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Abstract
A remarkably large number of integral formulas involving a variety of special
functions have been developed by many authors. Very recently, Ali gave three
interesting unified integrals involving the hypergeometric function 2F1. Using Ali’s
method, in this paper, we present two generalized integral formulas involving the
Bessel function of the first kind Jν (z), which are expressed in terms of the generalized
(Wright) hypergeometric functions. Some interesting special cases of our main results
are also considered.
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1 Introduction and preliminaries
Integrals involving products of Gamma functions along vertical lines were first studied
by Pincherle in  and an extensive theory was developed by Barnes [] and Mellin [].
Cahen [] employed some of these integrals in the study of the Riemann Zeta function
and other Dirichlet series. In a spirit of Mellin’s theory, some of Ramanujan’s formulas
were generalized by Hardy [, p.]. The work of Pincherle provided an impetus for the
subsequent investigations of Barnes [] and Mellin [] on the integral representations of
solutions of generalized hypergeometric series (see [, Chapter  and the comment on
p.]). A detailed commentary on Pincherle’s work [] set against a historical backdrop
is available in [].
Indeed, a remarkably large number of integral formulas involving a variety of special

functions have been developed by many authors (see, for example, []; for a very recent
work, see also []). Recently, Garg and Mittal [] obtained an interesting unified integral
involving Fox H-function. Motivated by the work of Garg and Mittal [], very recently,
Ali [] gave three interesting unified integrals involving the hypergeometric function F.
Also, many integral formulas involving the Bessel function Jν(z) (.) have been presented
(see, e.g., [, pp.-]; see also [, pp.-]). Here, by using Ali’s method [], we
aim at presenting two generalized integral formulas involving the Bessel function of the
first kind (.), which are expressed in terms of the generalized (Wright) hypergeometric
functions (.). Some interesting special cases of our main results are also considered.
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For our purpose, we begin by recalling some known functions and earlier works. The
Bessel function of the first kind Jν(z) is defined for z ∈C \ {} and ν ∈C with �(ν) > – by
the following series (see, e.g., [, p., Entry ..] and [, p., Eq. ()]):

Jν(z) =
∞∑
k=

(–)k( z )
ν+k

k!�(ν + k + )
=

(z/)ν

�( + ν) 
F

(
;  + ν; –

z



)
, (.)

where F is a confluent hypergeometric series of pFq in (.),C denotes the set of complex
numbers and �(z) is the familiar Gamma function (see [, Section .]).
An interesting further generalization of the generalized hypergeometric series pFq (.)

is due to Fox [] andWright [–] who studied the asymptotic expansion of the gener-
alized (Wright) hypergeometric function defined by (see [, p.]; see also [])

p�q

[
(α,A), . . . , (αp,Ap);
(β,B), . . . , (βq,Bq);

z

]
=

∞∑
k=

∏p
j= �(αj +Ajk)∏q
j= �(βj + Bjk)

zk

k!
, (.)

where the coefficients A, . . . ,Ap and B, . . . ,Bq are positive real numbers such that

 +
q∑
j=

Bj –
p∑
j=

Aj � . (.)

A special case of (.) is

p�q

[
(α, ), . . . , (αp, );
(β, ), . . . , (βq, );

z

]
=

∏p
j= �(αj)∏q
j= �(βj)

pFq

[
α, . . . ,αp;
β, . . . ,βq;

z

]
, (.)

where pFq is the generalized hypergeometric series defined by (see [, Section .])

pFq

[
α, . . . ,αp;
β, . . . ,βq;

z

]
=

∞∑
n=

(α)n · · · (αp)n
(β)n · · · (βq)n

zn

n!

= pFq(α, . . . ,αp;β, . . . ,βq; z), (.)

where (λ)n is the Pochhammer symbol defined (for λ ∈C) by (see [, p. and pp.-]):

(λ)n : =

⎧⎨
⎩ (n = ),

λ(λ + ) · · · (λ + n – ) (n ∈ N := {, , , . . .})

=
�(λ + n)

�(λ)
(
λ ∈C \Z–


)

(.)

and Z
–
 denotes the set of nonpositive integers.

For our present investigation, we also need to recall the following Oberhettinger’s inte-
gral formula []:

∫ ∞


xμ–(x + a +

√
x + ax

)–λ dx = λa–λ

(
a


)μ
�(μ)�(λ –μ)
�( + λ +μ)

, (.)

provided  <�(μ) <�(λ).
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2 Main results
We establish two generalized integral formulas, which are expressed in terms of the gen-
eralized (Wright) hypergeometric functions (.), by inserting the Bessel function of the
first kind (.) with suitable arguments into the integrand of (.).

Theorem  The following integral formula holds true: For λ,μ,ν ∈ C with �(ν) > –,  <
�(μ) < �(λ + ν) and x > ,

∫ ∞


xμ–(x + a +

√
x + ax

)–λJν
(

y
x + a +

√
x + ax

)
dx

= –ν–μaμ–ν–λyν�(μ)

· �

[
(λ –μ + ν, ), ( + λ + ν, );
(ν + , ), ( + λ +μ + ν, ), (λ + ν, );

–
y

a

]
. (.)

Theorem  The following integral formula holds true: For λ,μ,ν ∈ C with �(ν) > –,  <
�(μ) < �(λ + ν) and x > ,

∫ ∞


xμ–(x + a +

√
x + ax

)–λJν
(

xy
x + a +

√
x + ax

)
dx

= –ν–μaμ–λyν�(λ –μ)

· �

[
(μ + ν, ), ( + λ + ν, );
(ν + , ), ( + λ +μ + ν, ), (λ + ν, );

–
y



]
. (.)

Proof By applying (.) to the integrand of (.) and then interchanging the order of inte-
gral sign and summation, which is verified by uniform convergence of the involved series
under the given conditions, we get

∫ ∞


xμ–(x + a +

√
x + ax

)–λJν
(

y
x + a +

√
x + ax

)
dx

=
∞∑
k=

(–)k
(y/)ν+k

k!�(ν + k + )

∫ ∞


xμ–(x + a +

√
x + ax

)–λ–ν–k dx. (.)

In view of the conditions given in Theorem , since

�(ν) > –,  < �(μ) < �(λ + ν) ≤ �(λ + ν + k)
(
k ∈N :=N∪ {}),

we can apply the integral formula (.) to the integral in (.) and obtain the following
expression:

∫ ∞


xμ–(x + a +

√
x + ax

)–λJν
(

y
x + a +

√
x + ax

)
dx

= –ν–μaμ–ν–λyν�(μ)

·
∞∑
k=

(–)k�( + ν + λ + k)�(ν + λ –μ + k)
k!�( + ν + k)�( + ν + λ +μ + k)�(ν + λ + k)

(
y
a

)k

,

which, upon using (.), yields (.). This completes the proof of Theorem . �
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It is easy to see that a similar argument as in the proof of Theorem  will establish the
integral formula (.).

Remark We begin by stating the principle of confluence involved in pFq:

p–Fq(α, . . . ,αp–;β, . . . ,βq; z)

= lim|αp|→∞ pFq
(

α, . . . ,αp;β, . . . ,βq;
z
αp

)
(n ∈N). (.)

In view of this principle of confluence (.), for example, replacing y by y/b at the sec-
ond integral of Ali’s work [, Eq. (.)] and taking the limit |b| → ∞ on each side of the
resulting identity, we obtain

∫ ∞


xλ–(x + a +

√
x + ax

)–ν
F

(
a; c;

y
x + a +

√
x + ax

)
dx

=
–λν�(λ)aλ–ν�(ν – λ)

�(ν + λ + ) F

[
a,ν – λ,ν + ;
c,ν + λ + ,ν;

y
a

]
, (.)

provided  <�(λ) < �(ν) and |y/a| < . Again, let us try to reduce F to F in the integrand
of (.) by using the principle of confluence (.). Replacing y by y/a in the F of (.) and
letting |a| → ∞ in the resulting identity, we easily see that both sides reduce to zero. On
the other hand, in view of the last expression of Jν(z) in (.), we also see that F cannot
directly generate F in the integrals of Ali’s main results [, p.]. Even though, here,
the authors make use of the method of Ali’s work [] (see also []), we may carefully
conclude that those results in both [] and this paper do not seem to yield the other ones.

Next, we consider other variations of Theorem  and Theorem . In fact, we establish
some integral formulas for the Bessel function Jν(z) expressed in terms of the generalized
hypergeometric function pFq. To do this, we recall the well-known Legendre duplication
formula for the Gamma function �:

√
π�(z) = z–�(z)�

(
z +




) (
z 	= ,–



,–,–



, . . .

)
, (.)

which is equivalently written in terms of the Pochhammer symbol (.) as follows (see, for
example, [, p.]):

(λ)n = n
(


λ

)
n

(


λ +




)
n

(n ∈N). (.)

Now we are ready to state the following two corollaries.

Corollary  Let the condition of Theorem  be satisfied and μ,λ – μ + ν,λ + ν ∈ C \ Z
–
 .

Then the following integral formula holds true:

∫ ∞


xμ–[x + a +

√
x + ax

]–λJν
(

y
x + a +

√
x + ax

)
dx

= –ν–μaμ–ν–λyν �(μ)�( + λ + ν)�(λ –μ + ν)
�( + ν)�(λ + ν)�( + λ + ν +μ)
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· F

⎡
⎢⎢⎣

 + λ + ν


,
λ + ν –μ


,
 + λ + ν –μ


;

 + ν,
 + λ + ν +μ


,
 + λ + ν +μ


,
λ + ν


;
–
(

y
a

)

⎤
⎥⎥⎦ . (.)

Corollary  Let the condition of Theorem  be satisfied and μ + ν,λ + ν,λ – ν ∈ C \ Z–
 .

Then the following integral formula holds true:

∫ ∞


xμ–[x + a +

√
x + ax

]–λJν
(

xy
x + a +

√
x + ax

)
dx

= –ν–λaμ–λyν
�(λ –μ)�( + λ + ν)�(μ + ν)�( +ν+μ )
�( + ν)�(λ + ν)�( +λ+μ+ν

 )�( +λ+μ+ν
 )

· F

⎡
⎢⎢⎣
 + λ + ν


,
ν +μ


,
 + ν +μ


,

 + ν,
λ + ν


,
 + λ +μ + ν


,
 + λ +μ + ν


,

 + ν + μ


,
 + ν + μ


;

 + λ +μ + ν


,
 + λ +μ + ν


;
–
y



⎤
⎥⎥⎦ . (.)

Proof By writing the right-hand side of Eq. (.) in the original summation and apply-
ing (.) to the resulting summation, after a little simplification, we find that, when the
last resulting summation is expressed in terms of pFq in (.), this completes the proof of
Corollary . A similar argument as in the proof of Corollary  will establish the integral
formula (.). �

3 Special cases
In this section, we derive certain new integral formulas for the cosine and sine functions
involving in the integrands of (.) and (.). To do this, we recall the following known
formula (see, for example, [, p., Eq. ()]):

J–/(z) =
√


πz

cos z. (.)

By applying the expression in (.) to (.), (.), (.) and (.), we obtain four integral
formulas in Corollaries , ,  and , respectively.

Corollary  The following integral formula holds true: For λ,μ ∈ C with  < �(μ) < �(λ)
and x > ,

∫ ∞


xμ–(x + a +

√
x + ax

)–λ

√
(x + a +

√
x + ax)

πy

· cos
(

y
x + a +

√
x + ax

)
dx

= 

 –μaμ–λ+ 

 y–

 �(μ)
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· �

⎡
⎢⎢⎣

(
λ –μ –



, 

)
,
(

λ +


, 

)
;(



, 

)
,
(

λ +μ +


, 

)
,
(

λ –


, 

)
;
–

y

a

⎤
⎥⎥⎦ . (.)

Corollary  The following integral formula holds true: For λ,μ ∈ C with  < �(μ) < �(λ)
and x > ,

∫ ∞


xμ–(x + a +

√
x + ax

)–λ

√
(x + a +

√
x + ax)

πxy

· cos
(

xy
x + a +

√
x + ax

)
dx

= –μaμ–λy–

 �(λ –μ)

· �

⎡
⎢⎢⎣
(μ – , ),

(
λ +



, 

)
;(



, 

)
, (λ +μ, ),

(
λ –



, 

)
;
–
y



⎤
⎥⎥⎦ . (.)

If we employ the same method as in getting (.) and (.) to (.) and (.), we obtain
the following two corollaries.

Corollary  Let the condition of Corollary  be satisfied and λ–μ,λ,μ ∈C \Z–
 . Then the

following integral formula holds true:

∫ ∞


xμ–(x + a +

√
x + ax

)–λ

√
(x + a +

√
x + ax)

πy

· cos
(

y
x + a +

√
x + ax

)
dx

= 

 –μaμ–λ+ 

 y–


�(μ)�( +λ )�( λ–μ– )√

π�( λ– )�( +λ+μ )

· F

⎡
⎢⎢⎣

 + λ


,
λ – μ – 


,
 + λ – μ


;



,
 + λ + μ


,
 + λ + μ


,
λ – 


;
–
(

y
a

)

⎤
⎥⎥⎦ . (.)

Corollary  Let the condition of Corollary  be satisfied and λ–μ,λ,μ ∈C\Z–
 . Then the

following integral formula holds true:

∫ ∞


xμ–(x + a +

√
x + ax

)–λ

√
(x + a +

√
x + ax)

πxy

· cos
(

xy
x + a +

√
x + ax

)
dx

= –λaμ–λy–


�(μ)�(λ –μ)�( +λ )�( μ– )√

π�( λ– )�( λ+μ

 )�( λ+μ+
 )
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· F

⎡
⎢⎢⎣

 + λ


,
μ – 


,
 + μ


,
μ


,
μ + 


;



,
λ – 


,
λ +μ


,
 + λ +μ


,
 + λ +μ


,
 + λ +μ


;
–
y



⎤
⎥⎥⎦ . (.)

By recalling the following formula (see, for example, [, p., Eq. ()]):

J/(z) =
√


πz

sin z, (.)

and applying this formula to (.), (.), (.) and (.), we obtain four more integral for-
mulas in Corollaries , ,  and , respectively.

Corollary  The following integral formula holds true: For λ,μ ∈ C with  < �(μ) < �(λ)
and x > ,

∫ ∞


xμ–(x + a +

√
x + ax

)–λ

√
(x + a +

√
x + ax)

πy

· sin
(

y
x + a +

√
x + ax

)
dx

= 

 –μaμ–λ– 

 y

 �(μ)

· �

⎡
⎢⎢⎣

(
λ –μ +



, 

)
,
(

λ +


, 

)
;(



, 

)
,
(

λ +μ +


, 

)
,
(

λ +


, 

)
;
–

y

a

⎤
⎥⎥⎦ . (.)

Corollary  The following integral formula holds true: For λ,μ ∈ C with  < �(μ) < �(λ)
and x > ,

∫ ∞


xμ–(x + a +

√
x + ax

)–λ

√
(x + a +

√
x + ax)

πxy

· sin
(

xy
x + a +

√
x + ax

)
dx

= –μaμ–λy

 �(λ –μ)

· �

⎡
⎢⎢⎣
(μ + , ),

(
λ +



, 

)
;(



, 

)
, (λ +μ + ,),

(
λ +



, 

)
;
–
y



⎤
⎥⎥⎦ . (.)

If we employ the same method as in getting (.) and (.) to (.) and (.), we obtain
the following two corollaries.

Corollary  Let the condition of Corollary  be satisfied and λ–μ,λ,μ ∈C \Z–
 . Then the

following integral formula holds true:

∫ ∞


xμ–(x + a +

√
x + ax

)–λ

√
(x + a +

√
x + ax)

πy

· sin
(

y
x + a +

√
x + ax

)
dx
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= 

 –μaμ–λ– 

 y


�(μ)�( +λ )�( +λ–μ )√

π�( +λ )�( +λ+μ )

· F

⎡
⎢⎢⎣

 + λ


,
λ – μ + 


,
 + λ – μ


;



,
 + λ + μ


,
 + λ + μ


,
 + λ


;
–
(

y
a

)

⎤
⎥⎥⎦ . (.)

Corollary  Let the condition of Corollary  be satisfied and λ – μ,ν + μ,λ,μ ∈ C \ Z–
 .

Then the following integral formula holds true:

∫ ∞


xμ–(x + a +

√
x + ax

)–λ

√
(x + a +

√
x + ax)

πxy

· sin
(

xy
x + a +

√
x + ax

)
dx

= –λaμ–λy


�(λ –μ)�( +μ )�( +μ )�( +λ )√

π�( +λ )�( +λ+μ

 )�( +λ+μ

 )

· F

⎡
⎢⎢⎣

 + λ


,
 + μ


,
 + μ


,
 +μ


,
 +μ


;



,
 + λ


,
 + λ +μ


,
 + λ +μ


,
 + λ +μ


,
 + λ +μ


;
–
y



⎤
⎥⎥⎦ . (.)

4 Concluding remark
In this section, we briefly consider another variation of the results derived in the pre-
ceding sections. The Fox H-function due to Charles Fox [] can be regarded as an ex-
treme generalization of the generalized hypergeometric functions pFq, beyond the Meijer
G-functions. Like the Meijer G-functions, the Fox H-functions turn out to be related to
the Mellin-Barnes integrals and to the Mellin transforms, but in a more general way. Its
asymptotic behavior and other properties of this function can be seen from the works of
[, ] and []. Further, it can be easily seen that the Bessel function of the first kind in
(.) is a special case of the Fox H-function as follows (see [, p., Eq. (.)]):

Jν(z) =
(
z


)υ

H,
,

[
z



∣∣∣∣ (, ), (–υ, )

] (�(υ) > 
)
. (.)

Therefore, the results presented in this paper are easily converted in terms of the Fox
H-function after some suitable parametric replacement. We are also trying to find certain
possible applications of those results presented here to some other research areas, for
example, Srivastava and Exton [] applied their integral involving the product of several
Bessel functions to give an explicit expression of a generalized random walk.
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