RESEARCH

Boundary Value Problems a SpringerOpen Journal

Open Access

Existence results for classes of infinite semipositone problems

Jerome Goddard II¹, Eun Kyoung Lee², Lakshmi Sankar³ and R Shivaji^{4*}

*Correspondence: shivaji@uncg.edu *Department of Mathematics & Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA Full list of author information is available at the end of the article

Abstract

We consider the problem

$$\begin{cases} -\Delta_{p}u = \frac{au^{p-1}-bu^{\gamma-1}-c}{u^{\alpha}}, & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u), p > 1$, Ω is a smooth bounded domain in $\mathbb{R}^n, a > 0$, $b > 0, c \ge 0, \gamma > p$ and $\alpha \in (0, 1)$. Given a, b, γ and α , we establish the existence of a positive solution for small values of c. These results are also extended to corresponding exterior domain problems. Also, a bifurcation result for the case c = 0 is presented.

1 Introduction

Consider the nonsingular boundary value problem:

$$\begin{cases} -\Delta u = au - bu^2 - ch(x), & x \in \Omega, \\ u = 0, & x \in \partial \Omega, \end{cases}$$
(1)

where Ω is a smooth bounded domain in \mathbb{R}^n , a > 0, b > 0, $c \ge 0$, $\Delta u = \operatorname{div}(\nabla u)$ is the Laplacian of u and $h : \overline{\Omega} \to R$ is a $C^1(\overline{\Omega})$ function satisfying $h(x) \ge 0$ for $x \in \Omega$, $h(x) \not\equiv 0$, $\max_{x\in\overline{\Omega}} h(x) = 1$ and h(x) = 0 for $x \in \partial\Omega$. Existence of positive solutions of problem (1) was studied in [1]. In particular, it was proved that given an $a > \lambda_1$ and b > 0 there exists a $c^*(a, b, \Omega) > 0$ such that for $c < c^*$ (1) has positive solutions. Here, λ_1 is the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions. Nonexistence of a positive solution was also proved when $a \le \lambda_1$. Later in [2], these results were extended to the case of the p-Laplacian operator, Δ_p , where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u)$, p > 1. Boundary value problems of the form (1) are known as semipositone problems since the nonlinearity $f(s, x) = as - bs^2 - ch(x)$ satisfies f(0, x) < 0 for some $x \in \Omega$. See [3–9] for some existence results for semipositone problems.

In this paper, we study positive solutions to the singular boundary value problem:

$$\begin{bmatrix}
-\Delta_p u = \frac{au^{p-1} - bu^{\gamma-1} - c}{u^{\alpha}}, & x \in \Omega, \\
u = 0, & x \in \partial\Omega,
\end{bmatrix}$$
(2)

© 2013 Goddard II et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Page 2 of 9

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$, p > 1, Ω is a smooth bounded domain in \mathbb{R}^n , a > 0, b > 0, $c \ge 0$, $\alpha \in (0, 1)$, p > 1, and $\gamma > p$. In the literature, problems of the form (2) are referred to as infinite semipositone problems as the nonlinearity $f(s) = \frac{as^{p-1}-bs^{\gamma-1}-c}{s^{\alpha}}$ satisfies $\lim_{s\to 0^+} f(s) = -\infty$. One can refer to [10–14], and [15–17] for some recent existence results of infinite semipositone problems. We establish the following theorem.

Theorem 1.1 Given $a, b > 0, \gamma > p$, and $\alpha \in (0, 1)$, there exists a constant $c_1 = c_1(a, b, \alpha, p, \gamma, \Omega) > 0$ such that for $c < c_1$, (2) has a positive solution.

Remark 1.1 In the nonsingular case ($\alpha = 0$), positive solutions exist only when $a > \lambda_1$ (the principal eigenvalue) (see [1, 2]). But in the singular case, we establish the existence of a positive solution for any given a > 0.

Next, we study positive radial solutions to the problem:

$$\begin{cases} -\Delta_p u = K(|x|)(\frac{au^{p-1}-bu^{\gamma-1}-c}{u^{\alpha}}), & x \in \Omega, \\ u = 0, & \text{if } |x| = r_0, \\ u \to 0, & \text{as } |x| \to \infty, \end{cases}$$
(3)

where $\Omega = \{x \in \mathbb{R}^n | |x| > r_0\}$ is an exterior domain, n > p, a > 0, b > 0, $c \ge 0$, $\alpha \in (0,1)$, p > 1, $\gamma > p$ and $K : [r_0, \infty) \to (0, \infty)$ belongs to a class of continuous functions such that $\lim_{r\to\infty} K(r) = 0$. By using the transformation: r = |x| and $s = (\frac{r}{r_0})^{\frac{-n+p}{p-1}}$, we reduce (3) to the following boundary value problem:

$$\begin{cases} -(|u'|^{p-2}u')' = h(s)(\frac{au^{p-1}-bu^{\gamma'-1}-c}{u^{\alpha}}), & 0 < s < 1, \\ u(0) = u(1) = 0, \end{cases}$$
(4)

where $h(s) = (\frac{p-1}{n-p})^p r_0^p s^{\frac{-p(n-1)}{n-p}} K(r_0 s^{\frac{-(p-1)}{n-p}})$. We assume:

(*H*₁) $K \in C([r_0, \infty), (0, \infty))$ and satisfies $K(r) < \frac{1}{r^{n+\theta}}$ for $r \gg 1$, and for some θ such that $(\frac{n-p}{p-1})\alpha < \theta < \frac{n-p}{p-1}$.

With the condition (H_1) , *h* satisfies:

there exists
$$\epsilon_1 > 0$$
 such that $h(s) \le \frac{1}{s^{\rho}}$ for all $s \in (0, \epsilon_1)$,
where $\rho = \frac{n - p - \theta(p - 1)}{n - p}$. (5)

We note that if $\theta \ge \frac{n-p}{p-1}$ then h(s) is nonsingular at 0 and $h \in C([0,1], (0,\infty))$. In this case, problem (4) can be studied using ideas in the proof of Theorem 1.1. Hence, our focus is on the case when $\theta < \frac{n-p}{p-1}$ in which, h may be singular at 0. Note that in this case $\hat{h} = \inf_{s \in (0,1)} h(s) > 0$.

Remark 1.2 Note that $\rho + \alpha < 1$ since $\theta > (\frac{n-p}{n-1})\alpha$.

We then establish the following theorem.

Theorem 1.2 Given a, b > 0, $\gamma > p$, $\alpha \in (0, 1)$, and assume (H_1) holds. Then there exists a constant $c_2 = c_2(a, b, \alpha, p, \gamma) > 0$ such that for $c < c_2$, (3) has a positive radial solution.

Finally, we prove a bifurcation result for the problem

$$\begin{cases} -\Delta_p u = \frac{au^{p-1} - bu^{\gamma-1}}{u^{\alpha}}, & x \in \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
(6)

where Ω is a smooth bounded domain in \mathbb{R}^n , *a* is a positive parameter, *b*, $\alpha > 0$, $p > 1 + \alpha$ and $\gamma > p$. We prove the following.

Theorem 1.3 *The boundary value problem* (6) *has a branch of positive solutions bifurcating from the trivial branch of solutions* (a, 0) *at* (0, 0) *(as shown in Figure 1).*

Our results are obtained *via* the method of sub-super solutions. By a subsolution of (2), we mean a function $\psi \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$ that satisfies

	$\int_{\Omega} \nabla \psi ^{p-2} \nabla \psi \cdot \nabla w dx \leq \int_{\Omega} \frac{a \psi^{p-1} - b \psi^{\gamma-1} - c}{\psi^{\alpha}} w dx,$	for every $w \in W$,
+	$\psi > 0$,	in Ω,
	$\psi = 0$,	on $\partial \Omega$,

and by a supersolution we mean a function $Z \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$ that satisfies:

	$\int_{\Omega} \nabla Z ^{p-2} \nabla Z \cdot \nabla w dx \ge \int_{\Omega} \frac{a Z^{p-1} - b Z^{\gamma-1} - c}{Z^{\alpha}} w dx,$	for every $w \in W$,
1	<i>Z</i> > 0,	in Ω,
	Z = 0,	on $\partial \Omega$,

where $W = \{\xi \in C_0^{\infty}(\Omega) | \xi \ge 0 \text{ in } \Omega\}$. The following lemma was established in [13].

Lemma 1.4 (see [13, 18]) Let ψ be a subsolution of (2) and Z be a supersolution of (2) such that $\psi \leq Z$ in Ω . Then (2) has a solution u such that $\psi \leq u \leq Z$ in Ω .

Finding a positive subsolution, ψ , for such infinite semipositone problems is quite challenging since we need to construct ψ in such a way that $\lim_{x\to\partial\Omega} -\Delta_p \psi = -\infty$ and $-\Delta_p \psi > 0$ in a large part of the interior. In this paper, we achieve this by constructing subsolutions of the form $\psi = k\phi_1^{\beta}$, where k is an appropriate positive constant, $\beta \in (1, \frac{p}{p-1})$ and ϕ_1 is the eigenfunction corresponding to the first eigenvalue of $-\Delta_p \phi = \lambda |\phi|^{p-2} \phi$ in $\Omega, \phi = 0$ on $\partial\Omega$.

In Sections 2, 3, and 4, we provide proofs of our results. Section 5 is concerned with providing some exact bifurcation diagrams of positive solutions of (2) when $\Omega = (0, 1)$ and p = 2.

2 Proof of Theorem 1.1

We first construct a subsolution. Consider the eigenvalue problem $-\Delta_p \phi = \lambda |\phi|^{p-2} \phi$ in Ω , $\phi = 0$ on $\partial \Omega$. Let ϕ_1 be an eigenfunction corresponding to the first eigenvalue λ_1 such that $\phi_1 > 0$ and $\|\phi_1\|_{\infty} = 1$. Also, let δ , $m, \mu > 0$ be such that $|\nabla \phi_1| \ge m$ in Ω_{δ} and $\phi_1 \ge \mu$ in $\Omega - \Omega_{\delta}$, where $\Omega_{\delta} = \{x \in \Omega | d(x, \partial \Omega) \le \delta\}$. Let $\beta \in (1, \frac{p}{p-1+\alpha})$ be fixed. Here, note that since $\alpha \in (0, 1), \frac{p}{p-1+\alpha} > 1$. Choose a k > 0 such that $2bk^{\gamma-p} + \beta^{p-1}\lambda_1k^{\alpha} \le a$. Define $c_1 = \min\{k^{p-1+\alpha}\beta^{p-1}(\beta-1)(p-1)m^p, \frac{1}{2}k^{p-1}\mu^{\beta(p-1)}(a-\beta^{p-1}\lambda_1k^{\alpha})\}$. Note that $c_1 > 0$ by the choice of k and β . Let $\psi = k\phi_1^{\beta}$. Then

$$-\Delta_p \psi = k^{p-1} \beta^{p-1} \lambda_1 \phi_1^{\beta(p-1)} - k^{p-1} \beta^{p-1} (\beta - 1) (p-1) \frac{|\nabla \phi_1|^p}{\phi_1^{p-\beta(p-1)}}.$$

To prove ψ is a subsolution, we need to establish:

$$k^{p-1}\beta^{p-1}\lambda_{1}\phi_{1}^{\beta(p-1)} - k^{p-1}\beta^{p-1}(\beta-1)(p-1)\frac{|\nabla\phi_{1}|^{p}}{\phi_{1}^{p-\beta(p-1)}} \leq ak^{p-1-\alpha}\phi_{1}^{\beta(p-1-\alpha)} - bk^{\gamma-1-\alpha}\phi_{1}^{\beta(\gamma-1-\alpha)} - \frac{c}{k^{\alpha}\phi_{1}^{\alpha\beta}}$$
(7)

in Ω if $c < c_1$. To achieve this, we split the term $k^{p-1}\beta^{p-1}\lambda_1\phi_1^{\beta(p-1)}$ into three, namely,

$$\begin{split} k^{p-1}\beta^{p-1}\lambda_1\phi_1^{\beta(p-1)} &= ak^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)} - \frac{1}{2}k^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)} \big(a - k^{\alpha}\phi_1^{\alpha\beta}\beta^{p-1}\lambda_1\big) \\ &\quad - \frac{1}{2}k^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)} \big(a - k^{\alpha}\phi_1^{\alpha\beta}\beta^{p-1}\lambda_1\big). \end{split}$$

Now to prove (7) holds in Ω , it is enough to show the following three inequalities:

$$-\frac{1}{2}k^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)}\left(a-k^{\alpha}\phi_1^{\alpha\beta}\beta^{p-1}\lambda_1\right) \le -bk^{\gamma-1-\alpha}\phi_1^{\beta(\gamma-1-\alpha)}, \quad \text{in }\Omega,\tag{8}$$

$$-\frac{1}{2}k^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)}\left(a-k^{\alpha}\phi_1^{\alpha\beta}\beta^{p-1}\lambda_1\right) \le -\frac{c}{k^{\alpha}\phi_1^{\alpha\beta}}, \quad \text{in } \Omega - \Omega_{\delta},$$
(9)

$$-k^{p-1}\beta^{p-1}(\beta-1)(p-1)\frac{|\nabla\phi_1|^p}{\phi_1^{p-\beta(p-1)}} \le -\frac{c}{k^{\alpha}\phi_1^{\alpha\beta}}, \quad \text{in } \Omega_{\delta}.$$
 (10)

From the choice of k, $-(a - \beta^{p-1}\lambda_1 k^{\alpha}) \le -2bk^{\gamma-p}$, hence,

$$-\frac{1}{2}k^{p-1-\alpha}\phi_{1}^{\beta(p-1-\alpha)}\left(a-k^{\alpha}\phi_{1}^{\alpha\beta}\beta^{p-1}\lambda_{1}\right) \leq -bk^{\gamma-1-\alpha}\phi_{1}^{\beta(p-1-\alpha)}$$

$$\leq -bk^{\gamma-1-\alpha}\phi_{1}^{\beta(\gamma-1-\alpha)}.$$
(11)

Using $\phi_1 \ge \mu$ in $\Omega - \Omega_{\delta}$ and $c < \frac{1}{2}k^{p-1}\mu^{\beta(p-1)}(a - \beta^{p-1}\lambda_1k^{\alpha})$

$$-\frac{1}{2}k^{p-1-\alpha}\phi_{1}^{\beta(p-1-\alpha)}\left(a-k^{\alpha}\phi_{1}^{\alpha\beta}\beta^{p-1}\lambda_{1}\right) \leq \frac{-k^{p-1}\phi_{1}^{\beta(p-1)}\left(a-k^{\alpha}\lambda_{1}\beta^{p-1}\right)}{2k^{\alpha}\phi_{1}^{\alpha\beta}}$$
$$\leq \frac{-c}{k^{\alpha}\phi_{1}^{\alpha\beta}}.$$
(12)

Finally, since $|\nabla \phi_1| \ge m$, in Ω_{δ} , and $c < k^{p-1+\alpha}\beta^{p-1}(\beta-1)(p-1)m^p$,

$$\begin{aligned} -k^{p-1}\beta^{p-1}(\beta-1)(p-1)\frac{|\nabla\phi_1|^p}{\phi_1^{p-\beta(p-1)}} &\leq \frac{-k^{p-1+\alpha}\beta^{p-1}(\beta-1)(p-1)m^p}{k^{\alpha}\phi_1^{\alpha\beta}\phi_1^{p-\beta(p-1)-\alpha\beta}} \\ &\leq \frac{-c}{k^{\alpha}\phi_1^{\alpha\beta}\phi_1^{p-\beta(p-1+\alpha)}}.\end{aligned}$$

Since $p - \beta(p - 1 + \alpha) > 0$,

$$-k^{p-1}\beta^{p-1}(\beta-1)(p-1)\frac{|\nabla\phi_1|^p}{\phi_1^{p-\beta(p-1)}} \le \frac{-c}{k^{\alpha}\phi_1^{\alpha\beta}}.$$
(13)

From (11), (12) and (13) we see that equation (7) holds in Ω , if $c < c_1$. Next, we construct a supersolution. Let e be the solution of $-\Delta_p e = 1$ in Ω , e = 0 on $\partial \Omega$. Choose $\overline{M} > 0$ such that $\frac{au^{p-1}-bu^{\gamma-1}-c}{u^{\alpha}} \leq \overline{M}^{p-1} \quad \forall u > 0$ and $\overline{M}e \geq \psi$. Define $Z = \overline{M}e$. Then Z is a supersolution of (2). Thus, Theorem 1.1 is proven.

3 Proof of Theorem 1.2

We begin the proof by constructing a subsolution. Consider

$$-\left(\left|\phi'\right|^{p-2}\phi'\right)' = \lambda |\phi|^{p-2}\phi, \quad t \in (0,1),$$

$$\phi(0) = \phi(1) = 0.$$
(14)

Let ϕ_1 be an eigenfunction corresponding to the first eigenvalue of (14) such that $\phi_1 > 0$ and $\|\phi_1\|_{\infty} = 1$. Then there exist $d_1 > 0$ such that $0 < \phi_1(t) \le d_1t(1-t)$ for $t \in (0,1)$. Also, let $\epsilon < \epsilon_1$ and $m, \mu > 0$ be such that $|\phi'_1| \ge m$ in $(0,\epsilon] \cup [1-\epsilon,1)$ and $\phi_1 \ge \mu$ in $(\epsilon, 1-\epsilon)$. Let $\beta \in (1, \frac{p-\rho}{p-1+\alpha})$ be fixed and choose k > 0 such that $2bk^{\gamma-p} + \frac{\beta^{p-1}\lambda_1k^{\alpha}}{\hat{h}} \le a$. Define $c_2 = \min\{\frac{k^{p-1+\alpha}\beta^{p-1}(\beta-1)(p-1)m^p}{d_1^{\rho}}, \frac{1}{2}k^{p-1}\mu^{\beta(p-1)}(a-\frac{\beta^{p-1}\lambda_1k^{\alpha}}{\hat{h}})\}$. Then $c_2 > 0$ by the choice of k and β . Let $\psi = k\phi_1^{\beta}$. This implies that:

$$-(|\psi'|^{p-2}\psi')' = k^{p-1}\beta^{p-1}\lambda_1\phi_1^{\beta(p-1)} - k^{p-1}\beta^{p-1}(\beta-1)(p-1)\frac{|\phi_1'|^p}{\phi_1^{p-\beta(p-1)}}$$

To prove ψ is a subsolution, we need to establish:

$$k^{p-1}\beta^{p-1}\lambda_{1}\phi_{1}^{\beta(p-1)} - k^{p-1}\beta^{p-1}(\beta-1)(p-1)\frac{\phi_{1}^{\prime p}}{\phi_{1}^{p-\beta(p-1)}} \\ \leq h(t) \bigg(ak^{p-1-\alpha}\phi_{1}^{\beta(p-1-\alpha)} - bk^{\gamma-1-\alpha}\phi_{1}^{\beta(\gamma-1-\alpha)} - \frac{c}{k^{\alpha}\phi_{1}^{\alpha\beta}}\bigg).$$
(15)

Here, we note that the term $k^{p-1}\beta^{p-1}\lambda_1\phi_1^{\beta(p-1)} = \frac{\hat{h}k^{p-1}\beta^{p-1}\lambda_1\phi_1^{\beta(p-1)}}{\hat{h}} \leq h(t)(ak^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)} - \frac{1}{2}k^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)}(a - \frac{k^{\alpha}\phi_1^{\alpha\beta}\beta^{p-1}\lambda_1}{\hat{h}}))$, where $\hat{h} = \inf_{s \in (0,1)} h(s)$. Now to prove (15) holds in (0, 1), it is enough to show the following three inequalities:

$$-\frac{1}{2}k^{p-1-\alpha}\phi_{1}^{\beta(p-1-\alpha)}\left(a-\frac{k^{\alpha}\phi_{1}^{\alpha\beta}\beta^{p-1}\lambda_{1}}{\hat{h}}\right) \leq -bk^{\gamma-1-\alpha}\phi_{1}^{\beta(\gamma-1-\alpha)}, \quad \text{in (0,1)},$$
(16)

$$-\frac{1}{2}k^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)}\left(a-\frac{k^{\alpha}\phi_1^{\alpha\beta}\beta^{p-1}\lambda_1}{\hat{h}}\right) \le -\frac{c}{k^{\alpha}\phi_1^{\alpha\beta}}, \quad \text{in } (\epsilon, 1-\epsilon),$$
(17)

$$-k^{p-1}\beta^{p-1}(\beta-1)(p-1)\frac{|\phi_1'|^p}{\phi_1^{p-\beta(p-1)}} \le -\frac{ch(t)}{k^{\alpha}\phi_1^{\alpha\beta}}, \quad \text{in } (0,\epsilon] \cup [1-\epsilon,1).$$
(18)

From the choice of k, $-(a - \frac{\beta^{p-1}\lambda_1k^{\alpha}}{\hat{h}}) \leq -2bk^{\gamma-p}$, hence,

$$-\frac{1}{2}k^{p-1-\alpha}\phi_{1}^{\beta(p-1-\alpha)}\left(a-\frac{k^{\alpha}\phi_{1}^{\alpha\beta}\beta^{p-1}\lambda_{1}}{\hat{h}}\right) \leq -bk^{\gamma-1-\alpha}\phi_{1}^{\beta(p-1-\alpha)}$$
$$\leq -bk^{\gamma-1-\alpha}\phi_{1}^{\beta(\gamma-1-\alpha)}.$$
(19)

Using $\phi_1 \ge \mu$ in $(\epsilon, 1-\epsilon)$ and $c < \frac{1}{2}k^{p-1}\mu^{\beta(p-1)}(a - \frac{\beta^{p-1}\lambda_1k^{\alpha}}{\hat{h}})$

$$-\frac{1}{2}k^{p-1-\alpha}\phi_{1}^{\beta(p-1-\alpha)}\left(a-\frac{k^{\alpha}\phi_{1}^{\alpha\beta}\beta^{p-1}\lambda_{1}}{\hat{h}}\right) \leq \frac{-k^{p-1}\phi_{1}^{\beta(p-1)}(a-\frac{k^{\alpha}\lambda_{1}\beta^{p-1}}{\hat{h}})}{2k^{\alpha}\phi_{1}^{\alpha\beta}} \leq \frac{-c}{k^{\alpha}\phi_{1}^{\alpha\beta}}.$$

$$(20)$$

Next, we prove (18) holds in $(0, \epsilon]$. Since $|\phi'_1| \ge m$, and $p - \beta(p-1) > \alpha\beta + \rho$

$$\begin{split} -k^{p-1}\beta^{p-1}(\beta-1)(p-1)\frac{|\phi_1'|^p}{\phi_1^{p-\beta(p-1)}} &\leq \frac{-k^{p-1+\alpha}\beta^{p-1}(\beta-1)(p-1)m^p}{k^{\alpha}\phi_1^{\alpha\beta}\phi_1^{\rho}} \\ &\leq \frac{-k^{p-1+\alpha}\beta^{p-1}(\beta-1)(p-1)m^p}{k^{\alpha}\phi_1^{\alpha\beta}d_1^{\rho}t^{\rho}}. \end{split}$$

Since $h(t) \leq \frac{1}{t^{\rho}}$ in $(0, \epsilon]$, and $c < \frac{k^{p-1+\alpha}\beta^{p-1}(\beta-1)(p-1)m^p}{d_1^{\rho}}$,

$$-k^{p-1}\beta^{p-1}(\beta-1)(p-1)\frac{|\phi_1'|^p}{\phi_1^{p-\beta(p-1)}} \le \frac{-ch(t)}{k^{\alpha}\phi_1^{\alpha\beta}}.$$
(21)

Proving (18) holds in $[1 - \epsilon, 1)$ is straightforward since *h* is not singular at t = 1. Thus, from equations (19), (20) and (21), we see that (15) holds in (0,1). Hence, ψ is a subsolution. Let $Z = \overline{M}e$ where *e* satisfies $-(|e'|^{p-2}e')' = h(t)$ in (0,1), e(0) = e(1) = 0 and \overline{M} is such that $\frac{au^{p-1}-bu^{\gamma-1}-c}{u^{\alpha}} \leq \overline{M}^{p-1} \forall u > 0$ and $\overline{M}e \geq \psi$. Then *Z* is a supersolution of (4) and there exists a solution *u* of (4) such that $u \in [\psi, Z]$. Thus, Theorem 1.2 is proven.

4 Proof of Theorem 1.3

We first prove (6) has a positive solution for every a > 0. We begin by constructing a subsolution. Let ϕ_1 be as in the proof of Theorem 1.1 (see Section 2). Let $\beta \in (1, \frac{p}{p-1})$, and choose a k > 0 such that $bk^{\gamma-p} + \beta^{p-1}\lambda_1 k^{\alpha} \leq a$. Let $\psi = k\phi_1^{\beta}$. Then

$$-\Delta_p \psi = k^{p-1} \beta^{p-1} \lambda_1 \phi_1^{\beta(p-1)} - k^{p-1} \beta^{p-1} (\beta - 1) (p-1) \frac{|\nabla \phi_1|^p}{\phi_1^{p-\beta(p-1)}}.$$

To prove ψ is a subsolution, we will establish:

$$k^{p-1}\beta^{p-1}\lambda_1\phi_1^{\beta(p-1)} \le ak^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)} - bk^{\gamma-1-\alpha}\phi_1^{\beta(\gamma-1-\alpha)}$$
(22)

in Ω . To achieve this, we rewrite the term $k^{p-1}\beta^{p-1}\lambda_1\phi_1^{\beta(p-1)}$ as $k^{p-1}\beta^{p-1}\lambda_1\phi_1^{\beta(p-1)} = ak^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)} - k^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)}(a - k^{\alpha}\phi_1^{\alpha\beta}\beta^{p-1}\lambda_1)$. Now to prove (22) holds in Ω , it is enough to show $-k^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)}(a - k^{\alpha}\phi_1^{\alpha\beta}\beta^{p-1}\lambda_1) \le -bk^{\gamma-1-\alpha}\phi_1^{\beta(\gamma-1-\alpha)}$. From the choice of $k, -(a - \beta^{p-1}\lambda_1k^{\alpha}) \le -bk^{\gamma-p}$, hence,

$$\begin{aligned} -k^{p-1-\alpha}\phi_1^{\beta(p-1-\alpha)} \big(a - k^{\alpha}\phi_1^{\alpha\beta}\beta^{p-1}\lambda_1\big) &\leq -bk^{\gamma-1-\alpha}\phi_1^{\beta(p-1-\alpha)} \\ &\leq -bk^{\gamma-1-\alpha}\phi_1^{\beta(\gamma-1-\alpha)}. \end{aligned}$$

Thus, ψ is a subsolution. It is easy to see that $Z = (\frac{a}{b})^{\frac{1}{\gamma-p}}$ is a supersolution of (6). Since k, can be chosen small enough, $\psi \leq Z$. Thus, (6) has a positive solution for every a > 0. Also, all positive solutions are bounded above by Z. Hence, when a is close to 0, every positive solution of (6) approaches 0. Also, $u \equiv 0$ is a solution for every a. This implies we have a branch of positive solutions bifurcating from the trivial branch of solutions (a, 0) at (0, 0).

5 Numerical results

Consider the boundary value problem

$$\begin{cases} -u''(x) = \frac{au - bu^2 - c}{u^{\alpha}}, & x \in (0, 1), \\ u(0) = 0 = u(1), \end{cases}$$
(23)

where $a, b > 0, c \ge 0$ and $\alpha \in (0, 1)$. Using the quadrature method (see [19]), the bifurcation diagram of positive solutions of (23) is given by

$$G(\rho,c) = \int_0^\rho \frac{ds}{\sqrt{[2(F(\rho) - F(s))]}} = \frac{1}{2},$$
(24)

where $F(s) := \int_0^s f(t) dt$ where $f(t) = \frac{at-bt^2-c}{t^{\alpha}}$ and $\rho = u(\frac{1}{2}) = ||u||_{\infty}$. We plot the exact bifurcation diagram of positive solutions of (23) using Mathematica. Figure 2 shows bifurcation diagrams of positive solutions of (23) when a = 8 (< λ_1) and b = 1 for different values of α .

Bifurcation diagrams of positive solutions of (23) when a = 15 (> λ_1) and b = 1 for different values of α is shown in Figure 3.

Finally, we provide the exact bifurcation diagram for (6) when p = 2, and $\Omega = (0, 1)$. Consider

$$\begin{cases} -u''(x) = \frac{au - bu^2}{u^{\alpha}}, \quad x \in (0, 1), \\ u(0) = 0 = u(1), \end{cases}$$
(25)

where $a, b, \alpha > 0$. The bifurcation diagram of positive solutions of (25) is given by

$$\tilde{G}(\rho, a) = \int_0^{\rho} \frac{ds}{\sqrt{[2(\tilde{F}(\rho) - \tilde{F}(s))]}} = \frac{1}{2},$$
(26)

where $\tilde{F}(s) := \int_0^s \tilde{f}(t) dt$ where $\tilde{f}(t) = \frac{at-bt^2}{t^{\alpha}}$ and $\rho = u(\frac{1}{2}) = ||u||_{\infty}$. The bifurcation diagram of positive solutions of (25) as well as the trivial solution branch are shown in Figure 4 when $\alpha = 0.5$ and b = 1.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Equal contributions from all authors.

Author details

¹Department of Mathematics, Auburn University Montgomery, Montgomery, AL 36124, USA. ²Department of Mathematics Education, Pusan National University, Busan, 609-735, Korea. ³Department of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762, USA. ⁴Department of Mathematics & Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.

Acknowledgements

EK Lee was supported by 2-year Research Grant of Pusan National University.

Received: 23 October 2012 Accepted: 5 April 2013 Published: 19 April 2013

References

- Oruganti, S, Shi, J, Shivaji, R: Diffusive logistic equation with constant harvesting, I: steady states. Trans. Am. Math. Soc. 354(9), 3601-3619 (2002)
- Oruganti, S, Shi, J, Shivaji, R: Logistic equation with the *p*-Laplacian and constant yield harvesting. Abstr. Appl. Anal. 9, 723-727 (2004)
- 3. Ambrosetti, A, Arcoya, D, Biffoni, B: Positive solutions for some semipositone problems via bifurcation theory. Differ. Integral Equ. 7, 655-663 (1994)
- Anuradha, V, Hai, DD, Shivaji, R: Existence results for superlinear semipositone boundary value problems. Proc. Am. Math. Soc. 124(3), 757-763 (1996)
- Arcoya, D, Zertiti, A: Existence and nonexistence of radially symmetric nonnegative solutions for a class of semipositone problems in an annulus. Rend. Mat. Appl. 14, 625-646 (1994)
- Castro, A, Garner, JB, Shivaji, R: Existence results for classes of sublinear semipositone problems. Results Math. 23, 214-220 (1993)
- Castro, A, Shivaji, R: Nonnegative solutions for a class of nonpositone problems. Proc. R. Soc. Edinb. 108(A), 291-302 (1998)
- Castro, A, Shivaji, R: Nonnegative solutions for a class of radially symmetric nonpositone problems. Proc. Am. Math. Soc. 106(3), 735-740 (1989)
- 9. Castro, A, Shivaji, R: Positive solutions for a concave semipositone Dirichlet problem. Nonlinear Anal. 31, 91-98 (1998)
- Ghergu, M, Radulescu, V: Sublinear singular elliptic problems with two parameters. J. Differ. Equ. 195, 520-536 (2003)
 Hai, DD, Sankar, L, Shivaji, R: Infinite semipositone problems with asymptotically linear growth forcing terms. Differ.
- Integral Equ. **25**(11-12), 1175-1188 (2012) L. Horspardz J. Manscha EJ. Vaga J. Mit Desitive solutions for singular populations elliptic equations. Proc. P. Soc. Ediph.
- 12. Hernandez, J, Mancebo, FJ, Vega, JM: Positive solutions for singular nonlinear elliptic equations. Proc. R. Soc. Edinb. 137A, 41-62 (2007)
- 13. Lee, E, Shivaji, R, Ye, J: Classes of infinite semipositone systems. Proc. R. Soc. Edinb. 139(A), 853-865 (2009)
- 14. Lee, E, Shivaji, R, Ye, J: Positive solutions for elliptic equations involving nonlinearities with falling zeros. Appl. Math. Lett. 22, 846-851 (2009)
- 15. Ramaswamy, M, Shivaji, R, Ye, J: Positive solutions for a class of infinite semipositone problems. Differ. Integral Equ. 20(11), 1423-1433 (2007)
- 16. Shi, J, Yao, M: On a singular nonlinear semilinear elliptic problem. Proc. R. Soc. Edinb. 128A, 1389-1401 (1998)
- 17. Zhang, Z: On a Dirichlet problem with a singular nonlinearity. J. Math. Anal. Appl. 194, 103-113 (1995)
- Cui, S: Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems. Nonlinear Anal. 41, 149-176 (2000)
- 19. Laetsch, T: The number of solutions of a nonlinear two point boundary value problem. Indiana Univ. Math. J. 20, 1-13 (1970)

doi:10.1186/1687-2770-2013-97

Cite this article as: Goddard II et al.: Existence results for classes of infinite semipositone problems. Boundary Value Problems 2013 2013:97.