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Abstract
We consider the problem

{
–�pu = aup–1–buγ –1–c

uα , x ∈ �,

u = 0, x ∈ ∂�,

where �pu = div(|∇u|p–2∇u), p > 1, � is a smooth bounded domain inR
n, a > 0,

b > 0, c ≥ 0, γ > p and α ∈ (0, 1). Given a, b, γ and α, we establish the existence of a
positive solution for small values of c. These results are also extended to
corresponding exterior domain problems. Also, a bifurcation result for the case c = 0 is
presented.

1 Introduction
Consider the nonsingular boundary value problem:

⎧⎨
⎩–�u = au – bu – ch(x), x ∈ �,

u = , x ∈ ∂�,
()

where � is a smooth bounded domain in R
n, a > , b > , c ≥ , �u = div(∇u) is the

Laplacian of u and h : �̄ → R is a C(�̄) function satisfying h(x) ≥  for x ∈ �, h(x) �≡ ,
maxx∈�̄ h(x) =  and h(x) =  for x ∈ ∂�. Existence of positive solutions of problem () was
studied in []. In particular, it was proved that given an a > λ and b >  there exists a
c∗(a,b,�) >  such that for c < c∗ () has positive solutions. Here, λ is the first eigenvalue
of –� with Dirichlet boundary conditions. Nonexistence of a positive solution was also
provedwhen a ≤ λ. Later in [], these results were extended to the case of the p-Laplacian
operator, �p, where �pu = div(|∇u|p–∇u), p > . Boundary value problems of the form
() are known as semipositone problems since the nonlinearity f (s,x) = as – bs – ch(x)
satisfies f (,x) <  for some x ∈ �. See [–] for some existence results for semipositone
problems.
In this paper, we study positive solutions to the singular boundary value problem:

⎧⎨
⎩–�pu = aup––buγ––c

uα , x ∈ �,

u = , x ∈ ∂�,
()
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where �pu = div(|∇u|p–∇u), p > , � is a smooth bounded domain in R
n, a > , b > ,

c ≥ , α ∈ (, ), p > , and γ > p. In the literature, problems of the form () are re-
ferred to as infinite semipositone problems as the nonlinearity f (s) = asp––bsγ––c

sα satisfies
lims→+ f (s) = –∞. One can refer to [–], and [–] for some recent existence results
of infinite semipositone problems. We establish the following theorem.

Theorem. Given a,b > , γ > p, and α ∈ (, ), there exists a constant c = c(a,b,α,p,γ ,
�) >  such that for c < c, () has a positive solution.

Remark . In the nonsingular case (α = ), positive solutions exist only when a > λ (the
principal eigenvalue) (see [, ]). But in the singular case, we establish the existence of a
positive solution for any given a > .

Next, we study positive radial solutions to the problem:

⎧⎪⎪⎨
⎪⎪⎩
–�pu = K(|x|)( aup––buγ––c

uα ), x ∈ �,

u = , if |x| = r,

u→ , as |x| → ∞,

()

where � = {x ∈ R
n||x| > r} is an exterior domain, n > p, a > , b > , c ≥ , α ∈ (, ),

p > , γ > p and K : [r,∞) → (,∞) belongs to a class of continuous functions such that
limr→∞ K(r) = . By using the transformation: r = |x| and s = ( r

r
)
–n+p
p– , we reduce () to the

following boundary value problem:

⎧⎨
⎩–(|u′|p–u′)′ = h(s)( aup––buγ––c

uα ),  < s < ,

u() = u() = ,
()

where h(s) = ( p–n–p )
prps

–p(n–)
n–p K(rs

–(p–)
n–p ). We assume:

(H) K ∈ C([r,∞), (,∞)) and satisfies K(r) < 
rn+θ for r � , and for some θ such that

( n–pp– )α < θ < n–p
p– .

With the condition (H), h satisfies:

there exists ε >  such that h(s) ≤ 
sρ

for all s ∈ (, ε),

where ρ =
n – p – θ (p – )

n – p
. ()

We note that if θ ≥ n–p
p– then h(s) is nonsingular at  and h ∈ C([, ], (,∞)). In this case,

problem () can be studied using ideas in the proof of Theorem .. Hence, our focus is
on the case when θ < n–p

p– in which, h may be singular at . Note that in this case ĥ =
infs∈(,) h(s) > .

Remark . Note that ρ + α <  since θ > ( n–pp– )α.

We then establish the following theorem.

http://www.boundaryvalueproblems.com/content/2013/1/97
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Figure 1 Bifurcation diagram, a vs. ‖u‖∞ for (6).

Theorem . Given a,b > , γ > p, α ∈ (, ), and assume (H) holds. Then there exists a
constant c = c(a,b,α,p,γ ) >  such that for c < c, () has a positive radial solution.

Finally, we prove a bifurcation result for the problem

⎧⎨
⎩–�pu = aup––buγ–

uα , x ∈ �,

u = , on ∂�,
()

where � is a smooth bounded domain in R
n, a is a positive parameter, b,α > , p >  + α

and γ > p. We prove the following.

Theorem . The boundary value problem () has a branch of positive solutions bifurcat-
ing from the trivial branch of solutions (a, ) at (, ) (as shown in Figure ).

Our results are obtained via the method of sub-super solutions. By a subsolution of (),
we mean a function ψ ∈W ,p(�)∩C(�̄) that satisfies

⎧⎪⎪⎨
⎪⎪⎩

∫
�

|∇ψ |p–∇ψ · ∇wdx ≤ ∫
�

aψp––bψγ––c
ψα wdx, for every w ∈ W ,

ψ > , in �,

ψ = , on ∂�,

and by a supersolution we mean a function Z ∈W ,p(�)∩C(�̄) that satisfies:

⎧⎪⎪⎨
⎪⎪⎩

∫
�

|∇Z|p–∇Z · ∇wdx ≥ ∫
�

aZp––bZγ––c
Zα wdx, for every w ∈W ,

Z > , in �,

Z = , on ∂�,

whereW = {ξ ∈ C∞
 (�)|ξ ≥  in �}. The following lemma was established in [].

Lemma . (see [, ]) Let ψ be a subsolution of () and Z be a supersolution of () such
that ψ ≤ Z in �. Then () has a solution u such that ψ ≤ u≤ Z in �.

http://www.boundaryvalueproblems.com/content/2013/1/97


Goddard II et al. Boundary Value Problems 2013, 2013:97 Page 4 of 9
http://www.boundaryvalueproblems.com/content/2013/1/97

Finding a positive subsolution, ψ , for such infinite semipositone problems is quite
challenging since we need to construct ψ in such a way that limx→∂� –�pψ = –∞ and
–�pψ >  in a large part of the interior. In this paper, we achieve this by constructing sub-
solutions of the form ψ = kφβ

 , where k is an appropriate positive constant, β ∈ (, p
p– )

and φ is the eigenfunction corresponding to the first eigenvalue of –�pφ = λ|φ|p–φ in
�, φ =  on ∂�.
In Sections , , and , we provide proofs of our results. Section  is concerned with

providing some exact bifurcation diagrams of positive solutions of () when � = (, ) and
p = .

2 Proof of Theorem 1.1
We first construct a subsolution. Consider the eigenvalue problem –�pφ = λ|φ|p–φ in
�, φ =  on ∂�. Let φ be an eigenfunction corresponding to the first eigenvalue λ such
that φ >  and ‖φ‖∞ = . Also, let δ,m,μ >  be such that |∇φ| ≥ m in �δ and φ ≥ μ

in � – �δ , where �δ = {x ∈ �|d(x, ∂�) ≤ δ}. Let β ∈ (, p
p–+α

) be fixed. Here, note that
since α ∈ (, ), p

p–+α
> . Choose a k >  such that bkγ–p + βp–λkα ≤ a. Define c =

min{kp–+αβp–(β – )(p– )mp, k
p–μβ(p–)(a– βp–λkα)}. Note that c >  by the choice

of k and β . Let ψ = kφβ
 . Then

–�pψ = kp–βp–λφ
β(p–)
 – kp–βp–(β – )(p – )

|∇φ|p
φ
p–β(p–)


.

To prove ψ is a subsolution, we need to establish:

kp–βp–λφ
β(p–)
 – kp–βp–(β – )(p – )

|∇φ|p
φ
p–β(p–)


≤ akp––αφ
β(p––α)
 – bkγ––αφ

β(γ––α)
 –

c
kαφ

αβ


()

in � if c < c. To achieve this, we split the term kp–βp–λφ
β(p–)
 into three, namely,

kp–βp–λφ
β(p–)
 = akp––αφ

β(p––α)
 –



kp––αφ

β(p––α)


(
a – kαφ

αβ
 βp–λ

)
–


kp––αφ

β(p––α)


(
a – kαφ

αβ
 βp–λ

)
.

Now to prove () holds in �, it is enough to show the following three inequalities:

–


kp––αφ

β(p––α)


(
a – kαφ

αβ
 βp–λ

) ≤ –bkγ––αφ
β(γ––α)
 , in �, ()

–


kp––αφ

β(p––α)


(
a – kαφ

αβ
 βp–λ

) ≤ –
c

kαφ
αβ


, in � –�δ , ()

–kp–βp–(β – )(p – )
|∇φ|p

φ
p–β(p–)


≤ –
c

kαφ
αβ


, in �δ . ()

From the choice of k, –(a – βp–λkα) ≤ –bkγ–p, hence,

–


kp––αφ

β(p––α)


(
a – kαφ

αβ
 βp–λ

) ≤ –bkγ––αφ
β(p––α)


≤ –bkγ––αφ
β(γ––α)
 . ()

http://www.boundaryvalueproblems.com/content/2013/1/97
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Using φ ≥ μ in � –�δ and c < 
k

p–μβ(p–)(a – βp–λkα)

–


kp––αφ

β(p––α)


(
a – kαφ

αβ
 βp–λ

) ≤ –kp–φβ(p–)
 (a – kαλβ

p–)
kαφ

αβ


≤ –c
kαφ

αβ


. ()

Finally, since |∇φ| ≥ m, in �δ , and c < kp–+αβp–(β – )(p – )mp,

–kp–βp–(β – )(p – )
|∇φ|p

φ
p–β(p–)


≤ –kp–+αβp–(β – )(p – )mp

kαφ
αβ
 φ

p–β(p–)–αβ



≤ –c
kαφ

αβ
 φ

p–β(p–+α)


.

Since p – β(p –  + α) > ,

–kp–βp–(β – )(p – )
|∇φ|p

φ
p–β(p–)


≤ –c
kαφ

αβ


. ()

From (), () and () we see that equation () holds in �, if c < c. Next, we construct
a supersolution. Let e be the solution of –�pe =  in �, e =  on ∂�. Choose M̄ >  such
that aup––buγ––c

uα ≤ M̄p– ∀u >  and M̄e≥ ψ . Define Z = M̄e. Then Z is a supersolution of
(). Thus, Theorem . is proven.

3 Proof of Theorem 1.2
We begin the proof by constructing a subsolution. Consider

–
(∣∣φ′∣∣p–φ′)′ = λ|φ|p–φ, t ∈ (, ),

φ() = φ() = .
()

Let φ be an eigenfunction corresponding to the first eigenvalue of () such that φ > 
and ‖φ‖∞ = . Then there exist d >  such that  < φ(t) ≤ dt( – t) for t ∈ (, ). Also,
let ε < ε and m,μ >  be such that |φ′

| ≥ m in (, ε] ∪ [ – ε, ) and φ ≥ μ in (ε,  – ε).
Let β ∈ (, p–ρ

p–+α
) be fixed and choose k >  such that bkγ–p + βp–λkα

ĥ
≤ a. Define c =

min{ kp–+αβp–(β–)(p–)mp

dρ


, k
p–μβ(p–)(a – βp–λkα

ĥ
)}. Then c >  by the choice of k and β .

Let ψ = kφβ
 . This implies that:

–
(∣∣ψ ′∣∣p–ψ ′)′ = kp–βp–λφ

β(p–)
 – kp–βp–(β – )(p – )

|φ′
|p

φ
p–β(p–)


.

To prove ψ is a subsolution, we need to establish:

kp–βp–λφ
β(p–)
 – kp–βp–(β – )(p – )

φ′

p

φ
p–β(p–)


≤ h(t)
(
akp––αφ

β(p––α)
 – bkγ––αφ

β(γ––α)
 –

c
kαφ

αβ


)
. ()

http://www.boundaryvalueproblems.com/content/2013/1/97
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Here, we note that the term kp–βp–λφ
β(p–)
 = ĥkp–βp–λφ

β(p–)


ĥ
≤ h(t)(akp––αφ

β(p––α)
 –


k

p––αφ
β(p––α)
 (a– kαφ

αβ
 βp–λ
ĥ

)– 
k

p––αφ
β(p––α)
 (a– kαφ

αβ
 βp–λ
ĥ

)), where ĥ = infs∈(,) h(s).
Now to prove () holds in (, ), it is enough to show the following three inequalities:

–


kp––αφ

β(p––α)


(
a –

kαφ
αβ
 βp–λ

ĥ

)
≤ –bkγ––αφ

β(γ––α)
 , in (, ), ()

–


kp––αφ

β(p––α)


(
a –

kαφ
αβ
 βp–λ

ĥ

)
≤ –

c
kαφ

αβ


, in (ε,  – ε), ()

–kp–βp–(β – )(p – )
|φ′

|p
φ
p–β(p–)


≤ –
ch(t)
kαφ

αβ


, in (, ε]∪ [ – ε, ). ()

From the choice of k, –(a – βp–λkα

ĥ
) ≤ –bkγ–p, hence,

–


kp––αφ

β(p––α)


(
a –

kαφ
αβ
 βp–λ

ĥ

)
≤ –bkγ––αφ

β(p––α)


≤ –bkγ––αφ
β(γ––α)
 . ()

Using φ ≥ μ in (ε,  – ε) and c < 
k

p–μβ(p–)(a – βp–λkα

ĥ
)

–


kp––αφ

β(p––α)


(
a –

kαφ
αβ
 βp–λ

ĥ

)
≤

–kp–φβ(p–)
 (a – kαλβp–

ĥ
)

kαφ
αβ


≤ –c
kαφ

αβ


. ()

Next, we prove () holds in (, ε]. Since |φ′
| ≥ m, and p – β(p – ) > αβ + ρ

–kp–βp–(β – )(p – )
|φ′

|p
φ
p–β(p–)


≤ –kp–+αβp–(β – )(p – )mp

kαφ
αβ
 φ

ρ


≤ –kp–+αβp–(β – )(p – )mp

kαφ
αβ
 dρ

 tρ
.

Since h(t) ≤ 
tρ in (, ε], and c < kp–+αβp–(β–)(p–)mp

dρ


,

–kp–βp–(β – )(p – )
|φ′

|p
φ
p–β(p–)


≤ –ch(t)
kαφ

αβ


. ()

Proving () holds in [ – ε, ) is straightforward since h is not singular at t = . Thus, from
equations (), () and (), we see that () holds in (, ). Hence, ψ is a subsolution.
Let Z = M̄e where e satisfies –(|e′|p–e′)′ = h(t) in (, ), e() = e() =  and M̄ is such that
aup––buγ––c

uα ≤ M̄p– ∀u >  and M̄e≥ ψ . Then Z is a supersolution of () and there exists
a solution u of () such that u ∈ [ψ ,Z]. Thus, Theorem . is proven.

4 Proof of Theorem 1.3
We first prove () has a positive solution for every a > . We begin by constructing a sub-
solution. Let φ be as in the proof of Theorem . (see Section ). Let β ∈ (, p

p– ), and

http://www.boundaryvalueproblems.com/content/2013/1/97
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choose a k >  such that bkγ–p + βp–λkα ≤ a. Let ψ = kφβ
 . Then

–�pψ = kp–βp–λφ
β(p–)
 – kp–βp–(β – )(p – )

|∇φ|p
φ
p–β(p–)


.

To prove ψ is a subsolution, we will establish:

kp–βp–λφ
β(p–)
 ≤ akp––αφ

β(p––α)
 – bkγ––αφ

β(γ––α)
 ()

in �. To achieve this, we rewrite the term kp–βp–λφ
β(p–)
 as kp–βp–λφ

β(p–)
 =

akp––αφ
β(p––α)
 – kp––αφ

β(p––α)
 (a – kαφ

αβ
 βp–λ). Now to prove () holds in �, it is

enough to show –kp––αφ
β(p––α)
 (a – kαφ

αβ
 βp–λ) ≤ –bkγ––αφ

β(γ––α)
 . From the choice

of k, –(a – βp–λkα)≤ –bkγ–p, hence,

–kp––αφ
β(p––α)


(
a – kαφ

αβ
 βp–λ

) ≤ –bkγ––αφ
β(p––α)


≤ –bkγ––αφ
β(γ––α)
 .

Thus, ψ is a subsolution. It is easy to see that Z = ( ab )


γ–p is a supersolution of (). Since k,
can be chosen small enough, ψ ≤ Z. Thus, () has a positive solution for every a > . Also,
all positive solutions are bounded above by Z. Hence, when a is close to , every positive
solution of () approaches . Also, u ≡  is a solution for every a. This implies we have a
branch of positive solutions bifurcating from the trivial branch of solutions (a, ) at (, ).

5 Numerical results
Consider the boundary value problem

⎧⎨
⎩–u′′(x) = au–bu–c

uα , x ∈ (, ),

u() =  = u(),
()

where a,b > , c ≥  and α ∈ (, ). Using the quadraturemethod (see []), the bifurcation
diagram of positive solutions of () is given by

G(ρ, c) =
∫ ρ



ds√
[(F(ρ) – F(s))]

=


, ()

where F(s) :=
∫ s
 f (t)dt where f (t) =

at–bt–c
tα and ρ = u(  ) = ‖u‖∞. We plot the exact bifur-

cation diagramof positive solutions of () usingMathematica. Figure  shows bifurcation
diagrams of positive solutions of () when a =  (< λ) and b =  for different values of α.
Bifurcation diagrams of positive solutions of () when a =  (> λ) and b =  for differ-

ent values of α is shown in Figure .
Finally, we provide the exact bifurcation diagram for () when p = , and� = (, ). Con-

sider
⎧⎨
⎩–u′′(x) = au–bu

uα , x ∈ (, ),

u() =  = u(),
()

http://www.boundaryvalueproblems.com/content/2013/1/97
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Figure 2 Bifurcation diagrams, c vs. ρ for (23) with a = 8, b = 1.

Figure 3 Bifurcation diagrams, c vs. ρ for (23) with a = 15, b = 1.

Figure 4 Bifurcation diagram, a vs. ρ for (25) with α = 0.5, b = 1.

http://www.boundaryvalueproblems.com/content/2013/1/97
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where a,b,α > . The bifurcation diagram of positive solutions of () is given by

G̃(ρ,a) =
∫ ρ



ds√
[(F̃(ρ) – F̃(s))]

=


, ()

where F̃(s) :=
∫ s
 f̃ (t)dt where f̃ (t) =

at–bt
tα and ρ = u(  ) = ‖u‖∞. The bifurcation diagram

of positive solutions of () as well as the trivial solution branch are shown in Figure 
when α = . and b = .
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