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Abstract

Purpose: To study summability of families indexed by well-ordered sets of R∪ {∞}
in normed spaces. To derive integrability criteria for step mappings and for right
regulated mappings from an interval of R∪ {∞} to a Banach space. To study
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Lakshmikantham in Monotone Iterative Techniques for Discontinuous Nonlinear
Differential Equations, 1994). Summability of families in normed spaces indexed with
well-ordered subsets of R∪ {∞}.
Results: Necessary and sufficient conditions for global and local HK, HL, Bochner and
Riemann integrability of step mappings and right regulated mappings defined on an
interval of R∪ {∞}, and having values in a Banach space. Applications to impulsive
differential equations are also presented. Families indexed with well-ordered subsets
of R∪ {∞} are used to represent impulsive parts of considered equations and to
approximate their solutions.
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1 Introduction
In Chapter VIII of his book, ‘Foundations of Modern Analysis’, Jean Dieudonné criticized
the adoption of the Riemann integral in Calculus courses as follows: ‘Only the stubborn
conservatism of academic tradition could freeze it into a regular part of curriculum, long
after it had outlived its historical importance’. The integral presented in the book is jus-
tified as follows: ‘to dispense with any considerations drawn from measure theory; this is
what we have done by defining only the integral of regulated mappings (sometimes called
the ‘Cauchy integral’).When one needs amore powerful tool, there is no point in stopping
halfway, and the general theory of (‘Lebesgue’) integral is the only sensible answer.’
On the other hand, a few years before the publication in  of the book [] cited above,

Ralph Henstock and Jaroslav Kurzweil generalized the definition of the Riemann integral
so that the resulting integral, called here the Henstock-Kurzweil (shortly HK) integral, en-
closes the Lebesgue integral of real valued functions. The study of HK integrals of Banach
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valued mappings started around  by the work of R.A. Gordon. The strong version of
HK integral is called here the Henstock-Lebesgue (shortly HL) integral. No measure the-
ory is needed in the definitions of HK and HL integrals. Moreover, if a mapping g from a
compact real interval I to a Banach space E is Bochner integrable, i.e., if the norm func-
tion t �→ ‖g(t)‖ is Lebesgue integrable, then g is also HL integrable. Converse is not true
because the norm function of a HL integrable mapping is not necessarily HL integrable or
HK integrable. Moreover HL integrability encloses improper integrals on finite intervals;
HK integrability also on unbounded intervals.
In [], the integral calculus is presented for regulated mappings, i.e., the mappings from

a real interval I to a Banach space E, having left limits in I \ {inf I} and right limits in
I \ {sup I}. The definition of the integral of a mapping g : I → E is based on the existence of
a primitive, i.e., a continuous mapping f : I → E that is differentiable in the complement
of a countable subset Z of I , and f ′(t) = g(t), for each t ∈ I \Z. Because any two primitives
of g differ by a constant, the difference f (b) – f (a) for any two points of I , is independent
of the particular primitive f . This difference is written

∫ b
a g(t)dt, and is called the integral

of g from a to b. As shown in [], a primitive exists for every regulated mapping.
In this paper, we study integrability of right regulated mappings, i.e., those mappings

from an interval I of R∪ {∞} to a Banach space E, which have right limits at every point
of I \ {sup I}. The main difference between regulated mappings and right regulated map-
pings is that the latter ones may have discontinuities of the second kind, while regulated
mappings can have only discontinuities of the first kind. Another difference is that regu-
lated mappings are HL integrable and Riemann integrable on bounded intervals, whereas
all right regulated mappings are not even HK integrable. The main purpose of this paper
is to develop criteria for HK, HL, Bochner and Riemann integrability of right regulated
mappings on an interval I of R ∪ {∞}. Necessary and sufficient conditions for local inte-
grability are also presented. The main tools are:
• A generalized iteration method presented, e.g., in []. Using this method, we shall
prove that a right regulated mapping has at most countable number of discontinuities,
and that it can be approximated uniformly on compact intervals by step mappings
with well-ordered steps. A fixed-point theorem based on this method is applied in the
study of impulsive differential equations.

• Summability of families in normed spaces. Summability of families with nonempty
index sets is studied, e.g., in [, , ]. The given definitions rule out conditional
summability, so that the obtained summability results are not applicable in the study
of HK and HL integrability. Therefore, we assume that the index set is well ordered.
For the sake of applications, we assume that the index set is contained in R∪ {∞}.

• CD primitives. By a CD primitive of a mapping g from an interval I of R∪ {∞} to E
we mean a continuous mapping f : I \ sup I →R that is differentiable in the
complement of a countable subset Z of I , and f ′(t) = g(t) for each t ∈ I \ Z.

This paper is organized as follows. In Section , we define and study summability and
absolute summability of a family (xα)α∈� in a normed space when the index set � is a well
ordered subset of R∪ {∞}. With the help of such families, we derive necessary and suffi-
cient conditions for global and local HK, HL, Bochner and Riemann integrability of step
mappings and right regulatedmappings defined on an interval ofR∪{∞}, and having val-
ues in a Banach space. The results obtained for stepmappings in Section  both generalize
and improve some results derived in [–] (see Remark .). The integrability criteria de-
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rived in Section  for right regulated mappings are new. We shall prove, for instance, the
following results for a right regulated mapping g : I → E, –∞ <min I < sup I ≤ ∞. (We say
that a property holds locally for a function defined on I , if the function has that property
on every compact subinterval of I .)

. g is locally HL integrable if and only if it has a CD primitive.
. g is HL integrable when I is bounded if and only if g has a CD primitive that has the

left limit at sup I .
. g is HK integrable if it has a CD primitive that has the left limit at sup I .
. g is locally Bochner integrable if and only if it has a locally absolutely continuous CD

primitive.
. g is Bochner integrable if and only if it has a locally absolutely continuous CD

primitive that has the left limit at sup I .
. g is locally Riemann integrable if and only if it is locally bounded, in which case g has

a locally Lipschitz continuous CD primitive.
. g is Riemann integrable if and only if it is bounded and I is bounded.
. The improper Riemann integral of g from min I to sup I exists if g is locally bounded,

and its CD primitive has the left limit at sup I .
. For each compact subinterval [a,b] of I , either g is Riemann integrable on [a,b], or

there exists the greatest number c in (a,b] such that g is locally Riemann integrable
on [a, c).

. For each compact subinterval [a,b] of I , either g is Bochner integrable on [a,b], or
there exists the greatest number c in (a,b] such that g is locally Bochner integrable
on [a, c).

. For each compact subinterval [a,b] of I , either g is HL integrable on [a,b], or there
exists the greatest number c in (a,b] such that g is locally HL integrable on [a, c).

Concrete examples of mappings f , g :R+ → E are presented for above results when E is
the space c of those sequences of real numbers which converge to . In every example, the
mapping g has the discontinuity of second kind at every rational point of R+. The above
results are valid with minor modifications also when g is left regulated, i.e., when g has left
limits at every point of I \ {inf I}.
The first one of the above results will be applied in Section  to impulsive differential

equations in Banach spaces. Families indexed with well ordered subsets of R ∪ {∞} are
used to represent impulsive parts of considered equations and to approximate their solu-
tions.

2 Preliminaries
In this section, we shall first present basic properties of well-ordered subsets of R∪ {∞}.
These sets are used as index sets of families in normed spaces. After defining summability
and presenting examples of such families we introduce basic facts on HK, HL, Bochner
and Riemann integrability of mappings from a real interval to a Banach space.
A nonempty subset � of R ∪ {∞}, ordered by the natural ordering < of R, plus t < ∞

for every t ∈ R, is well ordered if every nonempty subset of � has the smallest element.
In particular, to every number β of �, different from its possible maximum, there corre-
sponds the smallest element in� that is greater than β . It is called the successor of β and is
denoted by S(β). There are no numbers of � in the open interval (β ,S(β)). The following
properties are needed:

http://www.boundaryvalueproblems.com/content/2013/1/91
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• Every well-ordered subset of R∪ {∞} is countable.
• Principle of Transfinite Induction: If � is well ordered and P is a property such that if
P(γ ) is true whenever P(β) is true for all β < γ in �, then P(γ ) is true of all γ ∈ �.

Definition . Let � be a well-ordered subset of R ∪ {∞}. Denote a = min�, and b =
sup�. When γ ∈ � ∪ {b}, denote �<γ = {α ∈ �|α < γ }. The family (xα)α∈� with elements
xα in a normed space E is summable if it has the following properties:

(s) To every γ ∈ � ∪ {b} there corresponds a unique element σ (γ ) of E, called the sum
of the family (xα)α∈�<γ , satisfying the following conditions:
(i) σ (a) = , and if γ = S(β) for some β ∈ �, then σ (γ ) = σ (β) + xβ .
(ii) If γ is not a successor, then for each ε >  there is such βε ∈ �<γ that

‖σ (β) – σ (γ )‖ < ε whenever β ∈ � and βε ≤ β < γ .
The sum σ of a summable family (xα)α∈� is σ (b) if b /∈ �, and σ (b) + xb if b ∈ �. If
σ (γ ) is defined for every γ ∈ �, we say that (xα)α∈� is locally summable. A family
(xα)α∈� is (locally) absolutely summable if (‖xα‖)α∈� is (locally) summable.

Remarks . The above definition of summability is analogous to that given in [] when
the index set � is an ordinal. Because � is countable, the given definition of absolute
summability of a family (xα)α∈� agrees on that of [, Section V.], i.e., for a bijection ϕ

from N to � the series
∑∞

n= xϕ(n) is absolutely convergent. As for results dealing with
ordinary, unconditional and absolute convergence of

∑∞
n= zn when E is a Banach space;

see, e.g., [, Appendix B].

Next, we shall determine the first partial sums and the sumof a summable family (xα)α∈�

in some elementary cases (sup� means the least upper bound in �).
. If � is finite and nonempty, then � = {Sn(a)|n = , . . . ,m},m ∈N (S(a) = a).
. If � = {Sn(a)|n ∈N}, then σ =

∑∞
n= xSn(a) =

∑∞
n= zn, where zn = xSn(a), n ∈N.

. After Sn(a), n ∈ N, the next possible numbers of � are a = sup�{Sn(a)|n ∈
N}, Sm(a), m = , , . . . , a = sup�{Sm(a)|n ∈ N}, . . . , Sm(ai), m = , , . . . , ai+ =
sup�{Sm(ai)|n ∈ N}, i = , , . . . , b = sup�{ai|i ∈ N}, and so on. Corresponding partial
sums of the family (xα)α∈� are:

σ
(
Sm(a)

)
= σ (a) +

m–∑
n=

xSn(a) =
∞∑
n=

xSn(a) +
m–∑
n=

xSn(a),

σ (a) = σ (a) + lim
m→∞

m–∑
n=

xSn(a) =
∞∑
n=

xSn(a) +
∞∑
n=

xSn(a),

σ (ai+) = σ (ai) + lim
m→∞

m–∑
n=

xSn(ai) =
∞∑
n=

xSn(a) +
i∑

j=

( ∞∑
n=

xSn(aj)

)
,

σ (b) =
∞∑
i=

σ (ai) =
∞∑
n=

xSn(a) +
∞∑
j=

( ∞∑
n=

xSn(aj)

)
,

and so on. In particular, if b = sup� = b, we have the associative rule: σ (b) =
∑∞

i= σ (ai),
where the sum of (xα)α∈�<b is presented as a sum of an infinite number of its partial sums.
However, this presentation is not independent on the order of both partial sums and their
elements, as in the case of absolutely or unconditionally summable families.
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Example . A simple example of a well-ordered subset of an interval [a,b) of R is an
increasing sequence formed by numbers

b – –n(b – a), n ∈N. (.)

The smallest number of this sequence is a and its supremum is b. When a =  and b = ,
we obtain the sequence

� =
{
α(n) =  – –n |n ∈N

}
.

The points of � divide the interval [, ) into disjoint subintervals [ – –n ,  – –n–),
n ∈N. Choosing a =  – –n , b =  – –n– and n = n in (.) we obtain in each of these
subintervals decreasing sequences, which together form an inversely well ordered set

� =
{
α(n,n) =  – –n– – –n–n–|n,n ∈N

}
.

Choosing a vector e 
=  of E and denoting

xα(n,n) =
(–)n–ne

n
, n,n ∈N,

we obtain a summable family

(xα(n,n))α(n,n)∈� =
∞∑

n=

–n
( ∞∑
n=

(–)ne
n

)
.

The above process can be continued in the obvious way. For each m ∈ N one obtains a
well-ordered set

�m =

{
α(n, . . . ,nm) =  –

m–∑
k=

–
∑k

j= nj–j– – –
∑m

j= nj–m
∣∣∣∣n, . . . ,nm ∈N

}
. (.)

Denoting

xα(n,...,nm) =
(–)nm–

∑m–
k= nk e

m√nm
, n, . . . ,nm ∈N,

then the family

(xα(n,...,nm))α(n,...,nm)∈�m =
∞∑

n=

(
· · ·

( ∞∑
nm–=

( ∞∑
nm=

(–)nm–
∑m–

k= nk e
m√nm

)))

is summable but neither absolutely nor unconditionally summable.
In the above considerations, min�m =  sup�m =  and for everym ∈ N. Another way

is to restrict � to [,  ), � to [  ,

 ), and in general, restrict �m to [ – 

m ,  –


m+ ),
m ∈N. Thus, α(n, . . . ,nm) is replaced by β(n, . . . ,nm) = –m–( + α(n, . . . ,nm)), i.e.,

β(n, . . . ,nm) =  – –m– –
m–∑
k=

–
∑k

j= nj–j–m– + –
∑m

j= nj–m–.
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These numbers form a well-ordered set

�
 =

{
β(n, . . . ,nm)|m,n, . . . ,nm ∈N

}

satisfying min�
 = , and sup�

 = .
Replacing in the above considerations � by �

 we obtain more general well-ordered
sets of rational numbers: �

m,m ∈N, �
, . . . ,�n

, n ∈N. For n > , a family (xα)α∈�n

is no

more representable as a multiple series.

The following result is needed in the integrability studies.

Lemma . Let (xα)α∈� be a family in E having a well ordered index set � in R∪ {∞}.
(a) Either (xα)α∈� is bounded, or there is the greatest element c in � \ {min�} such that

the family (xα)α∈�<γ is bounded for each γ ∈ �<c .
(b) Either (xα)α∈� is absolutely summable, or there is the greatest element c in

� \ {min�} such that the family (xα)α∈�<γ is absolutely summable for each γ ∈ �<c .
(c) Either (xα)α∈� is summable, or there is the greatest element c in � \ {min�} such

that the family (xα)α∈�<γ is summable for each γ ∈ �<c .
(d) c, c and c are not successors.

Proof (a) If (xα)α∈� is not bounded, there is at least one number c in� such that (xα)α∈�<c is
not bounded. Because� is well ordered, there is the smallest of such numbers c. Denoting
it by c, then the family (xα)α∈�<γ is bounded for each γ ∈ �<c , but not for each γ ∈ �<c,
if c < c ∈ �. This proves (a).
(b) Assume that the family (xα)α∈� is not absolutely summable. Then there is at least

one number c in � such that (xα)α∈�<c is not absolutely summable. Because � is well or-
dered, there is the smallest of such numbers c. Denoting it by c, then the family (xα)α∈�<γ

is absolutely summable for each γ ∈ �<c , but not for each γ ∈ �<c, if c < c ∈ �. This
proves (b).
(c) The proof of (c) is similar to that of (b) when absolute summability is replaced by

summability.
(d) To prove that c is not a successor, assume on the contrary that c = S(c) for some

c ∈ �. Thus (xα)α∈�<c = (xα)α∈�<c ∪ {xc}. Because (xα)α∈�<c is unbounded, then (xα)α∈�<c

also unbounded. But c < S(c) = c, whence c is not the smallest of those numbers c of �

for which (xα)α∈�<c is unbounded, contradicting with the choice of c.
The proofs that c and c are not successors are similar. �

Amapping g from a compact real interval [a,b] to a Banach space E is called Henstock-
Lebesgue (shortly HL) integrable if there is amapping f : [a,b]→ E, called a primitive of g ,
with the following property: To each ε >  there corresponds such a mapping δ : [a,b] →
(,∞) that whenever [a,b] =

⋃m
i=[ti–, ti] and ξi ∈ [ti–, ti] ⊂ (ξi – δ(ξi), ξi + δ(ξi)) for all

i = , . . . ,m, then

m∑
i=

∥∥f (ti) – f (ti–) – g(ξi)(ti – ti–)
∥∥ < ε. (.)

http://www.boundaryvalueproblems.com/content/2013/1/91
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g is called Henstock-Kurzweil (shortly HK) integrable if the above property holds with
(.) replaced by

∥∥∥∥∑
i

(
f (ti) – f (ti–) – g(ξi)(ti – ti–)

)∥∥∥∥ < ε.

Primitives of HK and HL integrable mappings are continuous (see [, Theorem ..]).
If g is HL (resp. HK) integrable on [a,b], it is HL (resp. HK) integrable on every closed
subinterval [c,d] of [a,b]. Because any two primitives of g differ by a constant, the differ-
ence f (c) – f (c) for any two points of [a,b], is independent of the particular primitive f .
This difference is called theHenstock-Kurzweil integral of g from c to d, and is denoted by∫ d
c g(s)ds. Thus,

∫ d

c
g(s)ds := f (d) – f (c), where f is a primitive of g. (.)

Riemann integrability is obtained when in the definition of HK integrability the gauge
functions δ are replaced by positive constants δ. In this case the integral, defined by (.),
is called the Riemann integral.
As for the proofs of the following results, see, e.g., [, Proposition . and Theo-

rem .].

Lemma . A mapping g : [a,b] → E is Riemann integrable if g is bounded, and is con-
tinuous in the complement of a subset Z of [a,b] that has Lebesgue measure . Conversely,
every Riemann integrable mapping is bounded.

A mapping g : I → E, –∞ < min I < sup I ≤ ∞, is said to be locally integrable in HK,
HL, Bochner or Riemann sense if g is HK, HL, Bochner or Riemann integrable on every
compact subinterval of I .
The next lemma follows, e.g., from [, Lemma .].

Lemma . If a mapping g : I → E has a CD primitive f , then g is locally HL integrable,
and (.) holds for every compact subinterval [c,d] of I .

As for the definition of the HK integral on unbounded real intervals, and the proof of
the next result, see [].

Lemma . If –∞ < a < b ≤ ∞ and g : [a,b] → E, then the following results are equiva-
lent.
(a) g is HK integrable on [a, c] for each c ∈ [a,b), and limc→b–

∫ c
a g(s)ds exist.

(b) g is HK integrable on [a,b], and
∫ b
a g(s)ds = limc→b–

∫ c
a g(s)ds.

Remarks . By definition everyHL integrablemapping isHK integrable. Converse holds
ifE is finite dimensional (see [, Proposition ..]). If b < ∞, the result of Lemma.holds
when HK integrability is replaced by HL integrability.
A strongly measurable mapping g : [a,b] → E is Bochner integrable if and only if the

function t �→ ‖g(t)‖ is Lebesgue integrable. Every Bochner integrable mapping is HL in-
tegrable. In particular, HL integrability encompasses improper integrals of Bochner inte-
grable mappings.

http://www.boundaryvalueproblems.com/content/2013/1/91
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Regulated mappings are HK, HL, Bochner and Riemann integrable.

In the proof of the following lemma, we apply a generalized iteration method.

Lemma . Let g : [a,b] → E be right regulated. Then to every positive number ε there
corresponds such a well ordered set �ε in [a,b] that [a,b) is a disjoint union of half-open
intervals [β ,S(β)), β ∈ �<b

ε , and ‖g(s) – g(t)‖ ≤ ε whenever s, t ∈ (β ,S(β)) and β ∈ �<b
ε .

Proof Define Gε : [a,b]→ [a,b] by Gε(b) = b, and

Gε(x) = sup
{
y ∈ (x,b]|∥∥g(s) – g(t)

∥∥ ≤ ε for all s, t ∈ (x, y)
}
, x ∈ [a,b). (.)

It is easy to verify thatGε is increasing, i.e.,Gε(x)≤ Gε(y) whenever a ≤ x≤ y≤ b. Because
g is right regulated, then x <Gε(x) for each x ∈ [a,b). By [, Theorem ..] there is exactly
one well-ordered subset �ε of [a,b] having the following property:

a =min�ε and a < γ ∈ �ε if and only if γ = sup
{
Gε

[{β ∈ �ε |β < γ }]}. (.)

Because supGε[�ε] exists, it is by [, Theorem ..] both a fixed point of Gε and max�ε .
Since b is the only fixed point of Gε , then b =max�ε . Since β < Gε(β) for each β ∈ �<b

ε ,
it follows from [, Lemma ..] that Gε(β) = S(β) for all β ∈ �<b

ε . Thus, by [, Corol-
lary ..], [a,b) is the disjoint union of half-open intervals [β ,S(β)), β ∈ �<b

ε . The last
conclusion follows from (.), since Gε(β) = S(β) for all β ∈ �<b

ε . �

With the help of Lemma ., we shall prove some properties for right regulated map-
pings.

Lemma . Let g : [a,b]→ E be right regulated. Then
(a) g has at most a countable number of discontinuities.
(b) g is strongly measurable.

Proof (a) Let �n, n ∈N, denote the well ordered subset �ε defined by (.) when ε = 
n . It

follows from Lemma . that ‖g(s) – g(t)‖ ≤ 
n whenever s, t ∈ (β ,S(β)) and β ∈ �<b

n . Thus
all the discontinuity points of g belong to the countable set Z =

⋃∞
m= �m.

(b) By (a) the set Z of discontinuity points of g is a null set, whence g is strongly mea-
surable. �

3 On HL, HK, Bochner and Riemann integrability of stepmappings
Let E be a Banach space. In this section, we consider first the integrability of a stepmapping
g : [a,b] → E, –∞ < a < b < ∞, that has well ordered steps, i.e., there is a well-ordered
subset � of [a,b] such that min� = a and max� = b, and a family (zα)α∈� of E such that

g(t) = zα , t ∈ [
α,S(α)

)
,α ∈ �<b. (.)

Assume also that [a,b) is a countable union of disjoint intervals [α,S(α)), α ∈ �. Thus, g
is well-defined on [a,b) by (.).
As an application of Lemma ., we shall prove the following result.

http://www.boundaryvalueproblems.com/content/2013/1/91
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Proposition . Assume that g : [a,b] → E, –∞ < a < b < ∞, is a step mapping with rep-
resentation (.) on [a,b). Then the following condition are equivalent:
(a) g is HL integrable.
(b) The family ((S(α) – α)zα)α∈�<b is summable.

If (a) or (b) holds, then
∫ b
a g(t)dt is the sum of the family ((S(α) – α)zα)α∈�<b .

Proof Assume first that the family ((S(α) – α)zα)α∈�<b is summable. Denote by σ (γ ) the
sum of ((S(α) – α)zα)α∈�<γ , γ ∈ �. We shall show that the mapping f : [a,b) → E, defined
by

f (t) = σ (γ ) + (t – γ )zγ , t ∈ [
γ ,S(γ )

)
,γ ∈ �<b, (.)

is a CD primitive of g . It follows from (.) and (.) that

f ′(t) = zγ = g(t), t ∈ (
γ ,S(γ )

)
,γ ∈ �<b.

Thus, f ′(t) = g(t) for every t ∈ [a,b) \ �<b. In particular, f is continuous in [a,b) \ �<b. To
prove that f is continuous at every point of [a,b), it suffices to prove continuity at every
point γ ∈ �<b. Since f (t) = (t – a)za, a ≤ t < S(a), then f is right continuous at γ = a. If
γ ∈ �<b is a successor, i.e., γ = S(β) for some β ∈ �<b, then

f (t) =

⎧⎨
⎩σ (β) + (t – β)zβ , t ∈ [β ,γ )),

σ (γ ) + (t – γ )zγ , t ∈ [γ ,S(γ )).

Applying the defining condition (s) of summability, we obtain

lim
t→γ–

f (t) = σ (β) +
(
S(β) – β

)
zβ = σ (γ ) = lim

t→γ+
f (t).

Thus, f is continuous at γ = S(β), β ∈ �<b.
Assume next that γ is not a successor. Given ε > , there exists by condition (s)(ii) of

summability such a βε ∈ �<γ that

∥∥σ (β) – σ (γ )
∥∥ < ε whenever β ∈ � and βε ≤ β < γ .

If t ∈ (βε ,γ ), there exists β ∈ �, βε ≤ β < γ , such that t ∈ [β ,S(β)). Thus,

∥∥f (t) – f (γ )
∥∥ =

∥∥σ (β) + (t – β)zβ – σ (γ )
∥∥ < ε +

∥∥(t – β)zβ

∥∥.
Since also βε ≤ S(β) < γ , and since

∥∥(t – β)zβ

∥∥ ≤ ∥∥(
S(β) – β

)
zβ

∥∥ =
∥∥σ

(
S(β)

)
– σ (β)

∥∥,
then

∥∥f (t) – f (γ )
∥∥ < ε +

∥∥σ
(
S(β)

)
– σ (β)

∥∥ ≤ ε +
∥∥σ

(
S(β)

)
– σ (γ )

∥∥ +
∥∥σ (β) – σ (γ )

∥∥ < ε.
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This holds for every t ∈ [βε ,γ ). Thus, limt→γ– f (t) = f (γ ). If t ∈ [γ ,S(γ )), then

f (t) = σ (γ ) + (t – γ )zγ , t ∈ [
γ ,S(γ )

)
.

Thus, limt→γ– f (t) = σ (γ ) = f (γ ) = limt→γ+ f (t). This proves that f is continuous at γ .
The above proof shows that f is continuous in [a,b), and that f ′(t) = g(t) in the com-

plement of the well ordered, and hence countable subset �<b of [a,b). Thus, f is a CD
primitive of g , so that g is locally HL integrable on [a,b) by Lemma .. Using condi-
tion (s), it can be shown (cf. the proof of Proposition .) that f (t) → σ (b) as t → b–.
Thus,

∫ t
a g(s)ds = f (t) – f (a) = f (t) → σ (b) as t → b–. Thus, g is HL integrable because

HL integrability encloses improper integrals on finite intervals by Remarks .. Hence,
(b) implies (a).
Conversely, assume that themapping g : [a,b]→ E satisfies (.), and is HL integrable on

[a,b].We show by the Principle of Transfinite Induction that the family ((S(α)–α)zα)α∈�<γ

is summable for every γ ∈ �. Assume that γ ∈ �, and that ((S(α)–α)zα)α∈�<β is summable
for every β ∈ �<γ . If γ is a successor, i.e., γ = S(β), then β ∈ �<γ , where the sum σ (β) of
((S(α) – α)zα)α∈�<β exists in E. This result and the defining condition (s) of summability
imply that ((S(α) – α)zα)α∈�<γ is summable, and σ (γ ) = σ (β) + (S(β) – β)zβ . Assume next
that γ is not a successor. Because ((S(α) – α)zα)α∈�<β is summable for every β ∈ �<γ , it
follows from first part of this proof that for β ∈ �<γ , g is HL integrable on [a,β], and that
(.) defines continuous mapping f on [a,β]. Thus,

σ (β) = f (β) =
∫ β

a
g(s)ds, for every β ∈ �<γ .

Because g is HL integrable on [a,γ ], then limβ→γ–
∫ β

a g(s)ds exists and is equal to∫ γ

a g(s)ds by Remarks .. Consequently, limβ→γ– σ (β) exists, so that ((S(α) – α)zα)α∈�<γ

is summable.
The above results imply by the Principle of Transfinite Induction that the family ((S(α)–

α)zα)α∈�<γ is summable for every γ ∈ �. In particular, ((S(α) – α)zα)α∈�<b is summable.
Thus (a) implies (b).
If (a) or (b) are valid, then both of them are valid by the above proof. Thus themapping f ,

defined by (.), is a primitive of g , whence
∫ b
a g(s)ds = f (b)– f (a) = σ (b)–σ (a) = σ (b). This

proves the last conclusion. �

When integrability and summability are local, we have the following result.

Proposition . Let � be a well ordered subset of a real interval [a,b), –∞ < a < b ≤ ∞,
such thatmin� = a and sup� = b. Assume that g : [a,b)→ E is a step mapping defined on
[a,b) by (.). Then the following condition are equivalent:
(a) g is locally HL integrable.
(b) The family ((S(α) – α)zα)α∈�<b is locally summable.

If (a) or (b) holds, and c ∈ (a,b), then
∫ c
a g(t)dt = f (c), where f : [a,b) → R is defined on

[a,b) by (.).

Proof Assume first that the family ((S(α) – α)zα)α∈�<b is locally summable. Because � =
�<b, then (.) defines a mapping f : [a,b) → R, and f ′(t) = g(t) for each t ∈ [a,b) \ �. As
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in the proof of Proposition . it can be shown that f is continuous. Thus, by Lemma .,
g is locally HL integrable, so that (b) implies (a).
Conversely, assume that the mapping g : [a,b) → E, defined by (.), is locally HL in-

tegrable on [a,b). As in the proof of Proposition . it can be shown that the family
((S(α) – α)zα)α∈�<γ is summable for every γ ∈ �, so that ((S(α) – α)zα)α∈� is locally
summable. Thus, (a) implies (b).
If (a) or (b) holds, then they both are valid. Assume that c ∈ (a,b). Because themapping f ,

defined by (.), is a CD primitive of g , it follows from the last conclusion of Lemma .
that

∫ c
a g(s)ds = f (c) – f (a) = f (c). �

As an application of Lemma . and Propositions . and ., we obtain the following
result.

Proposition . Assume that g : [a,∞]→ E is a step mapping satisfying (.)with b = ∞.
Then g is HK integrable if and only if the family ((S(α) – α)zα)α∈�<∞ is summable.

Proof Assume first that the family ((S(α) –α)zα)α∈�<∞ is summable. Then it is also locally
summable, where g is locally HL integrable by Proposition .. Thus, g is also locally HK
integrable. Denote by σ (γ ) the sum of ((S(α) – α)zα)α∈�<γ , γ ∈ �. Let f : [a,∞) → E be
defined by

f (t) = σ (γ ) + (t – γ )zγ , t ∈ [
γ ,S(γ )

)
,γ ∈ �<∞. (.)

Because the family ((S(α)–α)zα)α∈�<∞ is summable, then∞ is a limitmember of�. Given
ε > , there exists by condition (s)(ii) of summability such a βε ∈ �<∞ that

∥∥σ (β) – σ (∞)
∥∥ < ε whenever β ∈ � and βε ≤ β < ∞.

If t ∈ (βε ,∞), there exists β ∈ �, βε ≤ β < ∞, such that t ∈ [β ,S(β)). Thus,

∥∥f (t) – σ (∞)
∥∥ =

∥∥σ (β) + (t – β)zβ – σ (∞)
∥∥ < ε +

∥∥(t – β)zβ

∥∥.
Since also βε ≤ S(β) < ∞, and since

∥∥(t – β)zβ

∥∥ ≤ ∥∥(
S(β) – β

)
zβ

∥∥ =
∥∥σ

(
S(β)

)
– σ (β)

∥∥,
then

∥∥f (t) –σ (∞)
∥∥ < ε +

∥∥σ
(
S(β)

)
–σ (β)

∥∥ ≤ ε +
∥∥σ

(
S(β)

)
–σ (∞)

∥∥+∥∥σ (β) –σ (∞)
∥∥ < ε.

This holds for every t ∈ [βε ,∞). Thus, limt→∞ f (t) = σ (∞). Because
∫ t
a g(s)ds = f (t) for

each t ∈ [a,∞), by Proposition ., then the limit limt→∞
∫ t
a g(s)ds exists. This implies by

Lemma . that g is HK integrable on [a,∞].
Assume next that the family ((S(α) – α)zα)α∈�<∞ is not summable. Then there is by

Lemma . the greatest element c in�<∞ \{min�} such that the family ((S(α)–α)zα)α∈�<γ

is summable for each γ ∈ �<c. Moreover, c is not a successor. In particular, the limit
limγ→c σ (γ ) does not exist. Thus, g is locally HL and HK integrable on [a, c), but
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limγ→c
∫ γ

a g(s)ds does not exist. Consequently, the limit limt→c
∫ t
a g(s)ds does not exist,

whence Lemma . implies that g is not HK integrable on [a, c]. Therefore, g is not HK
integrable on [a,∞]. �

Proposition . is applied in the proof of the following results.

Proposition .
(a) Let g : [a,b]→ E, –∞ < a < b <∞, be a step mapping that satisfies (.). Then g is

Bochner integrable if and only if the family ((S(α) – α)zα)α∈�<b is absolutely
summable.

(b) Let � be a well-ordered subset of a real interval [a,b), –∞ < a < b ≤ ∞, such that
min� = a and sup� = b. Assume that g : [a,b)→ E is a step mapping defined on
[a,b) by (.). Then g is locally Bochner integrable if and only if the family
((S(α) – α)zα)α∈�<b is locally absolutely summable.

Proof (a) Because g is by (.) strongly measurable, then g is Bochner integrable if and
only if the function h = t �→ ‖g(t)‖ is Lebesgue integrable. Replacing zα by ‖zα‖ in (.)
and in (.), it follows from Proposition . that h is HL integrable if and only if the family
((S(α) – α)‖zα‖)α∈�<b is summable. Because a real-valued function is HL integrable if and
only if it is HK integrable, and nonnegative-valued function is HK integrable if and only
if it is Lebesgue integrable, then h is Lebesgue integrable, or equivalently g is Bochner
integrable, if and only if the family ((S(α) – α)‖zα‖)α∈�<b is summable, or equivalently, the
family ((S(α) – α)zα)α∈�<b is absolutely summable.
The conclusion (b) follows from (a) and from the definitions of local integrability and

local summability. �

Proposition . Assume that � is a well-ordered subset of a real interval [a,b) such that
min� = a and sup� = b. Given a family (zα)α∈� of E, let g : [a,b]→ E satisfy (.).
(a) If b < ∞, then g is Riemann integrable on [a,b] if and only if the family (zα)α∈� is

bounded.
(b) If b = ∞, the improper Riemann integral of g over [a,b] exists if and only if the family

(zα)α∈�<γ is bounded for every γ ∈ �, and the family ((S(α) – α)zα)α∈�<b is
summable.

Proof (a) Assume first that the family (zα)α∈� is bounded. It follows from (.) that g is
bounded, and that, the set of its discontinuity points is a subset of �, and hence a null set.
Thus, g is Riemann integrable by Lemma .. Conversely, if g is Riemann integrable, it is
bounded by Lemma .. Since g(α) = zα for each α ∈ �<b, then the family (zα), α ∈ � is
bounded. This proves the assertion.
(b) Assume that b = ∞, and that the set (zα)α∈�<γ is bounded for every γ ∈ �. It then

follows from (.) that g is bounded, and hence Riemann integrable on each interval [a, c],
a < c < ∞. Proposition . implies that g is HK integrable on [a,∞] if the family ((S(α) –
α)zα)α∈�<b is summable. In this case limc→∞

∫ c
a g(s)ds exists by Lemma .. This limit is

the improper Riemann integral because every integral
∫ c
a g(s)ds, a < c < ∞, is Riemann

integral. If the family ((S(α) – α)zα)α∈�<b is not summable, then g is not HK integrable on
[a,∞], whence the improper Riemann integral over [a,b] does not exist. �
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Example . Let (yn)∞n= be a sequence in a Banach space E, and let g : [,∞] → E be
defined by

g(t) = yn, t ∈ [n,n + ),n ∈N, g(∞) = . (.)

Show that
(a) g is HK integrable if and only if the series

∑∞
n= yn is summable;

(b) g is Bochner integrable if and only if the series
∑∞

n= yn is absolutely summable;
(c) The improper Riemann integral of g exist if and only if the series

∑∞
n= yn is

summable.

Solution Denoting αn := n, n ∈ N, � = N and zαn = yn, n ∈ N, then g can be rewritten
as

g(t) = zαn , t ∈ [
αn,S(αn)

)
,n ∈N, g(∞) = .

The series
∑∞

n= yn is summable in ordinary or absolute sense if and only if the series∑∞
n=(S(αn)–αn)zαn has the same property.Moreover, if

∑∞
n= yn is summable, then the set

{zαn |n ∈N} is bounded. Thus, (a) follows from Proposition ., (b) from Proposition .,
and (c) from Proposition ..

Example . Let (yn)∞n= be a sequence in a Banach space E, and let g : [, ] → E be de-
fined by

g(t) = yn, t ∈ [
 – –n+,  – –n

)
,n ∈N, g() = . (.)

Show that
(a) properties: g is HL integrable, and the series

∑∞
n= –nyn is summable, are equivalent;

(b) g is Bochner integrable if and only if the series
∑∞

n= –nyn is absolutely summable;
(c) The improper Riemann integral of g exists if and only if the sequence (yn) is

bounded.

Solution The correspondence n ↔ αn :=  – –n+ is an order preserving isomorphism
between N and � = {αn|n ∈ N}. Denoting zαn = yn, n ∈ N, and noticing that S(αn) – αn =
 – –n – ( – –n+) = –n, then g can be rewritten as

g(t) = zαn , t ∈ [
αn,S(αn)

)
,n ∈N, g() = .

The series
∑∞

n= –nyn is summable in ordinary or absolute sense if and only if the series∑∞
n=(S(αn) –αn)zαn has the same property. Thus, the conclusions of (a), (b) and (c) follow

from Propositions ., . and ., respectively.

In view of Example ., the preceding example can be generalized as follows.

Example . Given m ∈ N, let �m = {α(n, . . . ,nm)|n, . . . ,nm ∈ N} be defined by (.).
Then S(α(n, . . . ,nm)) = α(n, . . . ,nm + ),m,n, . . . ,nm ∈N so that

S
(
α(n, . . . ,nm)

)
– α(n, . . . ,nm) = –

∑m
k= nk–m–.
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Thus, if (zα(n,...,nm))α(n,...,nm)∈�m is such a family of real numbers that the family

(
–

∑m
k= nk–m–zα(n,...,nm)

)
α(n,...,nm)∈�m

is summable, then the mapping g : [, ]→ E, defined by

g(t) = zα(n,...,nm), t ∈ [
α(n, . . . ,nm),S

(
α(n, . . . ,nm)

))
,α(n, . . . ,nm) ∈ �m,

g() = ,

is HL integrable by Proposition .. According to Proposition ., g is Bochner integrable
if and only if the above family is absolutely summable. If the family (zα(n,...,nm))α(n,...,nm)∈�m ,
is bounded, then g is Riemann integrable by Proposition ..

Remarks . Example . contains the results of [, Theorem (a) and (c)]. As for related
results, see [].
Let g : [, ) → E be as in Example ., and let h : [, ]→ E be defined by

h(t) = yn, t ∈ (
–n, –n+

]
,n ∈N, h() = . (.)

Because h(t) = g( – t), t ∈ (, ), it follows from Example . that
(a) properties: h is HL integrable, and the series

∑∞
n= –nyn is summable, are

equivalent, and that
(b) h is Bochner integrable if and only if the series

∑∞
n= –nyn is absolutely summable.

The result (a) contains the result (a) of [, Proposition ..] and improves the results
of [, Proposition ..] and [, Example], where unconditional convergence of series∑∞

n= –nyn is shown to imply the HL integrability of h. The result (b) is equivalent to the
result (c) of [, Proposition ..].
Example . can be used to generalize further the results of [, ] cited above.
In [], a notion of convergence formultiple series is defined and shown to be equivalent

to the HK integrability of the associated step function over an unbounded multidimen-
sional interval.

4 On HK, HL, Bochner and Riemann integrability of right regulatedmappings
Applying Lemmas . and . and the results derived for step mappings in Section , we
shall derive in this section criteria for HK, HL, Bochner and Riemann integrability of right
regulated mappings.

Proposition . Given a right regulated mapping g : [a,b] → E, –∞ < a < b < ∞, and
a positive number ε, let �ε be the well ordered subset of [a,b] defined by (.). Then the
following properties are equivalent.
(a) g is HL integrable.
(b) The step mapping gε : [a,b]→ E, defined by

gε(t) = g(β+), t ∈ [
β ,S(β)

)
,β ∈ �<b

ε , gε(b) = g(b), (.)

is HL integrable.
(c) The family ((S(β) – β)g(β+))

�<b
ε
is summable.
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Proof It follows from Lemma . and (.) that ‖gε(t) – g(t)‖ ≤ ε whenever t ∈ (β ,S(β))
and β ∈ �<b

ε . Because g is strongly measurable by Lemma . and gε is strongly measur-
able by definition (.), then gε – g is Bochner integrable, and hence also HL integrable.
Consequently, if g is HL integrable, then gε = g +(gε – g) is HL integrable, and if gε is HL in-
tegrable, then g = gε – (g – gε) is HL integrable. This proves that (a) and (b) are equivalent.
The equivalence of (b) and (c) follows from Proposition .. �

Proposition . and the proof of Proposition . is used to prove the following results.

Proposition . Let g : [a,b]→ E, –∞ < a < b < ∞, be right regulated, and let ε be a pos-
itive number. Let �ε be the well-ordered subset of [a,b] defined by (.). Then the following
properties are equivalent.
(a) g is Bochner integrable.
(b) The mapping gε : [a,b]→ E, defined by (.), is Bochner integrable.
(c) The family ((S(β) – β)g(β+))

�<b
ε
is absolutely summable.

Proof It follows from the proof of Proposition . that gε – g is Bochner integrable. Hence,
if g is Bochner integrable, then gε = g + (gε – g) is Bochner integrable, and if gε is Bochner
integrable, then g = gε – (g – gε) is Bochner integrable. This implies that (a) and (b) are
equivalent. The equivalence of (b) and (c) follows from Proposition .. �

Proposition . Let g : [a,b] → E, –∞ < a < b < ∞, be right regulated, and let �ε , ε > ,
be the well ordered subset of [a,b] defined by (.). Then the following properties are equiv-
alent.
(a) g is Riemann integrable.
(b) g is bounded.
(c) The mapping hε : [a,b]→ E, defined by

hε(t) = g(β+), t ∈ [
β ,S(β)

)
,β ∈ �<b

ε , hε(β) = g(β), β ∈ �ε , (.)

is HL integrable is Riemann integrable.
(d) The families (g(β))

β∈�<b
ε
and (g(β+))

β∈�<b
ε
are bounded.

Proof The set of discontinuity points of g is countable, whence the equivalence of (a) and
(b) follows [, Theorem .]. The mapping hε – g is bounded and has only a countable
number of discontinuities, so that it is Riemann integrable. Hence, if g is Riemann inte-
grable, then hε = g + (hε – g) is Riemann integrable, and if hε is Riemann integrable, then
g = hε – (g – hε) is Riemann integrable. This implies that (a) and (c) are equivalent. The
proof of the equivalence of (c) and (d) is similar to that of Proposition .. �

Now we are in position to prove the results presented in the Introduction.

Theorem . (the fundamental theorem of calculus for right regulated mappings) As-
sume that a mapping g : I → E, –∞ <min I < sup I ≤ ∞ is right regulated.
(a) g is locally HL integrable if and only if it has a CD primitive.
(b) g is locally Bochner integrable if and only if it has a locally absolutely continuous CD

primitive.
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(c) g is locally Riemann integrable if and only if it is locally bounded, in which case g has
a locally Lipschitz continuous CD primitive.

Proof (a) Denote a = min I and c = sup I . It follows from Lemma . that if g has a CD
primitive, then g is locally HL integrable. To prove converse, assume that g is locally HL
integrable. Given b ∈ (a, c), define for each n ∈N the step mapping gn : [a,b]→ E by

gn(t) = g(β+), t ∈ [
β ,S(β)

)
,β ∈ �<b


n
, gn(b) = g(b). (.)

Because g is HL integrable on [a,b], it follows from Proposition . that the family ((S(β)–
β)gn(β+))�<b


n

is summable for every n ∈N. Denote by σn(γ ) the sum of the family ((S(β) –

β)g(β+))�<γ

n

, γ ∈ �<b

n
. The proof of Proposition . that implies that for each n ∈ N the

mapping fn : [a,b)→ E, defined by

fn(t) = σn(γ ) + (t – γ )g(γ+), t ∈ [
γ ,S(γ )

)
,γ ∈ �<b


n
, (.)

is a CD primitive of gn. Thus, for each n ∈N, the mapping fn is continuous, f ′
n(t) = gn(t) for

all t ∈ [a,b]\� 
n
, and fn(a) = σn(a) = .Moreover, if g(β+) = g(β) for β ∈ Z =

⋃∞
n= �n, then

‖gn(t) – g(t)‖ ≤ 
n for each t ∈ [a,b) by Lemma . and (.), so that the sequence (gn)∞n=

converges uniformly to g . Consequently, it follows from [, (..)] that the sequence (fn)∞n=
converges uniformly on [a,b) to a continuous mapping f : [a,b) → E, and f ′(t) = g(t) for
each t ∈ [a,b)\Z. f has these properties alsowhen right continuity of g inZ is not assumed.
Because Z is countable, then f is a CD primitive of the restriction of g to [a,b].
Choose an increasing sequence (cn)∞n= from (a, c) so that it converges to c. The interval

[a, c) is the union of increasing sequence of compact intervals [a, cn], and g is HL integrable
on these compact intervals. By the above proof the restriction of g to [a, cn] has a CD
primitive fn, and fn(a) =  for each n ∈ N. Defining

f (t) =

⎧⎨
⎩f(t) – f (a), t ∈ [a, c),

fn+(t) – fn+(a), t ∈ [cn, cn+),n ∈ N,

we obtain amapping f : [a, c) → Ewhich is a CDprimitive of g (cf.Remark after [, (..)]).
(b) If g has a locally absolutely continuous CD primitive f , then g is locally Bochner

integrable by [, Theorem ..]. Conversely, assume that g is locally Bochner integrable,
and let [a,b] be a compact subinterval of I . Then g is Bochner integrable on [a,b], whence
the restriction of g to [a,b] has by [, Theorem ..] an absolutely continuous primitive
h : [a,b] → E. g is also locally HL integrable by [, Proposition .. and Theorem ..].
Thus, g has by the proof of (a) a CD primitive f : I \{sup I} → E. It follows from Lemma .
and from the definition (.) of the Henstock-Kurzweil integral that f (x) – f (a) = h(x) –
h(a), i.e., f (x) = h(x)+ f (a)–h(a) for all x ∈ [a,b]. Thus, f is absolutely continuous on [a,b].
Consequently, f is an absolutely continuous CD primitive of the restriction of g to [a,b].
(c) Assume that g is locally Riemann integrable, and let [a,b] be a compact subinterval

of I . It follows from Proposition . that g is Riemann integrable on [a,b] if and only if
g is bounded on [a,b], in which case there is such a positive constant M that ‖g(t)‖ ≤ M
for each t ∈ [a,b]. Because g is also locally HL integrable, it has a CD primitive f by the
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proof of (a), and f (b) – f (a) =
∫ b
a g(t)dt by Lemma .. Thus, ‖f (b) – f (a)‖ ≤ ∫ b

a ‖g(t)dt‖ ≤
M(b–a). This holds for every compact subinterval [a,b] of I , whence f is locally Lipschitz
continuous. �

The following results are easy consequences of the results of Theorem . and Lem-
ma . and the definitions of integrals and improper integrals.

Corollary . Let g : I → E, –∞ <min I < sup I ≤ ∞ be right regulated.
(a) g is HL integrable when I is bounded if and only if g has a CD primitive that has the

left limit at sup I .
(b) g is HK integrable if it has a CD primitive that has the left limit at sup I .
(c) g is Bochner integrable if and only if the function it has a locally absolutely

continuous CD primitive that has the left limit at sup I .
(d) g is Riemann integrable if and only if it is bounded and I is bounded.
(e) The improper Riemann integral of g from min I to sup I if g is locally bounded, and its

CD primitive has the left limit at sup I .

The next result follows from Lemma . and Propositions ., . and ..

Theorem . Let g : I → E, –∞ <min I < sup I ≤ ∞ be right regulated.
(a) For each compact subinterval [a,b] of I , either g is Riemann integrable on [a,b], or

there exists the greatest number c in (a,b] such that g is locally Riemann integrable
on [a, c).

(b) For each compact subinterval [a,b] of I , either g is Bochner integrable on [a,b], or
there exists the greatest number c in (a,b] such that g is locally Bochner integrable
on [a, c).

(c) For each compact subinterval [a,b] of I , either g is HL integrable on [a,b], or there
exists the greatest number c in (a,b] such that g is locally HL integrable on [a, c).

Proof Let [a,b] be a compact subinterval of I , let ε be a positive number, and let �ε be the
well ordered subset of [a,b] defined by (.).
(a) According to Lemma .(a) the family (g(β+))

β∈�<b
ε

is bounded, or there exists the
greatest number c in �<b

ε , c > a, such that the family (g(β+))β∈�
<γ
ε

is bounded for every
γ ∈ �<c

ε . This result and Proposition . imply that g is Riemann integrable either on
[a,b], or on [a,γ ], for every γ ∈ �<c

ε . This proves (a) because c is by Lemma .(d) not a
successor.
(b) By Lemma .(b) the family ((S(β) – β)g(β+))

β∈�<b
ε
is absolutely summable, or there

exists the greatest number c in �<b
ε , c > a, such that the family ((S(β) – β)g(β+))β∈�

<γ
ε

is
absolutely summable for every γ ∈ �<c

ε . This result implies by Proposition . that g is
Bochner integrable either on [a,b], or on [a,γ ], for every γ ∈ �<c

ε . This implies conclu-
sion (b), since by Lemma .(d) c is not a successor.
(c) The proof of (c) is similar to that of (b) when absolute summability is replaced by

summability, Lemma .(b) by Lemma .(c), and Proposition . by Proposition ..
�

Example . Denote c = {x = (xi)∞i=|xi ∈R, i ∈N, limi→∞ xi = }. c is a vector space with
respect to componentwise addition and scalar multiplication, and ‖x‖ = supi∈N |xi| defines
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a Banach norm in c. Define a mapping g :R+ → c by

g(t) =

( ∞∑
n=


ni

(

(
nt – �nt�) cos( π

(nt – �nt�)
)

+
π


sin

(
π

(nt – �nt�)
)))∞

i=

, t ∈R+, (.)

where �nt� =m,m– < nt ≤ m,m = , , . . . , g is right regulated. The setQ+ of all rational
numbers of R+ is the set of discontinuity points g (cf. [, ()]). Moreover, all these
discontinuities are of second kind. A CD primitive of g is given by

f (t) =

( ∞∑
n=

(nt – �nt�)
ni

cos

(
π

(nt – �nt�)
))∞

i=

, t ∈R+. (.)

Because g is bounded, it is also locally Riemann integrable by Theorem ..
The mapping g = t �→ e–tg(t) has the improper Riemann integral

∫ ∞
 g(t)dt.

Example . Let g and f be defined by (.) and (.). Define mappings gm : R+ → c,
m ∈N, by

gm(t) = g(t) +

(

i

i∧m∑
n=

(
cos

(
π

(nt – �nt�)
)
+

π sin( π
(nt–�nt�) )

(nt – �nt�)
))∞

i=

, t ∈R+, (.)

where i∧m =min{i,m}. gm is right regulated, and Q+ is the set of discontinuity points, of
second kind, of gm. for allm ∈N. The mapping fm :R+ → c, defined by

fm(t) = f(t) +

( i∧m∑
n=i

(nt – �nt�)
ni

cos

(
π

(nt – �nt�)
))∞

i=

, t ∈R+, (.)

is a CDprimitive of gm for eachm ∈N. It then follows fromTheorem. that themappings
gm are locally HL integrable. On the other hand, gm is neither locally Bochner integrable
nor locally Riemann integrable for anym ∈N.
The mappings t �→ e–tgm(t) are HK integrable on R+.

Example . Let g and f be defined by (.) and (.). Define mappings gm : R+ → c,
m ∈N, by

gm(t) = g(t) +

(

i

i∧m∑
n=



√�nt� – nt

)∞

i=

, t ∈ R+. (.)

gm is right regulated, and Q+ is its set of discontinuity points, of second kind, for every
m ∈N. The mappings f m :R+ → c, defined by

f m(t) = f(t) +

( i∧m∑
n=

�nt� –√�nt� – nt
ni

)∞

i=

, t ∈R+, (.)
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are absolutely continuous, and (f m)′(t) = gm(t) for all t ∈ R+ \Q+. Hence, every gm is locally
Bochner integrable by Theorem .. But gm is not locally bounded, and hence not locally
Riemann integrable, for anym ∈ N.
The mappings t �→ e–tgm(t) are Bochner integrable on R+.

Remarks . Integrability results derived in Propositions ., . and ., and in Theo-
rems . and . for right regulated mappings have also analogous counterparts for left
regulated mappings.

5 Applications to impulsive differential equations
Let E be a Banach space and [a, c), –∞ < a < c ≤ ∞, a real interval. Denote by
HLloc([a, c),E) the space of all locally HL integrable mappings from [a, c) to E. Almost
everywhere (a.e.) equal mappings of HLloc([a, c),E) are identified. Consider the following
impulsive problem:

u′(t) = f (t,u) a.e. on [a, c), �u(λ) =D(λ,u), λ ∈ �, (.)

where f : [a,b) × HLloc([a, c),E) → E, �u(λ) = u(λ+) – u(λ), D : � × HLloc([a, c),E) → E,
and � is a well-ordered subset of [a, c) with a =min� and c = sup�. When t ∈ [a, c), we
denote �<t = {λ ∈ � : λ < t}. If a family (x(λ))λ∈� of E is locally summable, and t ∈ [a, c),
denote by

∑
λ∈�<t x(λ) the sum of the family (x(λ))λ∈�<t .

We say that u : [a, c)→ E is a solution of problem (.) if it satisfies the equations of (.),
and if it belongs to the set

V =
{
u ∈HLloc

(
[a, c),E

)|u is a.e. differentiable and right continuous
}
.

The following result allows us to transform problem (.) into an integral equation.

Lemma . Let g ∈ HLloc([a, c),E) and assume that a family (z(λ))λ∈� of E is locally
summable. Then the problem

u′(t) = g(t) a.e. on [a, c), �u(λ) = z(λ), λ ∈ �, (.)

has a unique solution u. This solution can be represented as

u(t) =
∑

λ∈�<t

z(λ) +
∫ t

a
g(s)ds, t ∈ [a, c). (.)

Moreover, u is increasing with respect to g and z.

Proof Let u : [a, c) → E be defined by (.). It is easy to verify that

u′(t) = g(t) for a.e. t ∈ [a, c). (.)

For each λ ∈ � the open interval (λ,S(λ)) does not contain any point of �, so that

�u(λ) = u(λ+) – u(λ) = lim
t→λ+

(
z(λ) +

∫ t

λ

g(s)ds
)
= z(λ), λ ∈ �. (.)
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It follows from (.) that

u(t) = u(t) + u(t), (.)

where

u(t) =
∫ t

a
g(s)ds, u(t) =

∑
λ∈�<t

z(λ), t ∈ [a, c).

Because (z(λ))λ∈� is locally summable, then both u and u belong to V . This, (.) and
(.) imply that u is a solution of problem (.).
If v ∈ V is a solution of (.), then w = u– v belongs to V , and �w(λ) =  for each λ ∈ �,

whence w is a solution of the initial value of problem

w′(t) =  a.e. on [a, c), w(a) = . (.)

This implies that w(t) ≡ , i.e., u = v.
The last assertion of the lemma is a direct consequence from the representation (.)

and [, Lemma .]. �

Assume that g ∈ HLloc([a, c),E) is right regulated. Given ε >  and b ∈ (a, c), let �ε be
the well ordered subset of [a,b] defined by (.), and let gε : [a,b]→ E be defined by (.).
Because g is locally HL integrable, it follows from Proposition . that gε is HL integrable
on [a,b], and that the family ((S(α)–α)g(α+))

α∈�<b
ε
is summable. Let σε(γ ) denote the sum

of the family ((S(α) – α)g(α+))α∈�
<γ
ε
, γ ∈ �ε . Define a mapping fε : [a, c) → E by

fε(t) = σε(γ ) + (t – γ )g(γ+), t ∈ [
γ ,S(γ )

)
,γ ∈ �<c

ε . (.)

By the proof of Proposition ., fε is a CD primitive of gε . It follows from Lemma . that
‖gε(t) – g(t)‖ ≤ ε for all t ∈ [a,b] \ �ε . Thus,

∥∥∥∥
∫ t

a
g(s)ds –

∫ t

a
gε(s)ds

∥∥∥∥ =
∥∥∥∥
∫ t

a
g(s)ds – fε(t)

∥∥∥∥ ≤ ε(t – a).

The above considerations and Theorem . imply the following results for solutions of
problem (.).

Proposition . Assume that g ∈ HLloc([a, c),E) is right regulated, and that the family
(z(λ))λ∈� is summable. Then for all fixed b ∈ (a, c) and ε >  the mapping uε : [a,b] → E,
defined by

uε(t) =
∑

λ∈�<t

z(λ) + fε(t), t ∈ [a,b], (.)

approximates the solution of problem (.) uniformly on [a,b] within the accuracy ε(b–a).
The differential equation of (.) holds in the complement of a countable subset of [a,b].
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In what follows, we assume that E is a Banach space ordered by a regular order cone, and
that the function space HL([a,b],E) is ordered a.e. pointwise. The following fixed-point
result is a consequence of [, Theorem . and Proposition .].

Theorem . Let [w–,w+] = {g ∈ HLloc([a, c),E)|w– ≤ g ≤ w+} be a nonempty order inter-
val in HLloc([a, c),E).Then every increasing mapping G :HLloc([a,b),E)→ [w–,w+] has the
smallest and greatest fixed points, and they are increasing with respect to G.

Let us impose the following hypotheses on the mappings f and D in problem (.).
(f) There exist locally HL integrable mappings f± : [a, c)→ E such that

f–(t) ≤ f (t,u) ≤ f+(t) for a.e. t ∈ [a, c) and for all u ∈HLloc([a, c),E).
(f) The mapping f (·,u) is right regulated for each u ∈HLloc([a, c),E).
(f) f (s, ·) is increasing for a.e. s ∈ [a, c).
(D) D(λ, ·) is increasing for all λ ∈ �, and there exist z± : � → E such that

z–(λ)≤ D(λ,u)≤ z+(λ) for all λ ∈ � and u ∈ HLloc([a, c),E), and that the families
(z±(λ))λ∈� are locally summable.

As an application of Theorem ., we get the following existence and comparison result
for problem (.).

Theorem. Let themappings f and D in (.) satisfy the hypotheses (f) to (f) and (D).
Then problem (.) has the smallest and greatest solutions u∗ and u∗ in V .Moreover, these
solutions are increasing with respect to D and f , and they satisfy the differential equation
of (.) the complement of a countable subset of [a, c).

Proof The hypotheses (f) and (D) ensure that the equations

w±(t) =
∑

λ∈�<t

z±(λ) +
∫ t

a
f±(s)ds, (.)

define mappings w± ∈ HLloc([a, c),E). By using the hypotheses, and [, Lemma . and
Proposition .], it can be shown that the equation

Gu(t) :=
∑

λ∈�<t

D(λ,u) +
∫ t

a
f (s,u)ds, t ∈ [a, c), (.)

defines an increasing mapping G : HLloc([a, c),E) → [w–,w+]. From Theorem ., it then
follows thatG has the smallest and greatest fixed points u∗ and u∗, and they are increasing
with respect to D and f . Because by Lemma . the solutions of problem (.) are the
same as the fixed points of G, then u∗ and u∗ are the smallest and greatest solutions of
problem (.), and they are increasing with respect to D and f . To show the validity of the
last conclusion, let u be any fixed point of G, i.e.,

u(t) =
∑

λ∈�<t

D(λ,u) +
∫ t

a
f (s,u)ds, t ∈ [a, c). (.)

The mapping f (·,u) is by the hypothesis (f) right regulated, and also locally HL integrable
on [a, c). Thus, it has by Theorem . a CD primitive f̃ , and

∫ t
a f (s,u)ds = f̃ (t) – f̃ (a), t ∈
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[a, c). Hence there is a countable subset Z of [a, c) such that f̃ ′(t) = f (t,u) for each t ∈
[a, c) \ Z. Denoting Z = Z ∪ �, it then follows from (.) that

u′(t) =
d
dt

( ∑
λ∈�<t

D(λ,u) +
∫ t

a
f (s,u)ds

)
= f (t,u), t ∈ [a, c) \ Z.

This proves the last conclusion. �

Example . The cone of those elements of E = c with nonnegative coordinates is regu-
lar. Choose [a, c) = [,∞) =R+. Let g :R+ → c be defined by (.), and define qi :R →R,
i = , , . . . , by

qi(s) =

i

i∑
m=

∞∑
k=

π
 + arctan(k 

m s)
(km)

, s ∈R, i = , , . . . .

For x = (x,x, . . .) ∈ c, define

g(t,x) = g(t) +

(
qi

( i∑
j=

xj

))∞

i=

, t ∈R+.

Then one can easily verify that f (t,u) = g(t,u(t)) satisfies hypotheses (f) to (f).
Let� be a well-ordered subset of real numbers withmin� =  and sup� = ∞. Denoting

c(λ) =
(
c(λ), c(λ), . . .

)
, where ci(λ) = –izλ,λ ∈ �, i = , , . . . .

Assuming that the family
∑

λ∈� zλ is a summable family of real numbers zλ, then the family∑
λ∈� c(λ) is summable in c. Thus, the mappingD(·,u)≡ c has the properties assumed in

(D). With c and g defined before, consider the problem

u′(t) = g
(
t,u(t)

)
a.e. on R+, �u(λ) = c(λ), λ ∈ �. (.)

The above proof shows that the hypotheses of Theorem . are valid, when f (t,u) =
g(t,u(t)) and D(λ,u) = c(λ). Thus, problem (.) has the smallest and greatest solutions.

...the infinite series can be totaled at any given point, and this total (more properly,
a subtotal) provides the fullness of the sweetness of goal attainment for a given person
at a given time and status. But sooner or later, this same person begins to hunger
and yearn for new and greater goals, and such adventures in growth will be forever
forthcoming in the fullness of time and the cycles of eternity’. ([The Book of Urantia,
,,].)
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