(t)≤ A(h,h)(t) ≤ lh(t), t ∈ [, ]; and hence we have A(h,h) ∈ Ph. Similarly,


�(ν)

h(t)
∫ 



[
–(–s)α

]
(–s)ν–α–g(s, )ds≤ Bh(t)≤ 

�(ν)
h(t)

∫ 


(–s)ν–α–g(s, )ds,

from g(t, ) 	≡ , we easily prove Bh ∈ Ph. Hence the condition (i) of Lemma . is satisfied.
In the following, we show the condition (ii) of Lemma . is satisfied. For u, v ∈ P, and

any t ∈ [, ], from (H),

A(u, v)(t) =
∫ 


G(t, s)f

(
s,u(s), v(s)

)
ds≥ δ

∫ 


G(t, s)g

(
s,u(s)

)
ds = δBu(t).

Thenwe getA(u, v) ≥ δBu, for u, v ∈ P. Finally, an application of Lemma . implies: there
exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v,u) +
Bv ≤ v; the operator equation A(u,u) + Bu = u has a unique solution u∗ in Ph; for any
initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–,xn–) + Byn–, n = , , . . . ,

we have xn → u∗ and yn → u∗ as n→ ∞. That is,

u(t) ≤
∫ 


G(t, s)

[
f
(
s,u(s), v(s)

)
+ g

(
s,u(s)

)]
ds, t ∈ [, ],

v(t) ≥
∫ 


G(t, s)

[
f
(
s, v(s),u(s)

)
+ g

(
s, v(s)

)]
ds, t ∈ [, ];

FBVP (.) has a unique positive solution u∗ in Ph; for x, y ∈ Ph, the sequences

xn+(t) =
∫ 


G(t, s)

[
f
(
s,xn(s), yn(s)

)
+ g

(
s,xn(s)

)]
ds, n = , , , . . . ,

yn+(t) =
∫ 


G(t, s)

[
f
(
s, yn(s),xn(s)

)
+ g

(
s, yn(s)

)]
ds, n = , , , . . . ,

satisfy ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n→ ∞. �

Theorem . Assume (H), (H) and

(H) there exists a constant β ∈ (, ) such that g(t,λu) ≥ λβg(t,u), ∀t ∈ [, ], λ ∈ (, ),
u ∈ [, +∞), and f (t,λu,λ–v)≥ λf (t,u, v) for λ ∈ (, ), t ∈ [, ], u, v ∈ [, +∞);

http://www.boundaryvalueproblems.com/content/2013/1/85
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(H) f (t, , ) 	≡  for t ∈ [, ] and there exists a constant δ >  such that f (t,u, v) ≤
δg(t,u), t ∈ [, ], u, v≥ .

Then:
() there exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v and

u(t)≤
∫ 


G(t, s)

[
f
(
s,u(s), v(s)

)
+ g

(
s,u(s)

)]
ds, t ∈ [, ],

v(t)≥
∫ 


G(t, s)

[
f
(
s, v(s),u(s)

)
+ g

(
s, v(s)

)]
ds, t ∈ [, ],

where h(t) = tν–, t ∈ [, ] and G(t, s) is given as in (.);
() FBVP (.) has a unique positive solution u∗ in Ph;
() for any x, y ∈ Ph, constructing successively the sequences

xn+(t) =
∫ 


G(t, s)

[
f
(
s,xn(s), yn(s)

)
+ g

(
s,xn(s)

)]
ds, n = , , , . . . ,

yn+(t) =
∫ 


G(t, s)

[
f
(
s, yn(s),xn(s)

)
+ g

(
s, yn(s)

)]
ds, n = , , , . . . ,

we have ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n→ ∞.

Sketch of the proof Consider two operators A, B defined in the proof of Theorem .. Sim-
ilarly, from (H), (H), we obtain that A : P × P → P is a mixed monotone operator and
B : P → P is increasing. From (H), we have

A
(
λu,λ–v

) ≥ λA(u, v); B(λu)≥ λβBu, for λ ∈ (, ),u, v ∈ P.

From (H), (H), we have

g(s, )≥ 
δ
f (s, , ), f (s, , )≥ f (s, , ), s ∈ [, ].

Since f (t, , ) 	≡ , we get

∫ 


f (s, , )ds≥

∫ 


f (s, , )ds > ,

∫ 


g(s, )ds≥

∫ 


g(s, )ds≥ 

δ

∫ 


f (s, , )ds > ,

and in consequence,


�(ν)

∫ 


( – s)ν–α–f (s, , )ds≥ 

�(ν)

∫ 



[
 – ( – s)α

]
( – s)ν–α–f (s, , )ds > ,


�(ν)

∫ 


( – s)ν–α–g(s, )ds≥ 

�(ν)

∫ 



[
 – ( – s)α

]
( – s)ν–α–g(s, )ds > .

So, we can easily prove thatA(h,h) ∈ Ph, Bh ∈ Ph. For u, v ∈ P, and any t ∈ [, ], from (H),

A(u, v)(t) =
∫ 


G(t, s)f

(
s,u(s), v(s)

)
ds≤ δ

∫ 


G(t, s)g

(
s,u(s)

)
ds = δBu(t).

http://www.boundaryvalueproblems.com/content/2013/1/85


Zhai and Hao Boundary Value Problems 2013, 2013:85 Page 10 of 13
http://www.boundaryvalueproblems.com/content/2013/1/85

Thenwe getA(u, v) ≤ δBu, for u, v ∈ P. Finally, an application of Lemma . implies: there
exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v,u) +
Bv ≤ v; the operator equation A(u,u) + Bu = u has a unique solution u∗ in Ph; for any
initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–,xn–) + Byn–, n = , , . . . ,

we have xn → u∗ and yn → u∗ as n→ ∞. That is,

u(t) ≤
∫ 


G(t, s)

[
f
(
s,u(s), v(s)

)
+ g

(
s,u(s)

)]
ds, t ∈ [, ],

v(t) ≥
∫ 


G(t, s)

[
f
(
s, v(s),u(s)

)
+ g

(
s, v(s)

)]
ds, t ∈ [, ];

FBVP (.) has a unique positive solution u∗ in Ph; for x, y ∈ Ph, the sequences

xn+(t) =
∫ 


G(t, s)

[
f
(
s,xn(s), yn(s)

)
+ g

(
s,xn(s)

)]
ds, n = , , , . . . ,

yn+(t) =
∫ 


G(t, s)

[
f
(
s, yn(s),xn(s)

)
+ g

(
s, yn(s)

)]
ds, n = , , , . . . ,

satisfy ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n→ ∞. �

From Remark . and similar to the proofs of Theorems .-., we can prove the fol-
lowing conclusions.

Corollary . Let g ≡ . Assume that f satisfies the conditions of Theorem . and
f (t, , ) 	≡ . Then: (i) there exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v and

u(t) ≤
∫ 


G(t, s)f

(
s,u(s), v(s)

)
ds,

v(t) ≥
∫ 


G(t, s)f

(
s, v(s),u(s)

)
ds, t ∈ [, ],

where h(t) = tν–, t ∈ [, ] and G(t, s) is given as in (.); (ii) the FBVP

⎧⎪⎪⎨
⎪⎪⎩
–Dν

+y(t) = f (t, y(t), y(t)),  < t < ,n –  < ν ≤ n,

y(i)() = ,  ≤ i≤ n – ,

[Dα
+y(t)]t= = ,  ≤ α ≤ n – ,

has a unique positive solution u∗ in Ph; (iii) for any x, y ∈ Ph, constructing successively the
sequences

xn+(t) =
∫ 


G(t, s)f

(
s,xn(s), yn(s)

)
ds,

yn+(t) =
∫ 


G(t, s)f

(
s, yn(s),xn(s)

)
ds, n = , , , . . . ,

we have ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n→ ∞.
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Corollary . Let f ≡ .Assume that g satisfies the conditions of Theorem . and g(t, ) 	≡
 for t ∈ [, ]. Then: (i) there exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v and

u(t) ≤
∫ 


G(t, s)g

(
s,u(s)

)
ds, v(t) ≥

∫ 


G(t, s)g

(
s, v(s)

)
ds, t ∈ [, ],

where h(t) = tν–, t ∈ [, ] and G(t, s) is given as in (.); (ii) the FBVP

⎧⎪⎪⎨
⎪⎪⎩
–Dν

+y(t) = g(t, y(t)),  < t < ,n –  < ν ≤ n,

y(i)() = ,  ≤ i≤ n – ,

[Dα
+y(t)]t= = ,  ≤ α ≤ n – ,

has a unique positive solution u∗ in Ph; (iii) for any x, y ∈ Ph, constructing successively the
sequences

xn+(t) =
∫ 


G(t, s)g

(
s,xn(s)

)
ds, yn+(t) =

∫ 


G(t, s)g

(
s, yn(s)

)
ds, n = , , , . . . ,

we have ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n→ ∞.

4 An example
We now present one example to illustrate Theorem ..

Example . Consider the following FBVP:

⎧⎪⎪⎨
⎪⎪⎩
–D.

+ u(t) = u 
 (t) + [u(t) + ]– 

 + u(t)
+u(t)a(t) + b(t) + c,  < t < ,

u(i)() = ,  ≤ i≤ ,

[D.
+ u(t)]t= = ,

(.)

where c >  is a constant, a,b : [, ]→ [,∞) are continuous with a 	≡ .
Obviously, problem (.) fits the framework of FBVP (.) with ν = ., α = .. (Note

that n = , therefore, in this case.) In this example, we take  < d < c and let

f (t,u, v) = u

 + [v + ]–


 + b(t) + d, g(t,u) =

u
 + u

a(t) + c – d,

β =


, amax =max

{
a(t) : t ∈ [, ]

}
.

Obviously, amax > ; f : [, ]× [, +∞)× [, +∞)→ [, +∞) is continuous and g : [, ]×
[, +∞) → [, +∞) is continuous with g(t, ) = c – d > . And f (t,u, v) is increasing in
u ∈ [, +∞) for fixed t ∈ [, ] and v ∈ [, +∞), decreasing in v ∈ [, +∞) for fixed t ∈ [, ]
and u ∈ [, +∞), and g(t,u) is increasing in u ∈ [, +∞) for fixed t ∈ [, ]. Besides, for
λ ∈ (, ), t ∈ [, ], u ∈ [,∞), we have

g(t,λu) =
λu

 + λu
a(t) + c – d ≥ λu

 + u
a(t) + λ(c – d) = λg(t,u),

f
(
t,λu,λ–v

)
= λ


 u


 + λ


 [v + λ]–


 + b(t) + d

≥ λ


{
u


 + [v + ]–


 + b(t) + d

}
= λβ f (t,u, v).

http://www.boundaryvalueproblems.com/content/2013/1/85
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Moreover, if we take δ ∈ (, d
amax+c–d ], then we obtain

f (t,u, v) = u

 + [v + ]–


 + b(t) + d ≥ d =

d
amax + c – d

· (amax + c – d)

≥ δ

[
u

 + u
a(t) + c – d

]
= δg(t,u).

Hence all the conditions of Theorem . are satisfied. An application of Theorem .
implies that problem (.) has a unique positive solution in Ph, where h(t) = tν– = t.,
t ∈ [, ].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript.

Acknowledgements
The authors are grateful to the anonymous referee for his/her valuable suggestions. The first author was supported
financially by the Youth Science Foundations of China (11201272) and Shanxi Province (2010021002-1).

Received: 22 November 2012 Accepted: 18 March 2013 Published: 10 April 2013

References
1. Oldham, KB, Spanier, J: The Fractional Calculus. Academic Press, New York (1974)
2. Gaul, L, Klein, P, Kempffe, S: Damping description involving fractional operators. Mech. Syst. Signal Process. 5, 81-88

(1991)
3. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York

(1993)
4. Glockle, WG, Nonnenmacher, TF: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68, 46-53

(1995)
5. Podlubny, I: Fractional Differential Equations. Mathematics in Science and Engineering. Academic Press, New York

(1999)
6. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
7. Zhang, SQ: Existence of positive solution for some class of nonlinear fractional differential equations. J. Math. Anal.

Appl. 278, 136-148 (2003)
8. Bai, ZB, Lü, HS: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math.

Anal. Appl. 311, 495-505 (2005)
9. Lakshmikantham, V: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337-3343 (2008)
10. Zhou, Y: Existence and uniqueness of fractional functional differential equations with unbounded delay. Int. J. Dyn.

Syst. Differ. Equ. 1(4), 239-244 (2008)
11. Kaufmann, ER, Mboumi, E: Positive solutions of a boundary value problem for a nonlinear fractional differential

equation. Electron. J. Qual. Theory Differ. Equ. 2008, 3 (2008)
12. Kosmatov, N: A singular boundary value problem for nonlinear differential equations of fractional order. J. Appl. Math.

Comput. 29, 125-135 (2009)
13. Xu, X, Jiang, D, Yuan, C: Multiple positive solutions for boundary value problem of nonlinear fractional differential

equation. Nonlinear Anal. 71, 4676-4688 (2009)
14. Yang, L, Chen, H: Unique positive solutions for fractional differential equation boundary value problems. Appl. Math.

Lett. 23, 1095-1098 (2010)
15. Wang, YQ, Liu, LS, Wu, YH: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74,

3599-3605 (2011)
16. Lizama, C: An operator theoretical approach to a class of fractional order differential equations. Appl. Math. Lett. 24,

184-190 (2011)
17. Yang, C, Zhai, CB: Uniqueness of positive solutions for a fractional differential equation via a fixed point theorem of a

sum operator. Electron. J. Differ. Equ. 2012, 70 (2012)
18. Goodrich, CS: Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23,

1050-1055 (2010)
19. Goodrich, CS: Existence of a positive solution to systems of differential equations of fractional order. Comput. Math.

Appl. 62, 1251-1268 (2011)
20. Zhai, CB, Hao, MR: Fixed point theorems for mixed monotone operators with perturbation and applications to

fractional differential equation boundary value problems. Nonlinear Anal. 75, 2542-2551 (2012)
21. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, Boston (1988)

http://www.boundaryvalueproblems.com/content/2013/1/85


Zhai and Hao Boundary Value Problems 2013, 2013:85 Page 13 of 13
http://www.boundaryvalueproblems.com/content/2013/1/85

22. Guo, D, Lakskmikantham, V: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11(5),
623-632 (1987)

23. Zhai, CB, Yang, C, Zhang, XQ: Positive solutions for nonlinear operator equations and several classes of applications.
Math. Z. 266, 43-63 (2010)

doi:10.1186/1687-2770-2013-85
Cite this article as: Zhai and Hao:Mixed monotone operator methods for the existence and uniqueness of positive
solutions to Riemann-Liouville fractional differential equation boundary value problems. Boundary Value Problems
2013 2013:85.

http://www.boundaryvalueproblems.com/content/2013/1/85

	Mixed monotone operator methods for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	An example
	Competing interests
	Authors' contributions
	Acknowledgements
	References


