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1 Introduction
In a recent paper, Cabada and Tojo [] studied, by means of methods and results present
in [, ], the first-order operator u′(t) +ωu(–t) coupled with periodic boundary value con-
ditions, describing the eigenvalues of the operator and providing the expression of the
associated Green’s function in the nonresonant case. One motivation for studying this
particular problem is that differential equations with reflection of the argument have seen
growing interest along the years; see, for example, the papers [, –] and references
therein. In [], the authors provide the range of values of the real parameter ω for which
the Green’s function has constant sign and apply these results to prove the existence of
constant sign solutions for the nonlinear periodic problem with reflection of the argu-
ment

u′(t) = h
(
t,u(t),u(–t)

)
, t ∈ [–T ,T], u(–T) = u(T). (.)

The methodology, analogous to the one utilized by Torres [] in the case of ordinary dif-
ferential equations, consists of two steps. First, we rewrite problem (.) as a Hammerstein
integral equation with reflections of the type

u(t) =
∫ T

–T
k(t, s)

[
h
(
s,u(s),u(–s)

)
+mu(–s)

]
ds, t ∈ [–T ,T],

where the kernel k has constant sign. Then we make use of the well-known Guo-
Krasnosel’skĭı theorem on cone compression-expansion (see, for example, []).
In this paper, we continue the study of [] and we prove new results regarding the ex-

istence of nontrivial solutions of Hammerstein integral equations with reflections of the
form

u(t) =
∫ T

–T
k(t, s)g(s)f

(
s,u(s),u(–s)

)
ds, t ∈ [–T ,T],

© 2013 Cabada et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.boundaryvalueproblems.com/content/2013/1/86
mailto:alberto.cabada@usc.es
http://creativecommons.org/licenses/by/2.0


Cabada et al. Boundary Value Problems 2013, 2013:86 Page 2 of 22
http://www.boundaryvalueproblems.com/content/2013/1/86

where the kernel k is allowed to be not of constant sign. In order to do this, we extend
the results of [, ], valid for Hammerstein integral equations without reflections, to the
new context.Wemake use of a cone of functions that are allowed to change sign combined
with the classical fixed point index for compact maps (we refer to [] or [] for further
information). As an application of our theorywe prove the existence of nontrivial solutions
of the periodic problem with reflections (.).

2 The case of kernels that change sign
Webeginwith the case of kernels that are allowed to change sign.We impose the following
conditions on k, f , g that occur in the integral equation:

u(t) =
∫ T

–T
k(t, s)g(s)f

(
s,u(s),u(–s)

)
ds =: Fu(t), (.)

where T is fixed in (,∞).

(C) The kernel k is measurable, and for every τ ∈ [–T ,T] we have

lim
t→τ

∣∣k(t, s) – k(τ , s)
∣∣ =  for almost every (a.e.) s ∈ [–T ,T].

(C) There exist a subinterval [a,b] ⊆ [–T ,T], a measurable function � with � ≥  a.e.
and a constant c = c(a,b) ∈ (, ] such that

∣∣k(t, s)∣∣ ≤ �(s) for all t ∈ [–T ,T] and a.e. s ∈ [–T ,T],

k(t, s)≥ c�(s) for all t ∈ [a,b] and a.e. s ∈ [–T ,T].

(C) The function g satisfies that g� ∈ L[–T ,T], g(t) ≥  a.e. t ∈ [–T ,T] and

∫ b

a
�(s)g(s)ds > .

(C) The nonlinearity f : [–T ,T] × (–∞,∞) × (–∞,∞) → [,∞) satisfies the
Carathéodory conditions, that is, f (·,u, v) is measurable for each fixed u and v
and f (t, ·, ·) is continuous for a.e. t ∈ [–T ,T], and for each r > , there exists ϕr ∈
L∞[–T ,T] such that

f (t,u, v) ≤ ϕr(t) for all (u, v) ∈ [–r, r]× [–r, r] and a.e. t ∈ [–T ,T].

We recall the following definition.

Definition . Let X be a Banach Space. A cone on X is a closed, convex subset of X such
that λx ∈ K for x ∈ K and λ ≥  and K ∩ (–K) = {}.

Here, we work in the space C[–T ,T], endowed with the usual supremum norm, and we
use the cone

K =
{
u ∈ C[–T ,T] : min

t∈[a,b]
u(t) ≥ c‖u‖

}
. (.)

Note that K �= {}.
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The cone K has been essentially introduced by Infante and Webb in [] and later used
in [, –]. K is similar to a type of cone of nonnegative functions first used by Kras-
nosel’skĭı; see, e.g., [], and Guo, see, e.g., []. Note that functions in K are positive on
the subset [a,b] but are allowed to change sign in [–T ,T].
We require some knowledge of the classical fixed point index for compact maps; see

for example [] or [] for further information. If � is a bounded open subset of K (in
the relative topology) we denote by � and ∂� the closure and the boundary relative to K .
When D is an open bounded subset of X, we write DK =D∩K , an open subset of K .
The next lemma is a direct consequence of classical results from degree theory, for de-

tails see [].

Lemma. Let D be an open bounded set with DK �= ∅ and DK �= K .Assume that F :DK →
K is a compact map such that x �= Fx for x ∈ ∂DK . Then the fixed point index iK (F ,DK ) has
the following properties:
() If there exists e ∈ K \ {} such that x �= Fx + λe for all x ∈ ∂DK and all λ > , then

iK (F ,DK ) = .
() If μx �= Fx for all x ∈ ∂DK and for every μ ≥ , then iK (F ,DK ) = .
() Let D be open in X with D ⊂DK . If iK (F ,DK ) =  and iK (F ,D

K ) = , then F has a
fixed point in DK \D

K . The same result holds if iK (F ,DK ) =  and iK (F ,D
K ) = .

Definition . We use the following sets:

Kρ =
{
u ∈ K : ‖u‖ < ρ

}
, Vρ =

{
u ∈ K : min

t∈[a,b]
u(t) < ρ

}
.

The setVρ was introduced in [] and is equal to the set called�ρ/c in []. The notationVρ

makes it clear that choosing c as large as possible yields a weaker condition to be satisfied
by f in Lemma .. A key feature of these sets is that they can be nested, that is,

Kρ ⊂ Vρ ⊂ Kρ/c.

Theorem . Assume that hypotheses (C)-(C) hold for some r > . Then F maps Kr into
K and is compact. When these hypotheses hold for each r > , F is compact and maps K
into K .

Proof For u ∈ Kr and t ∈ [–T ,T], we have

∣∣Fu(t)∣∣ ≤
∫ T

–T

∣∣k(t, s)∣∣g(s)f (s,u(s),u(–s))ds
≤

∫ T

–T
�(s)g(s)f

(
s,u(s),u(–s)

)
ds

and

min
t∈[a,b]

Fu(t)≥ c
∫ T

–T
�(s)g(s)f

(
s,u(s),u(–s)

)
ds≥ c‖Fu‖.

Therefore, we have that Fu ∈ K for every u ∈ Kr .
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The compactness of F follows from the fact that the Hammerstein integral operator
that occurs in (.) is compact (this a consequence of Proposition . of Chapter  of []).

�

In the sequel, we give a condition that ensures that, for a suitable ρ > , the index is 
on Kρ .

Lemma . Assume that

(Iρ ) there exists ρ >  such that

f –ρ,ρ

m
< ,

where


m

:= sup
t∈[–T ,T]

∫ T

–T

∣∣k(t, s)∣∣g(s)ds
and

f –ρ,ρ = sup

{
f (t,u, v)

ρ
: (t,u, v) ∈ [–T ,T]× [–ρ,ρ]× [–ρ,ρ]

}
.

Then the fixed point index, iK (F ,Kρ), is equal to .

Proof We show that μu �= Fu for every u ∈ ∂Kρ and for every μ ≥ . In fact, if this does
not happen, there exist μ ≥  and u ∈ ∂Kρ such that μu = Fu, that is,

μu(t) =
∫ T

–T
k(t, s)g(s)f

(
s,u(s),u(–s)

)
ds.

Taking the absolute value and then the supremum for t ∈ [–T ,T] gives

μρ ≤ sup
t∈[–T ,T]

∫ T

–T

∣∣k(t, s)∣∣g(s)f (s,u(s),u(–s))ds
≤ ρf –ρ,ρ · sup

t∈[–T ,T]

∫ T

–T

∣∣k(t, s)∣∣g(s)ds < ρ.

This contradicts the fact that μ ≥  and proves the result. �

Let us see now a condition that guarantees the index is equal to zero on Vρ for some
appropriate ρ > .

Lemma . Assume that

(Iρ ) there exist ρ >  such that such that

f(ρ,ρ/c)
M(a,b)

> ,

http://www.boundaryvalueproblems.com/content/2013/1/86
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where


M(a,b)

:= inf
t∈[a,b]

∫ b

a
k(t, s)g(s)ds

and

f(ρ,ρ/c) = inf

{
f (t,u, v)

ρ
: (t,u, v) ∈ [a,b]× [ρ,ρ/c]× [–ρ/c,ρ/c]

}
.

Then iK (F ,Vρ) = .

Proof Let e(t) ≡ , then e ∈ K . We prove that

u �= Fu + λe for all u ∈ ∂Vρ and λ ≥ .

In fact, if not, there exist u ∈ ∂Vρ and λ ≥  such that u = Fu + λe. Then we have

u(t) =
∫ T

–T
k(t, s)g(s)f

(
s,u(s),u(–s)

)
ds + λ.

Thus we get, for t ∈ [a,b],

u(t) =
∫ T

–T
k(t, s)g(s)f

(
s,u(s),u(–s)

)
ds + λ ≥

∫ b

a
k(t, s)g(s)f

(
s,u(s),u(–s)

)
ds

≥ ρf(ρ,ρ/c)
(∫ b

a
k(t, s)g(s)ds

)
.

Taking the minimum over [a,b] gives ρ > ρ a contradiction. �

The above lemmas can be combined to prove the following theorem. Here, we deal with
the existence of at least one, two or three solutions.We stress that, by expanding the lists in
conditions (S), (S) below, it is possible to state results for four ormore positive solutions;
see for example the paper by Lan [] for the type of results that might be stated. We omit
the proof which follows directly from the properties of the fixed point index stated in
Lemma .().

Theorem . The integral equation (.) has at least one nonzero solution in K if either
of the following conditions hold:

(S) There exist ρ,ρ ∈ (,∞) with ρ/c < ρ such that (Iρ ) and (Iρ ) hold:
(S) There exist ρ,ρ ∈ (,∞) with ρ < ρ such that (Iρ ) and (Iρ ) hold.

The integral equation (.) has at least two nonzero solutions in K if one of the following
conditions hold:

(S) There exist ρ,ρ,ρ ∈ (,∞) with ρ/c < ρ < ρ such that (Iρ ), (I

ρ ) and (Iρ ) hold.

(S) There exist ρ,ρ,ρ ∈ (,∞) with ρ < ρ and ρ/c < ρ such that (Iρ ), (I

ρ ) and (Iρ )

hold.

http://www.boundaryvalueproblems.com/content/2013/1/86
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The integral equation (.) has at least three nonzero solutions in K if one of the following
conditions hold:

(S) There exist ρ,ρ,ρ,ρ ∈ (,∞)with ρ/c < ρ < ρ and ρ/c < ρ such that (Iρ ), (I

ρ ),

(Iρ ) and (Iρ ) hold.
(S) There exist ρ,ρ,ρ,ρ ∈ (,∞) with ρ < ρ and ρ/c < ρ < ρ such that (Iρ ), (I


ρ ),

(Iρ ) and (Iρ ) hold.

3 The case of nonnegative kernels
We now assume the functions k, f , g that occur in (.) satisfy the conditions (C)-(C) in
the previous section, where (C) and (C) are replaced with the following.

(C′
) The kernel k is nonnegative for t ∈ [–T ,T] and a.e. s ∈ [–T ,T] and there exist a subin-

terval [a,b]⊆ [–T ,T], ameasurable function�, and a constant c = c(a,b) ∈ (, ] such
that

k(t, s)≤ �(s) for t ∈ [–T ,T] and a.e. s ∈ [–T ,T],

k(t, s)≥ c�(s) for t ∈ [a,b] and a.e. s ∈ [–T ,T].

(C′
) The nonlinearity f : [–T ,T]× [,∞)× [,∞) → [,∞) satisfies Carathéodory con-

ditions, that is, f (·,u, v) is measurable for each fixed u and v and f (t, ·, ·) is continuous
for a.e. t ∈ [–T ,T], and for each r > , there exists ϕr ∈ L∞[–T ,T] such that

f (t,u, v) ≤ ϕr(t) for all (u, v) ∈ [, r]× [, r] and a.e. t ∈ [–T ,T].

These hypotheses enable us to work in the cone of nonnegative functions

K ′ =
{
u ∈ C[–T ,T] : u≥ , min

t∈[a,b]
u(t) ≥ c‖u‖

}
, (.)

that is smaller than the cone (.). It is possible to show that F is compact and leaves the
cone K ′ invariant. The conditions on the index are given by the following lemmas; the
proofs are omitted as they are similar to the ones in the previous section.

Lemma . Assume that

(Iρ ) there exists ρ >  such that f ,ρ <m, where

f ,ρ = sup

{
f (t,u, v)

ρ
: (t,u, v) ∈ [–T ,T]× [,ρ]× [,ρ]

}
.

Then iK (F ,Kρ) = .

Lemma . Assume that

(Iρ ) there exist ρ >  such that f(ρ,ρ/c)′ >M, where

f(ρ,ρ/c)′ = inf

{
f (t,u, v)

ρ
: (t,u, v) ∈ [a,b]× [ρ,ρ/c]× [,ρ/c]

}
.

Then iK (F ,Vρ) = .

http://www.boundaryvalueproblems.com/content/2013/1/86
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A result equivalent to Theorem . is clearly valid in this case, with nontrivial solutions
belonging to the cone (.).

4 The case of kernels with extra positivity
We now assume the functions k, f , g that occur in (.) satisfy the conditions (C), (C′

),
(C) and (C′

) with [a,b] = [–T ,T]; in particular note that the kernel satisfies the stronger
positivity requirement

c�(s)≤ k(t, s)≤ �(s) for t ∈ [–T ,T] and a.e. s ∈ [–T ,T].

These hypotheses enable us to work in the cone

K
′′
=

{
u ∈ C[–T ,T] : min

t∈[–T ,–T]
u(t) ≥ c‖u‖

}
. (.)

Remark . Note that a function in K ′′ that possesses a nontrivial norm, has the useful
property that is strictly positive on [–T ,T].

Once again F is compact and leaves the coneK ′′ invariant. The assumptions on the index
are as follows.

Lemma . Assume that

(Ĩρ ) there exists ρ >  such that f cρ,ρ <m, where

f cρ,ρ = sup

{
f (t,u, v)

ρ
: (t,u, v) ∈ [–T ,T]× [cρ,ρ]× [cρ,ρ]

}
.

Then iK (F ,Kρ) = .

Lemma . Assume that

(Ĩρ ) there exist ρ >  such that f(ρ,ρ/c)′′ >M, where

f(ρ,ρ/c)′′ = inf

{
f (t,u, v)

ρ
: (t,u, v) ∈ [–T ,T]× [ρ,ρ/c]× [ρ,ρ/c]

}
.

Then iK (F ,Vρ) = .

A result similar to Theorem . holds in this case.

Remark. If f is defined only on [–T ,T]× [u,u]× [v, v] we can extend it to [–T ,T]×
R×R considering firstly

f̄ (t,u, v) :=

⎧⎪⎪⎨
⎪⎪⎩
f (t,u, v) if  ≤ u≤ u,

f (t,u, v) if u ≤ u≤ u,

f (t,u, v) if u ≤ u <∞,

http://www.boundaryvalueproblems.com/content/2013/1/86
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and secondly

f̃ (t,u, v) :=

⎧⎪⎪⎨
⎪⎪⎩
f̄ (t,u, v) if  ≤ v ≤ v,

f̄ (t,u, v) if v ≤ v ≤ v,

f̄ (t,u, v) if v ≤ v < ∞.

This approach that follows the one of Lan [] and that has been exploited in [–]
in the context of problems without reflections, is useful to prove the existence of multi-
ple positive solutions in presence of strong singularities in the nonlinearity f . For a re-
lated result, that uses the principal eigenvalue of the corresponding linearized equation,
see [].

Remark . Note that results similar to Sections ,  and  hold when the kernel k is
negative on a strip, negative and strictly negative. This gives nontrivial solutions that are
negative on an interval, negative and strictly negative, respectively.

5 An application
We now turn our attention to the first-order functional periodic boundary value problem

u′(t) = h
(
t,u(t),u(–t)

)
, t ∈ [–T ,T], (.)

u(–T) = u(T). (.)

We apply the shift argument of [] (a similar idea has been used in [, ]), by fixing
ω ∈R \ {} and considering the equivalent expression

u′(t) +ωu(–t) = h
(
t,u(t),u(–t)

)
+ωu(–t) := f

(
t,u(t),u(–t)

)
, t ∈ [–T ,T], (.)

u(–T) = u(T). (.)

Following the ideas developed in [], we can verify that the functional boundary value
problem (.)-(.) can be rewritten into a Hammerstein integral equation of the type

u(t) =
∫ T

–T
k(t, s)f

(
s,u(s),u(–s)

)
ds. (.)

Also, k(t, s) can be expressed in the following way (see [] for details):

 sin(ωT)k(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cosω(T – s – t) + sinω(T + s – t) if t > |s|,
cosω(T – s – t) – sinω(T – s + t) if |t| < s,

cosω(T + s + t) + sinω(T + s – t) if |t| < –s,

cosω(T + s + t) – sinω(T – s + t) if t < –|s|.

(.)

The results that follow are meant to prove that we are under the hypothesis of Theo-
rem ..
The sign properties of the kernel (.) can be summarized as follows.

http://www.boundaryvalueproblems.com/content/2013/1/86
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Theorem . [] Let ζ = ωT .
() If ζ ∈ (, π

 ) then k(t, s) is strictly positive on [–T ,T].
() If ζ ∈ (–π

 , ) then k(t, s) is strictly negative on [–T ,T].
() If ζ = π

 then k(t, s) vanishes on P := {(–T , –T), (, ), (T ,T), (T , –T)} and is strictly
positive on ([–T ,T]) \ P.

() If ζ = –π
 then k(t, s) vanishes on P and is strictly negative on ([–T ,T]) \ P.

() If ζ ∈R \ [–π
 ,

π
 ] then k(t, s) is changes sign on [–T ,T].

In [], some existence results has been obtained for problem (.)-(.) when ζ ∈
[–π

 ,
π
 ], i.e., when the kernel k has constant sign on [–T ,T]. But nothing is obtained

for the changing sign case. Still, there are some things to be said about the kernel k when
ζ ∈R\[–π

 ,
π
 ]. First, realize that, using the trigonometric identities cos(a–b)±sin(a+b) =

(cosa± sina)(cosb± sinb) and cos(a) + sin(a) =
√
 cos(a – π

 ) and making the change of
variables t = Tz, s = Ty, we can express k as

sin(ζ )k(z, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos[ζ ( – z) – π
 ] cos(ζy –

π
 ) if z > |y|,

cos(ζ z + π
 ) cos[ζ (y – ) – π

 ] if |z| < y,

cos(ζ z + π
 ) cos[ζ ( + y) – π

 ] if – |z| > y,

cos[ζ (z + ) + π
 ] cos(ζy –

π
 ) if z < –|y|.

(.)

The following lemma relates the sign of k for ζ positive and negative.

Lemma . [] kζ (t, s) = –k–ζ (–t, –s) ∀t, s ∈ I where kζ is the kernel for the value ζ .

Now we have the following result.

Lemma . The following hold:
() If ζ ∈ (π

 ,
π
 ), then k is strictly positive in

S :=
[(

–
π

|ζ | ,
π

|ζ | – 
)

∪
(
 –

π

|ζ | ,
π

|ζ |
)]

× [–, ].

() If ζ ∈ (–π
 , –

π
 ), k is strictly negative in S.

Proof By Lemma ., it is enough to prove that k is strictly positive in S for ζ ∈ (π
 ,

π
 ). We

do here the proof for the connected component ( – π
ζ
, π
ζ
) × [–, ] of S. For the other

one, the proof is analogous.
If z ∈ ( – π

ζ
, π
ζ
), then ζ z + π

 ∈ (ζ , π
 ) ⊂ (π

 ,
π
 ), and hence cos(ζ z + π

 ) > .
Also, if z ∈ ( – π

ζ
, π
ζ
), then ζ ( – z) – π

 ∈ (ζ – π
 , ) ⊂ (–π

 , ) and, therefore, cos(ζ ( –
z) – π

 ) > .
If y ∈ (– π

ζ
, π
ζ
), then ζy – π

 ∈ (–π
 , ) so cos(ζy – π

 ) > .
If y ∈ ( – π

ζ
, ), then ζ (y – ) – π

 ∈ (–π
 , –

π
 ) so cos(ζ (y – ) – π

 ) > .
If y ∈ (–, π

ζ
– ), then ζ (y + ) + π

 ∈ (π
 ,

π
 ) so cos(ζ (y + ) + π

 ) > .
With these inequalities the result is straightforward from equation (.). �

http://www.boundaryvalueproblems.com/content/2013/1/86
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Lemma . If ζ ∈ (π
 ,

π
 ) then sin(ζ )|k(z, y)| ≤ �(y) := sin(ζ )maxz∈[–,] k(z, y) where � ad-

mits the following expression

�(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos[ζ (y – ) – π
 ] if y ∈ [β , ],

cos[ζ (y – ) + π
 ] cos(ζy –

π
 ) if y ∈ [ – π

ζ
,β),

cos(ζy – π
 ) if y ∈ [β – ,  – π

ζ
),

cos(ζy + π
 ) cos[ζ (y + ) – π

 ] if y ∈ [– π
ζ
,β – ),

cos[ζ (y + ) – π
 ] if y ∈ [–,– π

ζ
),

and β is the only solution of the equation

cos

[
ζ (y – ) +

π



]
cos

(
ζy –

π



)
– cos

[
ζ (y – ) –

π



]
=  (.)

in the interval [  , ].

Proof Let

v(y) := cos

[
ζ (y – ) +

π



]
cos

(
ζy –

π



)
– cos

[
ζ (y – ) –

π



]
,

then

v′(y) = ζ

[
sin

(
ζ (y – ) –

π



)
– sin

(
ζ (y – )

)]
.

Observe that y ∈ [  , ] implies ζ (y – ) – π
 ∈ [– ζ

 – π
 , –

π
 ] ⊂ [–π

 , –π
 ] and ζ (y – ) ∈

(, ζ )⊂ [, π
 ], therefore, v

′(y) ≤  ∀y ∈ [  , ]. Furthermore, since ζ ∈ (π
 ,

π
 ),

v
(



)
= cos

(
ζ


–

π



)
– cos

(
ζ


+

π



)

=  –
[
cos

(
–

ζ



)
+

√



][
sin

(
–

ζ



)
+

√



]

≥
√
 – 

√



> ,

v() =
√



[
 – cos

(
ζ –

π



)]
≤ .

Hence, equation (.) has a unique solution β in [  , ]. Besides, since v(
π
ζ
) =

√
 sin(ζ –

π
 ) > , we have that β > π

ζ
. Furthermore, it follows that

– < –
π

ζ
< β –  <

π

ζ
–  < 

<  –
π

ζ
<

π

ζ
< β < .
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Now, realize that

sin(ζ )k(z, y)

≤ ξ (z, y) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos[ζ ( –max{ – π
ζ
, |y|}) – π

 ] cos(ζy –
π
 ) if z > |y|,

cos(ζ min{ π
ζ
, y} – π

 ) cos[ζ (y – ) – π
 ] if |z| < y,

cos(ζ max{– π
ζ
, y} + π

 ) cos[ζ ( + y) – π
 ] if – |z| > y,

√

 cos(ζy – π

 ) if z < –|y|,

(.)

while ξ (z, y) ≤ �(y).
We study now the different cases for the value of y.
• If y ∈ [β , ], then

ξ (z, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cos[ζ (y – ) + π

 ] cos(ζy –
π
 ) if z > y, (.a)

cos[ζ (y – ) – π
 ] if |z| < y, (.b)

√

 cos(ζy – π

 ) if z < –y. (.c)

It is straightforward that cos[ζ (y–)+ π
 ] > cos(π

 ) =
√

 , so (.a) > (.c). By our study

of equation (.), it is clear that

cos

[
ζ (y – ) +

π



]
cos

(
ζy –

π



)

≤ cos

[
ζ (y – ) –

π



]
.

Therefore, (.a) ≥ (.b) and �(y) = cos[ζ (y – ) – π
 ].

• If y ∈ [ π
ζ
,β), then ξ is as in (.a)-(.c) and (.a) > (.c), but in this case

cos

[
ζ (y – ) +

π



]
cos

(
ζy –

π



)

≥ cos

[
ζ (y – ) –

π



]
,

so (.a) ≤ (.b) and �(y) = cos[ζ (y – ) + π
 ] cos(ζy –

π
 ).

• If y ∈ [ – π
ζ
, π
ζ
), then

ξ (z, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cos[ζ (y – ) + π

 ] cos(ζy –
π
 ) if z > y, (.a)

cos[ζ (y – ) – π
 ] cos(ζy –

π
 ) if |z| < y, (.b)

√

 cos(ζy – π

 ) if z < –y. (.c)

We have that

cos

[
ζ (y – ) +

π



]
– cos

[
ζ (y – ) –

π



]
=

√
 sin

[
ζ ( – y)

]
> ,

therefore (.a) ≥ (.b) and �(y) = cos[ζ (y – ) + π
 ] cos(ζy –

π
 ).
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• If y ∈ [,  – π
ζ
), then

ξ (z, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cos(ζy – π

 ) if z > y, (.a)

cos[ζ (y – ) – π
 ] cos(ζy –

π
 ) if |z| < y, (.b)

√

 cos(ζy – π

 ) if z < –y. (.c)

cos[ζ (y – ) – π
 ] <

√

 , so (.b)≤ (.c) ≤ (.a) and �(y) = cos(ζy – π

 ).
• If y ∈ [β – , ), then

ξ (z, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cos(ζy – π

 ) if z > –y, (.a)

cos(ζy + π
 ) cos[ζ ( + y) – π

 ] if – |z| > y, (.b)
√

 cos(ζy – π

 ) if z < y. (.c)

Let y = y – , then

cos

(
ζy +

π



)
cos

[
ζ ( + y) –

π



]
≤ cos

(
ζy –

π



)

if and only if

cos

[
ζ (y – ) +

π



]
cos

(
ζy –

π



)
≤ cos

[
ζ (y – ) –

π



]

which is true as y ∈ [β , ) and our study of equation (.). Hence, �(y) = cos(ζy – π
 ).

• If y ∈ [ π
ζ

– ,β – ), then ξ is the same as in (.a)-(.c) but in this case

cos

(
ζy +

π



)
cos

[
ζ ( + y) –

π



]
≥ cos

(
ζy –

π



)

so �(y) = cos(ζy + π
 ) cos[ζ ( + y) – π

 ].
• If y ∈ [– π

ζ
, π
ζ

– ), then

ξ (z, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cos[ζ ( – y) – π

 ] cos(ζy –
π
 ) if z > –y, (.a)

cos(ζy + π
 ) cos[ζ ( + y) – π

 ] if – |z| > y, (.b)
√

 cos(ζy – π

 ) if z < y. (.c)

cos

(
ζy +

π



)
cos

[
ζ ( + y) –

π



]
– cos

[
ζ ( – y) –

π



]
cos

(
ζy –

π



)
= – sin ζ sin(ζy) > ,

then �(y) = cos(ζy + π
 ) cos[ζ ( + y) – π

 ].
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• If y ∈ [–,– π
ζ
), then

ξ (z, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cos[ζ ( – y) – π

 ] cos(ζy –
π
 ) if z > –y, (.a)

cos[ζ ( + y) – π
 ] if – |z| > y, (.b)

√

 cos(ζy – π

 ) if z < y. (.c)

Since

cos

[
ζ (+y)–

π



]
≥ cos

(
ζy+

π



)
cos

[
ζ (+y)–

π



]
> cos

[
ζ (–y)–

π



]
cos

(
ζy–

π



)
,

�(y) = cos[ζ ( + y) – π
 ].

It follows, by studying the arguments of the cosines involved, that – sin(ζ )k(z, y) ≤ 
 ≤

�(y), therefore sin(ζ )|k(z, y)| ≤ �(y) for all z, y ∈ [–, ]. �

We now give a technical lemma that will be used afterward.

Lemma . Let f : [p– c,p + c] →R be a symmetric function with respect to p, decreasing
in [p,p+ c]. Let g : [a,b]→R be an affine function such that g([a,b])⊂ [p– c,p+ c].Under
these hypotheses, the following hold:
() If g(a) < g(b) < p or p < g(b) < g(a) then f (g(a)) < f (g(b)).
() If g(b) < g(a) < p or p < g(a) < g(b) then f (g(a)) > f (g(b)).
() If g(a) < p < g(b) then f (g(a)) < f (g(b)) if and only if g( a+b ) < p.
() If g(b) < p < g(a) then f (g(a)) < f (g(b)) if and only if g( a+b ) > p.

Remark . An analogous result can be established, with the proper changes in the in-
equalities, if f is increasing in [p,p + c].

Proof It is clear that f (g(a)) < f (g(b)) if and only if |g(a) – p| > |g(b) – p|, so () and () are
straightforward. Also, realize that, since g is affine, we have that g( a+b ) = g(a)+g(b)

 .
Let us prove () as () is analogous:

∣∣g(b) – p
∣∣ – ∣∣g(a) – p

∣∣ = g(b) – p –
(
p – g(a)

)
= g(a) + g(b) – p = 

[
g
(
a + b


)
– p

]
.

Therefore |g(a) – p| > |g(b) – p| if and only if g( a+b ) < p. �

Lemma . Let ζ ∈ (, π
 ] and b≥ a ≥  such that a + b = . Then

sin(ζ )k(z, y) ≥ c(a)�(y) for z ∈ [a,b], y ∈ [–, ],

where

c(a) := inf
y∈[–,]

{
sin(ζ ) infz∈[a,b] k(z, y)

�(y)

}
=
[ – tan(ζa)][ – tan(ζb)]
[ + tan(ζa)][ + tan(ζb)]

.
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Proof We know by Lemma . that k is positive in Sr := [a,b]× [–, ]. Furthermore, it is
proved in [] that

∂k
∂t

(t, s) +ωk(–t, s) =  ∀t, s ∈ [–T ,T],

so, differentiating and doing the proper substitutions we get that

∂k
∂t

(t, s) +ωk(t, s) =  ∀t, s ∈ [–T ,T].

Therefore, ∂k
∂t <  in Sr , which means that any minimum of k with respect to t has to be

in the boundary of the differentiable regions of Sr . Thus, it is clear that, in Sr ,

sin(ζ )k(z, y)

≥ η(z, y)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cos([max{|ζa + π
 |, |ζb + π

 |}) cos[ζ (y – ) – π
 ] if |z| < y, y ∈ [b, ],

cos([max{|ζa + π
 |, |ζy + π

 |}) cos[ζ (y – ) – π
 ] if |z| < y, y ∈ [a,b),

cos[max{|ζ ( – y) – π
 |, |ζ ( – b) – π

 |}] cos(ζy – π
 ) if z > |y|, y ∈ [a,b),

cos[max{|ζ ( – a) – π
 |, |ζ ( – b) – π

 |}] cos(ζy – π
 ) if z > |y|, y ∈ [–a,a),

cos[max{|ζ ( – y) – π
 |, |ζ ( – b) – π

 |}] cos(ζy – π
 ) if z > |y|, y ∈ [–b, –a),

cos([max{|ζa + π
 |, |ζy + π

 |}) cos[ζ ( + y) – π
 ] if – |z| > y, y ∈ [–b, –a),

cos([max{|ζa + π
 |, |ζb + π

 |}) cos[ζ ( + y) – π
 ] if – |z| > y, y ∈ [–,–b).

(.)

By definition, η(z, y) ≥ �(y) := sin(ζ ) infz∈[a,b] k(z, y). Also, realize that the arguments of
the cosine in (.) are affine functions and that the cosine function is strictly decreasing
in [,π ] and symmetric with respect to zero. We can apply Lemma . to get

η(z, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(ζb + π
 ) cos[ζ (y – ) – π

 ] if |z| < y, y ∈ [b, ], (.a)

cos(ζy + π
 ) cos[ζ (y – ) – π

 ] if |z| < y, y ∈ [a,b), (.b)

cos[ζ ( – b) – π
 ] cos(ζy –

π
 ) if z > |y|, y ∈ [–b,b), (.c)

cos(ζy + π
 ) cos[ζ ( + y) – π

 ] if – |z| > y, y ∈ [–b, –a), (.d)

cos(ζb + π
 ) cos[ζ ( + y) – π

 ] if – |z| > y, y ∈ [–,–b). (.e)

Finally, we have to compare the cases (.b) with (.c) for y ∈ [a,b) and (.d) with
(.c) for y ∈ [–b, –a). Using again Lemma ., we obtain the following inequality:

cos

(
ζ ( – b) –

π



)
cos

(
ζy –

π



)
– cos

(
ζy +

π



)
cos

[
ζ (y – ) –

π



]

≥ cos

(
ζ ( – b) –

π



)
cos

(
ζb –

π



)
– cos

(
ζb +

π



)
cos

[
ζ (b – ) –

π



]
= sin ζ > .

Thus, (.c) > (.b) for y ∈ [a,b).
To compare (.d) with (.c) for y ∈ [–b,b) realize that k is continuous in the diag-

onal z = –y (see []). Hence, since the expressions of (.d) and (.c) are already lo-
cally minimizing (in their differentiable components) for the variable z, it is clear that
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(.d)≥ (.c) for y ∈ [–b, –a). Therefore,

�(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(ζb + π
 ) cos[ζ (y – ) – π

 ] if y ∈ [b, ], (.a)

cos(ζy + π
 ) cos[ζ (y – ) – π

 ] if y ∈ [a,b), (.b)

cos(ζ ( – b) – π
 ) cos(ζy –

π
 ) if y ∈ [–b,a), (.c)

cos(ζb + π
 ) cos[ζ ( + y) – π

 ] if y ∈ [–,–b). (.d)

It is easy to check that the following order holds:

– < –
π

ζ
< –b < β –  <  –

π

ζ
< a < b < β < .

Thus, we get the following expression:

�(y)
�(y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(ζb + π
 ) if y ∈ [β , ], (.a)

cos(ζb+ π
 ) cos(ζ (y–)–

π
 )

cos(ζy– π
 ) cos(ζ (y–)+

π
 )

if y ∈ [b,β), (.b)

cos(ζy+ π
 ) cos(ζ (y–)–

π
 )

cos(ζy– π
 ) cos(ζ (y–)+

π
 )

if y ∈ [a,b), (.c)

cos(ζ (–b)– π
 )

cos(ζ (y–)+ π
 )

if y ∈ [ – π
ζ
,a), (.d)

cos(ζ ( – b) – π
 ) if y ∈ [β – ,  – π

ζ
), (.e)

cos(ζ (–b)– π
 ) cos(ζy–

π
 )

cos(ζy+ π
 ) cos(ζ (+y)–

π
 )

if y ∈ [–b,β – ), (.f)

cos(ζb+ π
 )

cos(ζy+ π
 )

if y ∈ [– π
ζ
, –b), (.g)

cos(ζb + π
 ) if y ∈ [–,– π

ζ
). (.h)

To find the infimumof this function, wewill go through several steps inwhichwe discard
different cases. First, it is easy to check the inequalities (.g) ≥ (.h) = (.a) and
(.d)≥ (.e), so we need not to think about (.d), (.g) and (.h) anymore.
Now, realize that |ζ ( – b) – π

 | ≤ |ζb + π
 | ≤ π . Since the cosine is decreasing in [,π ]

and symmetric with respect to zero this implies that (.e) ≥ (.a).
Note that (.c) can be written as

g(y) :=
[ – tan(ζy)]( – tan[ζ ( – y)])
[ + tan(ζy)]( + tan[ζ ( – y)])

.

Its derivative is

g ′
(y) = –

ζ [tan(ζy) – tan ζ (y – )]
(tan ζy + )[tan ζ (y – )]

,

which only vanishes at y = 
 for y ∈ [a,b].

g ′′


(



)
= –

ζ  tan( ζ

 )(tan
 ζ

 + )
(tan ζ

 + )
< .
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Therefore, y = 
 is a maximum of the function. Since g is symmetric with respect to 


and a is the symmetric point of b with respect to 

 , g(a) = g(b) is the infimum of (.c),
which is contemplated in (.b) for y = b.
Making the change of variables y = y – , we have that (.f) can be written as

cos(ζ ( – b) – π
 ) cos(ζ (y – ) – π

 )
cos(ζy – π

 ) cos(ζ (y – ) + π
 )

if y ∈ [a,β). (.f′)

Since (.e) ≥ (.a), it is clear now that (.f′) ≥ (.b) in [b,β).
Let

g(y) :=
cos(ζ (y – ) – π

 )
cos(ζy – π

 ) cos(ζ (y – ) + π
 )

.

Then

g ′
(y) =

ζ


· sin[ζ ( – y) – π

 ] + sin[ζ (y – ) – π
 ] +  cos[ζy – π

 ]
sin[ζy + π

 ] cos[ζ ( – y) – π
 ]

.

Since the argument in the cosine of the numerator is in the interval [–π
 ,

π
 ] for y ∈ [a, ],

it is clear that g ′
(y) >  for y ∈ [a, ], which implies that g is increasing in that interval

and (.b) and (.f) reach their infimum in the left extreme point of their intervals of
definition.
We have then that

c(a) = inf
y∈[–,]

�(y)
�(y)

= min

{
cos

(
ζb +

π



)
,
cos(ζb + π

 ) cos(ζ (b – ) – π
 )

cos(ζb – π
 ) cos(ζ (b – ) + π

 )
,
cos(–ζb – π

 )
cos(–ζb + π

 )

}
.

The third element of the set is clearly greater or equal than the first. The second element
is cos(ζb + π

 )g(b). Since g is increasing in [a, ],

cos

(
ζb +

π



)
g(b)≤ cos

(
ζb +

π



)
g() = cos

(
ζb +

π



)
cos(ζ )
sin(ζ )

≤ cos

(
ζb +

π



)
.

Therefore,

c(a) =
cos(ζb + π

 ) cos(ζ (b – ) – π
 )

cos(ζb – π
 ) cos(ζ (b – ) + π

 )
=
[ – tan(ζa)][ – tan(ζb)]
[ + tan(ζa)][ + tan(ζb)]

. �

Remark . It is easy to find an upper estimate of c(a). Just assume a = b = 
 .

c(a) ≤ c() =
( – tan ζ



 + tan ζ



)

≤
( – tan π


 + tan π



)

=
( –

√
)


= . . . . .

We can do the same study for ζ ∈ (, π
 ]. The proofs are almost the same, but in this case

the calculations are much easier.
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Lemma . If ζ ∈ (, π
 ] then sin(ζ )|k(z, y)| ≤ �(y) :=maxz∈[–,] k(z, y) where� admits the

following expression:

�(y) =

⎧⎨
⎩cos[ζ (y – ) + π

 ] cos(ζy –
π
 ) if y ∈ [, ],

cos(ζy + π
 ) cos[ζ (y + ) – π

 ] if y ∈ [–, ).

Proof This time, a simplified version of inequality (.) holds,

sin(ζ )k(z, y) ≤ ξ (z, y) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos[ζ ( – |y|) – π
 ] cos(ζy –

π
 ) if z > |y|,

cos(ζy – π
 ) cos[ζ (y – ) – π

 ] if |z| < y,

cos(ζy + π
 ) cos[ζ ( + y) – π

 ] if – |z| > y,
√

 cos(ζy – π

 ) if z < –|y|,

(.)

so we only need to study two cases. If y > , we are in the same situation as in the case
y ∈ [ – π

ζ
, π
ζ
) studied in Lemma .. Hence, �(y) = cos[ζ (y – ) + π

 ] cos(ζy –
π
 ). If y < 

we are in the same situation as in the case y ∈ [– π
ζ
, π
ζ

– ). Therefore, �(y) = cos(ζy +
π
 ) cos[ζ (y + ) – π

 ]. �

Lemma . Let ζ ∈ (, π
 ] and b ≥ a ≥  such that a + b = . Then

sin(ζ )k(z, y) ≥ c(a)�(y) for z ∈ [a,b], y ∈ [–, ],

where

c(a) := inf
y∈[–,]

{
sin(ζ ) infz∈[a,b] k(z, y)

�(y)

}
=
[ – tan(ζa)][ – tan(ζb)]
[ + tan(ζa)][ + tan(ζb)]

.

Proof � is as in (.a)-(.d), but we get the simpler expression

�(y)
�(y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(ζb+ π
 ) cos(ζ (y–)–

π
 )

cos(ζy– π
 ) cos(ζ (y–)+

π
 )

if y ∈ [b, ], (.a)

cos(ζy+ π
 ) cos(ζ (y–)–

π
 )

cos(ζy– π
 ) cos(ζ (y–)+

π
 )

if y ∈ [a,b), (.b)

cos(ζ (–b)– π
 )

cos(ζ (y–)+ π
 )

if y ∈ [,a), (.c)

cos(ζ (–b)– π
 ) cos(ζy–

π
 )

cos(ζy+ π
 ) cos(ζ (+y)–

π
 )

if y ∈ [–b, ), (.d)

cos(ζb + π
 ) if y ∈ [–,–b). (.e)

By the same kind of arguments used in the proof of Lemma ., we get the desired re-
sult. �

Lemma .

sup
t∈[–T ,T]

∫ T

–T

∣∣k(t, s)∣∣ds =
⎧⎨
⎩


ω

if ζ ∈ (, π
 ],


ω
[ +

√
 cos ζ+π

 sin π–ζ
 +cos π–ζ

 (–sin ζ+π
 )

sin ζ
] if ζ ∈ [π

 ,
π
 ].
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Proof First of all, if ζ ∈ [, π
 ], then |k(t, s)| = k(t, s). The solution of the problem x′(t) +

ωx(–t) = , x(–T) = x(T) is clearly u(t) ≡ 
ω
, but at the same time it has to be of the kind in

equation (.), so u(t) =
∫ T
–T k(t, s)ds. This proves the first part.

If ζ ∈ [π
 ,

π
 ], then

∫ T

–T

∣∣k(t, s)∣∣ds = ∫ T

–T
k+(t, s)ds +

∫ T

–T
k–(t, s)ds =


ω
+ 

∫ T

–T
k–(t, s)ds.

We make two observations here.
From equation (.), it follows that k(t + T , s + T) = k(t, s) and k(t + T , s) = k(t, s + T)

for a.e. t, s ∈ [–T , ]. Hence, for t ∈ [–T , ] and a function ξ :R → R, using the change of
variables r = s + T , τ = s – T , we have that

∫ T

–T
ξ
(
k(t + T , s)

)
ds =

∫ 

–T
ξ
(
k(t + T , s)

)
ds +

∫ T


ξ
(
k(t + T , s)

)
ds

=
∫ 

–T
ξ
(
k(t, s + T)

)
ds +

∫ 

–T
ξ
(
k(t + T , τ + T)

)
dτ

=
∫ T


ξ
(
k(t, r)

)
dr +

∫ 

–T
ξ
(
k(t, τ )

)
dτ

=
∫ T

–T
ξ
(
k(t, s)

)
ds.

Therefore, supt∈[–T ,T]
∫ T
–T |k(t, s)|ds = supt∈[–T ,]

∫ T
–T |k(t, s)|ds. The second observation is

that, taking into account Lemma ., k(t, s) is positive in (– π
ω
,  – π

ω
)× [–, ], so

sup
t∈[–T ,]

∫ T

–T

∣∣k(t, s)∣∣ds = sup
t∈[–T ,]\(– π

ω ,– π
ω )

∫ T

–T

∣∣k(t, s)∣∣ds.
Using the same kind of arguments as in Lemma ., it follows that k(t, s) is negative in
(–T , – π

ω
) × (t, – π

ω
) if t ∈ (–T , – π

ω
) and ( π

ω
– , ) × (t,  – π

ω
) if t ∈ ( π

ω
– , ), so it is

enough to compute η(t) :=
∫
B(t) k

–(t, s)ds where B(t) = {s ∈ [–T ,T] : (t, s) ∈ supp(k–)}.

ω sin(ζ )η(t) =

⎧⎪⎪⎨
⎪⎪⎩
cos(ωt + ζ + π

 )[ + sin(ωt – π
 )] if t ∈ (–T , – π

ω
),√

 cos(ωt + ζ + π
 ) sinωt

+ cos(ωt + π
 )[ – sin(ωt + ζ + π

 )] if t ∈ ( π
ω

– , ).

With the change of variable t = zT ,

ω sin(ζ )η(z) =

⎧⎨
⎩η(z) if z ∈ (–,– π

ζ
),

η(z) if z ∈ ( π
ζ

– , ),

where

η(z) = cos

[
ζ (z + ) +

π



][
 + sin

(
ζ z –

π



)]

http://www.boundaryvalueproblems.com/content/2013/1/86


Cabada et al. Boundary Value Problems 2013, 2013:86 Page 19 of 22
http://www.boundaryvalueproblems.com/content/2013/1/86

and

η(z) =
√
 cos

[
ζ (z + ) +

π



]
sin ζ z + cos

(
ζ z +

π



)[
 – sin

(
ζ (z + ) +

π



)]
.

It follows that

η′
(–) ≤ , η′



(
–

π

ζ

)
= , η′′

 (z) ≥  for z ∈
[
–,–

π

ζ

]
,

η′
(–) = η(),

η′


(
π

ω
– 

)
> , η′

() < , η′′
(z) ≥  for z ∈

[
π

ζ
– , 

]
.

With these facts, we conclude that there is a unique maximum of the function η(z) in the
interval ( π

ζ
– , ), precisely where η′

(z) = ζ (cos[ζ ( + z)] – sin(π
 + zζ )) = , this is, for

z = 
 (

π
 – ) and, therefore, the statement of the theorem holds. �

Lemma . Let ω ∈ [π
T ,

π
T] and T – π

ω
< a < b = T – a < π

ω
. Then

ω sin(ζ ) inf
t∈[a,b]

∫ b

a
k(t, s)ds = sinω(T – a) + cos ζ – cosωa.

Proof It follows that

ω sin(ζ )
∫ s

–T
k(t, r)dr

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sinω(T + s + t) – cosω(T + s – t) – sinωt + cosωt if |t| ≤ –s,

sinω(T + s + t) – cosω(T – s + t) – sinωt + cosωt if |s| ≤ –t,

– sinω(T – s – t) – cosω(T + s – t) – sinωt + cosωt +  sinωt if |s| ≤ t,

– sinω(T – s – t) – cosω(T – s + t) – sinωt + cosωt +  sinωt if |t| ≤ s.

Therefore,
∫ b
a k(t, s)ds =

∫ b
–T k(t, s)ds –

∫ a
–T k(t, s)ds, this is,

ω sin(ζ )
∫ b

a
k(t, s)ds

= sinω(T – a – t) – sinω(a – t) + cosω(T + a – t) – cosω(a + t) if t ∈ [a,b].

Using similar arguments to the ones used in the proof of Lemma ., we can show that

ω sin(ζ ) inf
t∈[a,b]

∫ b

a
k(t, s)ds = sinω(T – a) + cos ζ – cosωa. �

With the same method, we can prove the following corollary.

Corollary . Let ω ∈ (, π
T] and  < a < b = T – a < . Then

ω sin(ζ ) inf
t∈[a,b]

∫ b

a
k(t, s)ds = sinω(T – a) + cos ζ – cosωa.
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Remark . If ω ∈ (, π
T], then

inf
t∈[–T ,T]

∫ T

–T
k(t, s)ds =


ω
,

just because of the observation in the proof of Lemma ..

Now we can state conditions (Iρ ) and (Iρ ) for the special case of problem (.)-(.):

(Iρ,ω) Let

f –ρ,ρ
ω := sup

{
h(t,u, v) +ωv

ρ
: (t,u, v) ∈ [–T ,T]× [–ρ,ρ]× [–ρ,ρ]

}
.

There exist ρ >  and ω ∈ (, π
 ] such that f –ρ,ρ

ω < ω,
OR
there exist ρ >  and ω ∈ (π

 ,
π
 ] such that

f –ρ,ρ
ω ·

[
 +

√
 cos ζ+π

 sin π–ζ

 + cos π–ζ

 ( – sin ζ+π

 )
sin ζ

]
< ω.

(Iρ,ω) There exist ρ >  such that such that

f ω
(ρ,ρ/c) · inf

t∈[a,b]

∫ b

a
k(t, s)ds > ,

where

f ω
(ρ,ρ/c) = inf

{
h(t,u, v) +ωv

ρ
: (t,u, v) ∈ [a,b]× [ρ,ρ/c]× [–ρ/c,ρ/c]

}
.

Theorem . Let ω ∈ (, π
T]. Let [a,b] ⊂ [–T ,T] such that a =  – b ∈ (max{,T –

π
ω

}, T ). Let

c =
[ – tan(ωa)][ – tan(ωb)]
[ + tan(ωa)][ + tan(ωb)]

.

Problem (.)-(.) has at least one nonzero solution in K if either of the following condi-
tions hold:

(S) There exist ρ,ρ ∈ (,∞) with ρ/c < ρ such that (Iρ,ω) and (Iρ,ω) hold.
(S) There exist ρ,ρ ∈ (,∞) with ρ < ρ such that (Iρ,ω) and (Iρ,ω) hold.

The integral equation (.) has at least two nonzero solutions in K if one of the following
conditions hold:

(S) There exist ρ,ρ,ρ ∈ (,∞) with ρ/c < ρ < ρ such that (Iρ,ω), (I

ρ,ω) and (Iρ,ω)

hold.
(S) There exist ρ,ρ,ρ ∈ (,∞) with ρ < ρ and ρ/c < ρ such that (Iρ,ω), (I


ρ,ω) and

(Iρ,ω) hold.
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The integral equation (.) has at least three nonzero solutions in K if one of the following
conditions hold:

(S) There exist ρ,ρ,ρ,ρ ∈ (,∞) with ρ/c < ρ < ρ and ρ/c < ρ such that (Iρ,ω),
(Iρ,ω), (I


ρ,ω) and (Iρ,ω) hold.

(S) There exist ρ,ρ,ρ,ρ ∈ (,∞) with ρ < ρ and ρ/c < ρ < ρ such that (Iρ,ω),
(Iρ,ω), (I


ρ,ω) and (Iρ,ω) hold.

5.1 Example
Consider problem (.)-(.) with

h(t,u, v) =


 + (t – )
+
u


+ u +


 + v

+ .

Let T = , ζ = ω = ., a = ., b = ., ρ = , ρ = . Conditions (C)-(C) are clearly
satisfied by the results proved before. (C) follows the expression of h, so we are in the
hypothesis of Theorem .. Also,

c = . . . . ,

r := ω

[
 +

√
 cos ζ+π

 sin π–ζ

 + cos π–ζ

 ( – sin ζ+π

 )
sin ζ

]–

= . . . . ,

r :=
(

inf
t∈[a,b]

∫ b

a
k(t, s)ds

)–

=
(
sinω(T – a) + cos ζ – cosωa

ω sin ζ

)–

= . . . . ,

f –ρ,ρ
ω =

h(,ρ,ρ) + ρω

ρ
= .,

f ω
(ρ,ρ/c) =

h(a,ρ, )
ρ

= . . . . .

Clearly, f –ρ,ρ
ω < r and f ω

(ρ,ρ/c) > r, so condition (S) in the previous theorem is satisfied
and, therefore, the problem (.)-(.) has at least one solution.
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28. Krasnosel’skĭı, MA, Zabreı̆ko, PP: Geometrical Methods of Nonlinear Analysis. Springer, Berlin (1984)
29. Martin, RH: Nonlinear Operators and Differential Equations in Banach Spaces. Wiley, New York (1976)
30. Lan, KQ: Multiple positive solutions of Hammerstein integral equations with singularities. Differ. Equ. Dyn. Syst. 8,

175-195 (2000)
31. Lan, KQ: Multiple positive solutions of Hammerstein integral equations and applications to periodic boundary value

problems. Appl. Math. Comput. 154, 531-542 (2004)
32. Infante, G: Positive solutions of some nonlinear BVPs involving singularities and integral BCs. Discrete Contin. Dyn.

Syst., Ser. S 1, 99-106 (2008)
33. Infante, G: Positive solutions of nonlocal boundary value problems with singularities. Discrete Contin. Dyn. Syst. 2009,

suppl. 377-384 (2009)
34. Infante, G, Pietramala, P: The displacement of a sliding bar subject to nonlinear controllers. In: Proceedings of the

International Conference on Differential & Difference Equations and Applications. Springer, Berlin (in press)
35. Webb, JRL: A class of positive linear operators and applications to nonlinear boundary value problems. Topol.

Methods Nonlinear Anal. 39, 221-242 (2012)
36. Webb, JRL, Zima, M: Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems.

Nonlinear Anal. 71, 1369-1378 (2009)

doi:10.1186/1687-2770-2013-86
Cite this article as: Cabada et al.: Nontrivial solutions of Hammerstein integral equations with reflections. Boundary
Value Problems 2013 2013:86.

http://www.boundaryvalueproblems.com/content/2013/1/86

	Nontrivial solutions of Hammerstein integral equations with reﬂections
	Abstract
	MSC
	Keywords

	Introduction
	The case of kernels that change sign
	The case of nonnegative kernels
	The case of kernels with extra positivity
	An application
	Example

	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


