
Lian and Yang Boundary Value Problems 2013, 2013:90
http://www.boundaryvalueproblems.com/content/2013/1/90

RESEARCH Open Access

Global solution to the exterior problem for
spherically symmetric compressible
Navier-Stokes equations with
density-dependent viscosity and
discontinuous initial data
Ruxu Lian* and Jianwei Yang

*Correspondence:
ruxu.lian.math@gmail.com
College of Mathematics and
Information Science, North China
University of Water Resources and
Electric Power, Zhengzhou, 450011,
P.R. China

Abstract
In this paper, we consider the exterior problem for spherically symmetric isentropic
compressible Navier-Stokes equations with density-dependent viscosity coefficients
and discontinuous initial data. We prove that there exists a unique global piecewise
regular solution for piecewise regular initial density with bounded jump discontinuity.
In particular, the jump of density decays exponentially in time and the piecewise
regular solution tends to the equilibrium state exponentially as t → +∞.
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1 Introduction
In the present paper, we consider the exterior problem to N-dimensional isentropic com-
pressible Navier-Stokes equations with density-dependent viscosity coefficients. In gen-
eral, the N-dimensional isentropic compressible Navier-Stokes equations with density-
dependent viscosity coefficients reads

⎧⎨
⎩

ρt + div(ρU) = ,

(ρU)t + div(ρU⊗U) +∇P(ρ) – div(μ(ρ)D(U)) –∇(λ(ρ)divU) = ,
(.)

where t ∈ (, +∞) is the time and x ∈ RN , N is the spatial coordinate, ρ >  and u denote
the density and velocity, respectively. Pressure function is taken as P(ρ) = ργ with γ > ,
and

D(U) =
∇(U) +T ∇(U)


(.)

is the strain tensor and μ(ρ), λ(ρ) are the Lamé viscosity coefficients satisfying

μ(ρ) > , μ(ρ) +Nλ(ρ)≥ . (.)
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There are many significant progresses achieved on the global existence of weak solu-
tions and dynamical behaviors of jump discontinuity for the compressible Navier-Stokes
equations with discontinuous initial data, for example, as the viscosity coefficients μ(ρ)
and λ(ρ) are both constants, Hoff investigated the global existence of discontinuous solu-
tions of one-dimension Navier-Stokes equations [–]. The construction of global spher-
ically symmetric weak solutions of compressible Navier-Stokes equations for isothermal
flow with large and discontinuous initial data was derived by Hoff [], therein it is also
showed that the discontinuities in the density and pressure persist for all time, convect-
ing along particle trajectories, and decaying at a rate inversely proportional to the viscos-
ity coefficient. Hoff also proved the global existence theorems for the multidimensional
Navier-Stokes equations of isothermal compressible flows with the polytropic equation
of state p(ρ) = ργ (γ ≥ ) [, ]. The global existence of weak solutions was obtained for
the Navier-Stokes equations for compressible, heat-conducting flow in one space dimen-
sion with large, discontinuous initial data by Chen-Hoff-Trivisa []. The global existence
of weak solutions of the Navier-Stokes equations for compressible, heat-conducting flu-
ids in two- and three-space dimensions was proved by Hoff, when the initial data may be
discontinuous across a hypersurface of Rn []. Hoff also showed the global existence of
solutions of the Navier-Stokes equations for compressible, barotropic flow in two space
dimensions which exhibit convecting singularity curves [].
If the viscosity coefficients μ(ρ) = ρα , λ(ρ) = , for the case of one space dimension, the

global existence of unique piecewise smooth solution to the free boundary value problem
was obtained by Fang-Zhang for (.) with  < α < , where the initial density is piecewise
smooth with possibly large jump discontinuities []. Lian-Guo-Li addressed the initial
boundary value problem for (.) with  < α ≤  subject to piecewise regular initial data
with initial vacuum state included [], Lian-Liu-Li-Xiao also consider the Cauchy prob-
lem for one-dimensional isentropic compressible Navier-Stokes equations with adensity-
dependent viscosity coefficient []; in these two cases above, they proved the global exis-
tence of unique piecewise regular solution and proved the finite time vanishing of vacuum
state in []. In particular, they got that the jump discontinuity of density decays exponen-
tially, but never vanish in any finite time and the piecewise regular solution tends to the
equilibrium state as t → +∞.
Recently, there is also huge literature on the studies of the compressible Navier-Stokes

equations with density-dependent viscosity coefficients. For instance, the mathemati-
cal derivations are obtained in the simulation of flow surface in shallow region [, ].
The prototype model is the viscous Saint-Venant (corresponding to (.) with P(ρ) = ρ,
μ(ρ) = ρ and λ(ρ) = ). Many authors considered the well-posedness of solutions to the
free boundary value problem with initial finite mass and the flow density being con-
nected with the infinite vacuum either continuously or via jump discontinuity; refer
to [–] and references therein. The global existence of classical solutions is shown
by Mellet and Vasseur []. The qualitative behaviors of global solutions and dynami-
cal asymptotics of vacuum states are also made, such as the finite time vanishing of fi-
nite vacuum or asymptotical formation of vacuum in long time, the dynamical behaviors
of vacuum boundary, the long time convergence to rarefaction wave with vacuum and
the stability of shock profile with large shock strength; refer to [–] and references
therein.
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In this present paper, we consider the exterior problem for the spherically symmetric
isentropic compressible Navier-Stokes equations with density-dependent viscosity coeffi-
cients and discontinuous initial data and focus on the existence, regularity and dynamical
behaviors of global weak solutions, etc.We show that the exterior problem with piecewise
regular initial data admits a unique global piecewise regular solution, where the disconti-
nuity in piecewise regular initial density is bounded. In particular, the jump discontinuity
of density decays exponentially and the piecewise regular solution tends to the equilibrium
state as t → +∞.
The rest part of the paper is arranged as follows. In Section , the main results about

the existence, regularity and dynamical behaviors of global piecewise regular solution for
compressible Navier-Stokes equations are stated. Then some important a-priori estimates
will be given in Section . Finally, the theorem is proved in Section .

2 Notations andmain results
For simplicity, we will take μ(ρ) = ρα and λ(ρ) = (α – )ρα and D(U) = ∇U in (.). The
isentropic compressible Navier-Stokes equations become

⎧⎨
⎩

ρt + div(ρU) = ,

(ρU)t + div(ρU⊗U) +∇P(ρ) – div(ρα∇U) – (α – )∇(ρα divU) = .
(.)

The initial data and boundary conditions of (.) are imposed as:

⎧⎨
⎩
(ρ,U)(x, ) = (ρ,U)(x), x ∈ �,

U = , on ∂�, lim|x|→+∞(ρ,u)(x, t) = (ρ̄, ), t ∈ [,T],
(.)

where � := R/�r– , �r– is a ball of radius r– centered at the origin in R, and ρ̄ >  is a
constant.
We are concerned with the spherically symmetric solutions of the system (.) in the

spherically symmetric exterior domain �. To this end, we denote that

|x| = r, ρ(x, t) = ρ(r, t), U(x, t) = u(r, t)
x
r
, (.)

which leads to the following system of equations for r > :

⎧⎨
⎩

ρt + (ρu)r + ρu
r = ,

(ρu)t + (ρu + ργ )r + ρu
r – α(ραur)r – αρα( ur )r – (α – ) (ρ

α )ru
r = ,

(.)

with the initial data and boundary conditions

⎧⎨
⎩
(ρ,u)(r, ) = (ρ,u)(r), r ∈ [r–, +∞),

u(r–, t) = , limr→+∞(ρ,u)(r, t) = (ρ̄, ), t ∈ [,T].
(.)

Next, we give the definition of weak solution to the exterior problem (.)-(.).

http://www.boundaryvalueproblems.com/content/2013/1/90
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Definition . (weak solution) For any T > , (ρ,u) is said to be a weak solution of the
exterior problem (.)-(.), if (ρ,u) has the following regularities:

⎧⎪⎪⎨
⎪⎪⎩

ρ ≥  a.e.,  < ρ – ρ̄ ∈ L∞([,T];L(�)∩ L(�)),
√

ρU ∈ L∞([,T];L(�)),

∇(ρα– 
 ) ∈ L∞([,T];L(�)), ρα∇U ∈ L([,T];L(�)),

(.)

and the equations (.) are satisfied in the sense of distribution. Namely, it holds for all
ϕ ∈ C∞

 (�̄ × [,T]) that

ˆ
�

ρϕ(x, )dx +
ˆ T



ˆ
�

ρϕt dxdt +
ˆ T



ˆ
�

ρU · ∇ϕ dxdt = , (.)

and for all ψ = (ψ,ψ,ψ) ∈ C∞
 (�̄ × [,T]) that

ˆ
�

ρU · ψ(x, )dx +
ˆ T



ˆ
�

(√
ρ(

√
ρU) · ψt +

√
ρU⊗ √

ρU : ∇ψ
)
dxdt

+
ˆ T



ˆ
�

ργ divψ dxdt –
〈
ρα∇U,∇ψ

〉
= , (.)

where the diffusion term makes sense as

〈
ρα∇U,∇ψ

〉
= –

ˆ T



ˆ
�

ρα– 
 (

√
ρU) · �ψ dxdt

–
α

α – 

ˆ T



ˆ
�

(
√

ρU) · (∇(
ρα– 


) · ∇)

ψ dxdt. (.)

For simplicity, we consider the initial data in exterior problem (.)-(.) with one dis-
continuous point ξ ∈ (r–, +∞), namely,

⎧⎪⎪⎨
⎪⎪⎩

ρ – ρ̄ ∈ L ∩ L([r–, ξ)∪ (ξ, +∞)), infx∈[r–,ξ)∪(ξ,+∞) ρ > ρ– > ,

ρ(ξ – ) = ρ(ξ + ), |ρ(ξ + ) – ρ(ξ – )| < δ,

r(ρα– 


 )r ∈ L([r–, ξ)∪ (ξ, +∞)), ru ∈H([r–, ξ)∪ (ξ, +∞)),

(.)

where ρ– and δ >  are positive constants, and δ >  is bounded. Next, we define that

E :=



 +∞

r–
ρur

 dr +
 +∞

r–
ρ

(


γ – 
(
ρ

γ–
 – ρ̄γ–) + ρ̄γ

(
ρ–
 – ρ̄–))r dr, (.)

E :=
 +∞

r–

ρ(u + ρ–
 (ρα

 )r)


r dr

+
 +∞

r–
ρ

(


γ – 
(
ρ

γ–
 – ρ̄γ–) + ρ̄γ

(
ρ–
 – ρ̄–)r

)
dr, (.)

and denote that
ffl +∞
r– :=

´ ξ
r– +

´ +∞
ξ

in this paper. Then we can give the main results as
follows.
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Theorem. Let α > 
 and γ > .Assume that the initial data satisfies (.) and E +E <

ναr–ρ̄
γ
 +α– 

 , ν is a positive constant. Then there exist two positive constants ρ∗, ρ∗ and a
unique global piecewise regular solution (ρ,u) to the exterior problem (.)-(.), namely,
satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 < ρ∗ ≤ ρ(r, t)≤ ρ∗, (r, t) ∈ [r–, ξ (t))∪ (ξ (t), +∞)× [,T],

ρ ∈ L∞([,T];H([r–, ξ (t))∪ (ξ (t), +∞))),

u ∈ L∞([,T];H([r–, ξ (t))∪ (ξ (t), +∞))),

ur ∈ L([,T];H([r–, ξ (t))∪ (ξ (t), +∞))),

(.)

where r = ξ (t) is a curve defined by

dξ (t)
dt

= u
(
ξ (t), t

)
, ξ () = ξ, t > , (.)

along which the Rankine-Hugoniot conditions hold

[
u
(
ξ (t), t

)]
= ,

[
ργ

(
ξ (t), t

)]
=

[
α

(
ραur +

ραu
r

)(
ξ (t), t

)]
, (.)

where [f (ξ (t), t)] := f (ξ (t)+, t)– f (ξ (t)–, t), and along the discontinuity r = ξ (t) the jump
decays exponentially

∣∣[ρα
 (ξ)

]∣∣e–Ct ≤ ∣∣[ρα
(
ξ (t), t

)]∣∣ ≤ ∣∣[ρα
 (ξ)

]∣∣e–Ct , (.)

where C, C are positive constants independent of time. Furthermore, the solution tends
to equilibrium state (ρ̄, )

∥∥(ρ – ρ̄,u)(·, t)∥∥L∞([r–,ξ (t))∪(ξ (t),+∞)) → , t → +∞. (.)

Remark . Theorems . holds for the Saint-Venant model for shallow water, i.e., γ = ,
α = .

Remark . (.) shows that the discontinuity in the density decays exponentially in
time.

Remark . For piecewise regular initial data, it can be shown in terms of the difference
schememade by Hoff [], there is a (piecewise regular) weak solution to the exterior prob-
lem (.) and (.). In addition, there is a curve r = ξ (t) starting from ξ () = ξ, so that the
density is discontinuous cross r = ξ (t), and the Rankine-Hugoniot conditions hold

[
u
(
ξ (t), t

)]
= ,

[
ργ

(
ξ (t), t

)]
=

[
α

(
ραur +

ραu
r

)(
ξ (t), t

)]
. (.)

To extend the local solution globally in time, we need to establish the uniformly a-priori
estimates.

http://www.boundaryvalueproblems.com/content/2013/1/90
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3 The a-priori estimates
According to the analysis made in [], there is a curve r = ξ (t) defined by

dξ (t)
dt

= u
(
ξ (t), t

)
, ξ () = ξ, t > , (.)

along which the Rankine-Hugoniot conditions hold

[
u
(
ξ (t), t

)]
= ,

[
ργ

(
ξ (t), t

)]
=

[
α

(
ραur +

ραu
r

)(
ξ (t), t

)]
, (.)

where [f (ξ (t), t)] := f (ξ (t)+, t)– f (ξ (t)–, t). It is convenient tomake use of the Lagrange
coordinates in order to establish the uniformly a-priori estimates, denote the Lagrange
coordinates transform

x =
ˆ r

r–
ρ(r, t)r dr, τ = t, (.)

which maps (r, t) ∈ [r–, +∞) × R+ into (x, τ ) ∈ [, +∞) × R+. The relations between La-
grangian and Eulerian coordinates are satisfied as

∂x
∂r

= ρr,
∂x
∂t

= –ρur. (.)

Since the conservation of total mass holds, the curve r = ξ (t) in Eulerian coordinates is
changed to a line x = x in Lagrangian coordinates, where

x =
ˆ ξ (t)

r–
ρ(r, t)r dr =

ˆ ξ

r–
ρ(r)r dr (.)

in Lagrangian coordinates, and the jump conditions become

[
u(x, τ )

]
= ,

[
ργ (x, τ )

]
=

[
αρ+α

(
ru

)
x(x, τ )

]
. (.)

Meanwhile, the exterior problem (.)-(.) is reformulated to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρτ + ρ(ru)x = ,

r–uτ + (ργ )x = α(ρ+α(ru)x)x – (ρα )xu
r ,

(ρ,u)(x, ) = (ρ,u)(x), x ∈ [, +∞),

u(, t) = , limx→+∞(ρ,u) = (ρ̄, ), τ ∈ [, +∞),

(.)

where the initial data satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ – ρ̄ ∈ L ∩ L([,x)∪ (x, +∞)), infx∈[,x)∪(x,+∞) ρ > ρ– > ,

ρ(x – ) = ρ(x + ), |ρ(x + ) – ρ(x – )| < δ,

r(ρα
 )x ∈ L([,x)∪ (x, +∞)), √

rρ
(ru) ∈ L([,x)∪ (x, +∞)),√

rρ(ru)x ∈ L([,x)∪ (x, +∞)),
√
rρ

(rρ(rρ(ru)x)x) ∈ L([,x)∪ (x, +∞)).

(.)

http://www.boundaryvalueproblems.com/content/2013/1/90
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First, we are ready to establish the a-priori estimates for the solution (ρ,u) to the exterior
problem (.). To obtain the a-priori estimates, we assumea-priori that there are constants
ρ± >  so that

 < ρ– ≤ ρ(x, τ )≤ ρ+, (x, τ ) ∈ (
[,x)∪ (x, +∞)

) × [,T], T > . (.)

Lemma . Let T > .Under the conditions in Theorem ., it holds for any solution (ρ,u)
to the exterior problem (.) that




 +∞


u dx +

 +∞



(


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dx

+ α

ˆ τ



 +∞



(
ρα–u

r
+


ρ+αuxr


)
dxds≤ E, τ ∈ [,T], (.)

where
ffl +∞
 :=

´ x
 +

´ +∞
x

.

Proof Multiplying (.) by ru and integrating the result with respect to x over [,+∞),
making use of (.), (.) and (.), we have




d
dτ

 +∞


u dx +

d
dτ

 +∞



(


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dx

+ α

 +∞


ρ+α

(
ru

)
x dx

= 
 +∞


ρα

(
ru

)
x dx + 

[
ρα

](
ru

)|x=x , (.)

integrating (.) with respect to τ , we obtain




 +∞


u dx +

 +∞



(


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dx

+ α

 +∞



(
ρα–u

r
+ ρ+αuxr


)
dx

=



 +∞


u dx +

 +∞



(


γ – 
(
ρ

γ–
 – ρ̄γ–) + ρ̄γ

(
ρ–
 – ρ̄–))dx

+
ˆ τ



[
ρα

](
ru

)|x=x ds. (.)

Applying equations (.) and (.), it holds that

[
ρα

]
τ
+ α

[
ργ

]
= , (.)

which implies

[
ρα

]
=

[
ρα

]
exp

(
–α

ˆ τ



[ργ ]
[ρα]

ds
)
. (.)

From (.) and (.), we can find

γ

α
ργ–α
– ≤ [ργ ]

[ρα]
≤ γ

α
ργ–α
+ . (.)

http://www.boundaryvalueproblems.com/content/2013/1/90


Lian and Yang Boundary Value Problems 2013, 2013:90 Page 8 of 15
http://www.boundaryvalueproblems.com/content/2013/1/90

It holds from (.), (.) and (.) that
∣∣∣∣
ˆ τ



[
ρα

](
ru

)|x=x ds
∣∣∣∣

≤ (
C̄ + ρ–

–
)ˆ τ



∣∣[ρα

]∣∣e–γργ–α

– s
( +∞


u dx +

 +∞


ux dx

)
ds

≤ (
C̄ + ρ–

–
)∣∣[ρα


]∣∣ sup

τ∈[,T]

 +∞


u dx

ˆ τ


e–γργ–α

– s ds

+
(
C̄ + ρ–

–
)∣∣[ρα


]∣∣ρ–(+α)

– r––
ˆ τ



 +∞


ρ+αuxr

 dxds

≤ 


sup
τ∈[,T]

 +∞


u dx +

α



ˆ τ



 +∞


ρ+αuxr

 dxds, (.)

where C̄ is a positive constant independent of time and we assume that

 <
∣∣[ρα


]∣∣ ≤ min

{
γ

(C̄ + ρ–
– )

ργ–α
– ,

α

(C̄ + ρ–
– )

ρ+α
– r–

}
:=M. (.)

From (.) and (.), Lemma . can be obtained. �

Lemma . Let T > .Under the conditions in Theorem ., it holds for any solution (ρ,u)
to the exterior problem (.) that




 +∞



(
u + r

(
ρα

)
x

) dx +
 +∞



(


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dx

+ αγ

ˆ τ



 +∞


ργ+α–ρ

x r
 dxds≤ E, τ ∈ [,T]. (.)

Proof Multiplying (.) by ρα– and differentiating the equation with respect to x, we
have

(
ρα

)
xτ + α

(
ρ+α

(
ru

)
x

)
x = . (.)

Summing (.) and (.), we get

(
r–u +

(
ρα

)
x

)
τ
+

(
ργ

)
x =

(
r–

)
τ
u –

(ρα)xu
r

. (.)

Note that

r(x, τ ) = r– + 
ˆ x




ρ(z, τ )

dz, (.)

and so

∂r
∂τ

=

r

ˆ x



(

ρ

)
t
(z, t)dz =


r

ˆ x



(
ru

)
z(z, t)dz = u(x, τ ), (.)

which together with (.) yields

(
r–u +

(
ρα

)
x

)
τ
+

(
ργ

)
x = –r–u –

(ρα)xu
r

. (.)

http://www.boundaryvalueproblems.com/content/2013/1/90
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Multiplying (.) by (u+ r(ρα)x)r, and integrating the result with respect to x and τ , we
have




 +∞



(
u + r

(
ρα

)
x

) dx + 
γ – 

 +∞


ργ– dx + αγ

ˆ τ



 +∞


ργ+α–ρ

x r
 dxds

=



 +∞



(
u + r

(
ρα

)
x

) dx + 
γ – 

 +∞


ρ

γ–
 dx +

ˆ τ



[
ργ

](
ru

)|x=x ds. (.)

It holds from (.), (.), (.) and (.) that

∣∣∣∣
ˆ τ



[
ργ

](
ru

)|x=x ds
∣∣∣∣

≤ (
Ĉ + ρ–

–
)ˆ τ


ργ–α
+

∣∣[ρα
]∣∣( 


u dx +

 


ux dx

) 

ds

≤ (
Ĉ + ρ–

–
)ˆ τ



∣∣[ρα

]∣∣e–γργ–α

– s
(

ργ–α
+ +

 


u dx + ρ–(+α)

– r––
 


ρ+αuxr

 dx
)
ds

≤ (
Ĉ + ρ–

–
)∣∣[ρα


]∣∣(ρα–γ

– ργ–α
+ + ρα–γ

– + ρ–(+α)
– r––

) ≤ E, (.)

where Ĉ is a positive constant independent of time and we assume that

 <
∣∣[ρα


]∣∣ <min

{
ργ–α
– ρ

α–γ
+

(Ĉ + ρ–
– )

E,
ργ–α
–

(Ĉ + ρ–
– )

E,
ρ+α
– r–

(Ĉ + ρ–
– )

E,M

}
:= δ. (.)

The proof of (.) is completed. �

Lemma . Let T > . Under the conditions in Theorem ., there exist two constants  <
ρ∗ < ρ∗ such that

 < ρ∗ ≤ ρ(x, τ )≤ ρ∗, (x, τ ) ∈ [, +∞)× [,T]. (.)

Proof Let

ϕ(ρ) :=


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–), (.)

and

ψ(ρ) :=
ˆ ρ

ρ̄

ϕ(η)

 ηα– dη. (.)

It follows from (.) and (.) that

∣∣ψ(ρ)
∣∣ ≤

∣∣∣∣
ˆ x


∂xψ(ρ)dx

∣∣∣∣ +
∣∣∣∣
ˆ +∞

x
∂xψ(ρ)dx

∣∣∣∣
≤ r––

∣∣∣∣
ˆ x


ϕ(ρ)


 ρα–ρxr dx

∣∣∣∣ + r––

∣∣∣∣
ˆ +∞

x
ϕ(ρ)


 ρα–ρxr dx

∣∣∣∣

≤ 
α
r––

∣∣∣∣
 +∞


ϕ(ρ)dx

 +∞


r

(
ρα

)
x dx

∣∣∣∣

 ≤ 

α
r–– (E + E). (.)
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We can verify that
◦ As ρ → +∞, we have for some θ ∈ (, ) that if  < γ ≤ , it holds

lim
ρ→+∞ψ(ρ)

= lim
ρ→+∞

ˆ ρ

ρ̄

(
(γ – )

(
θρ̄ + ( – θ )η

)γ– + ρ̄γ
(
θρ̄ + ( – θ )η

)–) 
 (η – ρ̄)ηα– dη

≥ lim
ρ→+∞

(
(γ – )

(
θρ̄ + ( – θ )ρ

)γ– + ρ̄γ
(
θρ̄ + ( – θ )ρ

)–) 


ˆ ρ

ρ̄

(η – ρ̄)ηα– dη

= lim
ρ→+∞

(
(γ – )

(
θρ̄ + ( – θ )ρ

)γ– + ρ̄γ
(
θρ̄ + ( – θ )ρ

)–) 


·
(


α + 

(
ρα+ – ρ̄α+) – 

α
ρ̄
(
ρα – ρ̄α

))

→ +∞, (.)

and if γ > , it holds

lim
ρ→+∞ψ(ρ)

= lim
ρ→+∞

ˆ ρ

ρ̄

(
(γ – )

(
θρ̄ + ( – θ )η

)γ– + ρ̄γ
(
θρ̄ + ( – θ )η

)–) 
 (η – ρ̄)ηα– dη

≥ lim
ρ→+∞

(
(γ – )ρ̄γ–) 



ˆ ρ

ρ̄

(η – ρ̄)ηα– dη

= lim
ρ→+∞

(
(γ – )ρ̄γ–) 



(


α + 
(
ρα+ – ρ̄α+) – 

α
ρ̄
(
ρα – ρ̄α

))

→ +∞. (.)

◦ As ρ → , we have for some θ ∈ (, ) that if  < γ ≤ , it holds

lim
ρ→

ψ(ρ)

= – lim
ρ→

ˆ ρ

ρ̄

(
(γ – )

(
θρ̄ + ( – θ )η

)γ– + ρ̄γ
(
θρ̄ + ( – θ )η

)–) 
 (η – ρ̄)ηα– dη

≤ – lim
ρ→

(
(γ – )

(
θρ̄ + ( – θ )ρ

)γ– + ρ̄γ
(
θρ̄ + ( – θ )ρ

)–) 


ˆ ρ

ρ̄

(η – ρ̄)ηα– dη

= – lim
ρ→

(
γ ρ̄γ–) 

 ·
(


α + 

(
ρα+ – ρ̄α+) – 

α
ρ̄
(
ρα – ρ̄α

))

:= –νρ̄
γ
 +α– 

 , (.)

where ν >  is a positive constant, and if γ > , it holds

lim
ρ→

ψ(ρ)

= – lim
ρ→

ˆ ρ

ρ̄

(
(γ – )

(
θρ̄ + ( – θ )η

)γ– + ρ̄γ
(
θρ̄ + ( – θ )η

)–) 
 (η – ρ̄)ηα– dη

≤ – lim
ρ→

(
ρ̄γ–) 



ˆ ρ

ρ̄

(η – ρ̄)ηα– dη
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= – lim
ρ→

(
ρ̄γ–) 



(


α + 
(
ρα+ – ρ̄α+) – 

α
ρ̄
(
ρα – ρ̄α

))

:= –νρ̄
γ
 +α– 

 , (.)

where ν >  is a positive constant, and we denote the positive constant ν := min{ν,ν}.
Applying (.)-(.) and E + E < ναr–ρ̄

γ
 +α– 

 , let

ρ– =


ρ∗, ρ+ = ρ∗, (.)

we can prove (.). �

Lemma . Let T > .Under the conditions in Theorem ., it holds for any solution (ρ,u)
to the exterior problem (.) that

∣∣[ρα
 (x)

]∣∣e–Cτ ≤ ∣∣[ρα(x, τ )
]∣∣ ≤ ∣∣[ρα

 (x)
]∣∣e–Cτ , τ ∈ [,T], (.)

where C, C are positive constants independent of time.

Proof From (.), (.) and (.), we can get (.). �

Lemma . Let T > .Under the conditions in Theorem ., it holds for any solution (ρ,u)
to the exterior problem (.) that

 +∞



(
ru

)
x dx +

 +∞



(
ru

)
τ
r– dx +

ˆ τ



 +∞



(
ru

)
xx dxds

+
ˆ τ



 +∞



(
ru

)
s r

– dxds +
ˆ τ



 +∞


ρ+α

(
ru

)
xs dxds ≤ C, τ ∈ [,T], (.)

where C >  denotes a constant independent of time.

Proof Multiplying (.) by ρ–(+α)(ru)τ and integrating the result with respect to x over
[,+∞), making use of (.) and (.), we obtain

d
dτ

 +∞



(
α


(
ru

)
x – ργ–(+α)(ru)

x

)
dx +

 +∞


ρ–(+α)(ru)

τ
r– dx

=
(
γ – ( + α)

) +∞


ργ–α

(
ru

)
x dx – ( + α)

 +∞


ργ–(+α)ρx

(
ru

)
τ
dx

+ α( + α)
 +∞


ρ–ρx

(
ru

)
x

(
ru

)
τ
dx

+ 
 +∞


ρ–(+α)u

(
ru

)
τ
r– dx – α

 +∞


ρ–ρxu

(
ru

)
τ
r– dx

+
[
ρ–(+α)]((ργ – αρ+α

(
ru

)
x

)(
ru

)
τ

)|x=x+ , (.)

which implies
 +∞



(
ru

)
x dx +

ˆ τ



 +∞



(
ru

)
s r

– dxds

≤ C +C
 +∞



(
ργ–(+α) – ρ̄γ–(+α)) dx +C

ˆ τ



 +∞



(
u

r
+ uxr


)
dxds
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+C
ˆ τ



 +∞


ρ
x r

 dxds +C
ˆ τ



 +∞


ρ
x
(
ru

)
xr

 dxds

+C
ˆ τ



 +∞


ur– dxds +C

ˆ τ



 +∞


ρ
xu

r dxds

+
ˆ τ



∣∣[ρ–(+α)]((ργ – αρ+α
(
ru

)
x

)(
ru

)
s

)|x=x+
∣∣ds

≤ C +C
ˆ τ



 +∞


ρ
x
(
ru

)
xr

 dxds + sup
τ∈[,T]

‖u‖L∞

+
ˆ τ



∣∣[ρ–(+α)]((ργ – αρ+α
(
ru

)
x

)(
ru

)
s

)|x=x+
∣∣ds. (.)

From (.), (.), (.) and (.), we can deduce that

C
ˆ τ



 +∞


ρ
x
(
ru

)
xr

 dxds

≤ C


ˆ τ



 +∞


ρ
x
(
ru

)
xr

 dxds +



ˆ τ



 +∞



(
ru

)
s r

– dxds

+C
ˆ τ



 +∞


ρ
x dxds +C

ˆ τ



 +∞



(
u

r
+ uxr


)
dxds, (.)

C sup
τ∈[,T]

‖u‖L∞ ≤ 


sup
τ∈[,T]

 +∞



(
ru

)
x dx +C sup

τ∈[,T]

 +∞


u dx, (.)

and
ˆ τ



∣∣[ρ–(+α)]((ργ – αρ+α
(
ru

)
x

)(
ru

)
s

)|x=x+
∣∣ds

≤ C
ˆ τ



∣∣[ρα

]∣∣e–Cs∥∥ργ – αρ+α

(
ru

)
x

∥∥
L∞

∥∥(
ru

)
s

∥∥
L∞ ds

≤ C
ˆ τ


e–Cs

∥∥ργ
∥∥
L∞ ds +C

ˆ τ



 +∞


ρ
x dxds +C

ˆ τ



 +∞



(
u

r
+ uxr


)
dxds

+



ˆ τ



 +∞



(
ru

)
s r

– dxds +Cε

ˆ τ



 +∞



(
ru

)
xsr

– dxds, (.)

where C denotes a constant independent of time and ε ∈ (, ) is a small constant which
will be determined later. Use (.)-(.), and we can obtain that

 +∞



(
ru

)
x dx +

ˆ τ



 +∞



(
ru

)
s r

– dxds≤ C +Cε

ˆ τ



 +∞



(
ru

)
xsr

– dxds. (.)

Differentiating (.) with respect to τ , multiplying the result by (ru)τ and integrating
the result with respect to x over [,+∞), we have




d
dτ

 +∞



(
ru

)
τ
r– dx + α

 +∞


ρ+α

(
ru

)
xτ dx

= 
 +∞


uuτ

(
ru

)
τ
r– dx –




 +∞



(
r–

)
τ

(
ru

)
τ
dx + 

 +∞


u
(
r–u

)
τ

(
ru

)
τ
r– dx

+
 +∞



(
ργ

)
τ

(
ru

)
xτ dx – α

 +∞



(
ρ+α

)
τ

(
ru

)
x

(
ru

)
xτ dx
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–
 +∞



(
(ρα)xu

r

)
τ

(
ru

)
τ
dx

+ 
 +∞



(
r–

)
τ
r–u

(
ru

)
τ
dx. (.)

A complicated computation gives

d
dτ

 +∞



(
ru

)
τ
r– dx +

 +∞


ρ+α

(
ru

)
xτ dx

≤ C
 +∞



(
ru

)
τ
r– dx +C

 +∞



(
u

r
+ uxr


)
dx

 +∞



(
ru

)
τ
r– dx

+C sup
τ∈[,T]

∥∥(
ru

)
x

∥∥
L∞

 +∞



(
ru

)
x dx +C

 +∞



(
u

r
+ uxr


)
dx, (.)

and by means of Gronwall’s inequality, (.), (.), (.), (.) and (.), it holds
that

 +∞



(
ru

)
τ
r– dx +

ˆ τ



 +∞


ρ+α

(
ru

)
xs dxds

≤ C +Cε

ˆ τ



 +∞


ρ+α

(
ru

)
xs dxds +C sup

τ∈[,T]

∥∥(
ru

)
x

∥∥
L∞

≤ C +Cε

ˆ τ



 +∞


ρ+α

(
ru

)
xs dxds

+C sup
τ∈[,T]

( +∞



(
ru

)
x dx

) 

( +∞



(
ru

)
xx dx

) 


≤ C +Cε

ˆ τ



 +∞


ρ+α

(
ru

)
xs dxds +




 +∞



(
ru

)
τ
r– dx, (.)

where C denotes a constant independent of time, choosing the constant ε small suffi-
ciently, we can complete the proof of Lemma .. �

Remark . By Lemmas .-., the following inequality holds:

 +∞


(ρ – ρ̄) dx +

 +∞


ρ
x dx +

 +∞


u dx +

 +∞


ux dx +

 +∞


uτ dx

+
ˆ τ



 +∞


ρ
x dxds +

ˆ τ



 +∞


ux dxds +

ˆ τ



 +∞


us dxds

+
ˆ τ



 +∞


uxx dxds +

ˆ τ



 +∞


uxs dxds≤ C. (.)

Lemma . Under the conditions in Theorem ., it holds for any solution (ρ,u) to the
exterior problem (.) that

∥∥(ρ – ρ̄,u)(·, τ )∥∥L∞([,x)∪(x,+∞)) → , τ → +∞. (.)
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Proof From Lemmas .-., we can obtain

ˆ +∞



∥∥(ρ – ρ̄,u)x
∥∥
L([,x)∪(x,+∞)) dτ

≤ r––
ˆ +∞



∥∥(ρ – ρ̄,u)xr
∥∥
L([,x)∪(x,+∞)) dτ ≤ C, (.)

and
ˆ +∞



∣∣∣∣ d
dτ

∥∥(ρ – ρ̄,u)x
∥∥
L([,x)∪(x,+∞))

∣∣∣∣dτ

=
ˆ +∞



∣∣∣∣
 +∞



(
–ρρ

x
(
ru

)
x – ρρx

(
ru

)
xx

)
dx + 

 +∞


uxuxτ dx

∣∣∣∣dτ

≤ C
ˆ +∞



 +∞


ρ
x dxdτ +C

ˆ +∞



 +∞



(
u

r
+ uxr

 +
(
ru

)
xx + uxτ

)
dxdτ

≤ C, (.)

which together with (.) implies

∥∥(ρ – ρ̄,u)x
∥∥
L([,x)∪(x,+∞)) ∈W ,(R+). (.)

It holds from Gagliardo-Nirenberg-Sobolev inequality that

∥∥(ρ – ρ̄,u)
∥∥
L∞([,x)∪(x,+∞))

≤ ∥∥(ρ – ρ̄,u)
∥∥ 


L([,x)∪(x,+∞))

∥∥(ρ – ρ̄,u)x
∥∥ 


L([,x)∪(x,+∞)), (.)

which together with (.), (.) and (.) implies this lemma. �

4 Proof of themain results

Proof The global existence of unique piecewise regular solution to the exterior problem
(.)-(.) can be established in terms of the short time existence carried out as in [,
], the uniform a-priori estimates and the analysis of regularities, which indeed follow
from Lemmas .-.. In addition, one can show that (ρ,u) is also global weak solution
to the exterior problem (.)-(.) with initial data satisfying (.). We omit the details.
The large time behaviors follow from Lemma . directly. The proof of Theorem . is
completed. �
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