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Abstract
In this paper, we study the structure of the Fučík spectrum �D/N

p (a,b) of Dirichlet and
Neumann problems for the scalar p-Laplacian with indefinite weights a,b ∈ L1[0, 1].
Besides the trivial horizontal lines and vertical lines, it will be shown that, confined to
each quadrant of R2, �D/N

p (a,b) is made up of zero, an odd number of, or a double
sequence of hyperbolic like curves. These hyperbolic like curves are continuous and
strictly monotonic, and they have horizontal and vertical asymptotic lines. The
number of the hyperbolic like curves is determined by the Dirichlet and Neumann
half-eigenvalues of the p-Laplacian with weights a and b. The asymptotic lines will be
estimated by using Sturm-Liouville eigenvalues of the p-Laplacian with a weight a
or b.
MSC: 34B09; 34B15; 34L05
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1 Introduction
Fučík spectrumwas first introduced for the Laplacian on a bounded domain� ⊂R

N ,N ≥
, by Dancer [] and by Fučík [] in the s, in connection with the study of semilinear
elliptic boundary value problems with jumping nonlinearities. Thereafter this important
concept was generalized to the p-Laplacian, p > . See [] and references therein.
In this paper, we are concerned with the Fučík spectrum of the scalar p-Laplacian

φp(x) =

{
|x|p–x, x �= ;
, x = .

Given a,b ∈ L[, ], taking the notations x± =max{±x, }, let us consider the ODE

(
φp

(
x′))′ +

(
λ + a(t)

)
φp(x+) –

(
μ + b(t)

)
φp(x–) = , a.e. t ∈ [, ], (.)

in which a, b are called potentials, and the ODE

(
φp

(
x′))′ + λa(t)φp(x+) –μb(t)φp(x–) = , a.e. t ∈ [, ], (.)

in which a, b are called weights. For a pair of potentials a and b, the Fučík spectra �D
p (a,b)

and �N
p (a,b) are defined as the sets of those (λ,μ) ∈ R

 such that equation (.) has non-
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trivial solutions satisfying the Dirichlet boundary condition

x() = x() = , (.)

and the Neumann boundary condition

x′() = x′() = , (.)

respectively. Similarly, for a pair of weights a and b, the Fučík spectra�D
p (a,b) and�N

p (a,b)
are defined as the sets of those (λ,μ) ∈R

 such that equation (.) has non-trivial solutions
satisfying the corresponding boundary conditions (.) and (.), respectively.
The Fučík spectra �D

p (a,b) and �N
p (a,b) have been comprehensively understood in []:

each of them is composed of one horizontal line, one vertical line and a double sequence of
differentiable, strictly decreasing, hyperbolic like curves; asymptotic lines of these hyper-
bolic like curves are given by using (Sturm-Liouville) eigenvalues of the p-Laplacian with a
potential; moreover, these curves have a strong continuous dependence on the potentials.
Compared with potentials, indefinite weights will add difficulties to the study of the

Fučík spectra. Alif [] studied �D
p (a,b) and �N

p (a,b) by means of ‘zero functions’, where
theweights a and bwere assumed to be sign-changing (i.e., a± �≡  and b± �≡ ) continuous
functionswithout ‘singular points’ (which is a technical hypothesis). Theirmain results are
as follows. Besides the trivial horizontal lines and vertical lines, confined to each quadrant
of R, �D/N

p (a,b) consists of an odd number of or infinitely many hyperbolic like curves.
The asymptotic behavior of the first non-trivial curves in each quadrant was also studied.
It was observed that for instance the first curve of �N

p (a,b) in R
+ ×R

+ is not asymptotic
on any side to the trivial horizontal and vertical lines. In other words, there are always
gaps between its asymptotic lines and the trivial horizontal and vertical lines. However,
the exact asymptotic lines were not found in that paper.
In this paper, we are interested in�D

p (a,b) and�N
p (a,b), where the weights a,b ∈ L[, ]

are assumed to be indefinite (i.e., a and bmay or may not change sign). In this case, since
the weights are integrable, the method employed in [] does not work anymore. Using
the Prüfer transformation, we convert the second-order ODE (.) into a system of first-
order ODEs (.) and (.), for the argument θ and the radius r, respectively. The ODE
(.) for θ turns to be independent of r, and the boundary conditions (.) and (.) can
be characterized by the solutions of equation (.), therefore the Fučík spectra �D

p (a,b)
and �N

p (a,b) are completely determined by this first-order ODE (.). The solutions of
equation (.) admit (strong) continuity and Fréchet differentiability in the weights. Based
on these properties, we will finally reveal the structure of the Fučík spectra. Our main
results are as follows.

(i) Besides at most two vertical lines and two horizontal lines, �D/N
p (a,b) confined to

each quadrant of R is made up of zero, an odd number of, or a double sequence of
continuous, strictly monotonic, hyperbolic like curves.

(ii) The number of those trivial lines in �D/N
p (a,b) is determined by the Dirichlet and

Neumann eigenvalues of the p-Laplacian.
(iii) The number of the hyperbolic like curves in �D/N

p (a,b) is determined by the
Dirichlet and Neumann half-eigenvalues of the p-Laplacian.
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(iv) All the hyperbolic like curves have vertical and horizontal asymptotic lines, and
these asymptotic lines will be estimated by using (Sturm-Liouville) eigenvalues of
the p-Laplacian.

(v) If the weights a and b are positive, the structure of �D/N
p (a,b) is comparable with

that of �D/N
p (a,b), the case with potentials. More precisely, �D/N

p (a,b) is composed
of one horizontal line, one vertical line and a double sequence of differentiable,
strictly decreasing, hyperbolic like curves in the quadrant R+ ×R

+. And all
asymptotic lines of these hyperbolic like curves will be given by using
(Sturm-Liouville) eigenvalues of the p-Laplacian.

The paper is organized as follows. In Section , we will give some preliminary results.
Section  is devoted to �D

p (a,b). We first decompose �D
p (a,b) in Section ., according to

the number of zeroes of the eigenfunctions. Sections . and . are devoted to eigenvalues
and half-eigenvalues of the p-Laplacian, respectively. The results in these two subsections
enables us to finally determine the structure of�D

p (a,b) in Section .. For a pair of positive
weights a and b, we can get more information on �D

p (a,b) and the results are given in
Section .. The Fučík spectrum �N

p (a,b) can be studied by similar arguments and we
just list the results in Section .

2 Preliminary results
Given an exponent p ∈ (,∞), denote by p∗ the conjugate number of p, namely p∗ = p

p– .
The initial value problem

{
x′(t) = –φp∗ (y), y′(t) = φp(x),
x() = , y() = 

has a unique solution (cosp t, sinp t), t ∈R. The functions cosp t and sinp t are the so-called
p-cosine and p-sine because they possess properties similar to those of the standard cosine
and sine, as shown in the following lemma.

Lemma . ([, ]) The p-cosine and p-sine have the following properties.
(i) Both cosp t and sinp t are πp-periodic, where

πp = 
∫ (p–)/p



ds
( – sp(p – ))/p

=
π (p – )/p

p sin(π/p)
;

(ii) cosp t is even in t and sinp t is odd in t;
(iii) cosp(t + πp) = – cosp t and sinp(t + πp) = – sinp t for all t;
(iv) cosp t =  if and only if t = πp/ + nπp, n ∈ Z, and sinp t =  if and only if t = nπp,

n ∈ Z;
(v) cos′p t = –φp∗ (sinp t) and sin′

p t = φp(cosp t); and
(vi) | cosp t|p + (p – )| sinp t|p∗ ≡ .

Remark . For any p > , one has πp > . In fact, if p = , then πp = π > . If p > , then

πp =
π (p – )/p

p sin(π/p)
>
π (p – )/p

p · (π/p) = (p – )/p > .

http://www.boundaryvalueproblems.com/content/2014/1/10
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If  < p < , then

πp =
π (p – )/p

p sin(π/p)
=

π (p – )/p

p sin(π – π/p)
>

π (p – )/p

p · (π – π/p)
= (p – )


p– > .

Given a,b ∈ L[, ], consider the equation

(
φp

(
x′))′ + a(t)φp(x+) – b(t)φp(x–) = , a.e. t ∈ [, ]. (.)

Let y = –φp(x′). Via the p-polar coordinates (or Prüfer transformation)

x = r/p cosp θ , y = r/p
∗
sinp θ , (.)

we can transform equation (.) into the following equations for r and θ :

θ ′ = A(t, θ ;a,b) := a(t)(cosp θ )p+ + b(t)(cosp θ )p– + (p – )| sinp θ |p∗
, (.)

(log r)′ =
p

((
a(t) – 

)
(cosp θ )p–+ +

(
b(t) – 

)
(cosp θ )p––

)
φp∗ (sinp θ ). (.)

Note that equation (.) for θ is independent of r. Given t ∈ [, ] and θ ∈ R, denote by
(θ (t; t, θ,a,b), r(t; t, θ,a,b)), t ∈ [, ], the unique solution of system (.)-(.) satisfy-
ing θ (t; t, θ,a,b) = θ and r(; t, θ,a,b) = . Let

	(θ,a,b) := θ (; , θ,a,b).

The p-polar coordinates (.), one can verify that equation (.) has a non-trivial solution

X(t; θ,a,b) :=
(
r(t; , θ,a,b)

)/p
cosp

(
θ (t; , θ,a,b)

)
. (.)

One basic observation on equation (.) is that the vector field A(t, θ ;a,b) =  >  at
those θ such that cosp θ = , i.e., θ = –πp

 +mπp, m ∈ Z. Since a(t) and b(t) are only inte-
grable, the derivative θ ′(t) at any specific t is meaningless. However, one can still use such
an observation to obtain the following property, called quasi-monotonicity. We refer the
readers to [, Lemma .] for a detailed proof.

Lemma . Given a,b ∈ L[, ], t ∈ [, ) and θ ∈ R, let θ (t) = θ (t; t, θ,a,b) be the
solution of equation (.). If θ (t) ≥ –πp

 +mπp for some m ∈ Z, then

θ (t) > –
πp


+mπp, ∀t ∈ (t, ].

Denote by w the weak topology in L[, ]. By gn → g in (L[, ],w), or gn
w→ g, we

mean that∫ 


gn(t)f (t)dt →

∫ 


g(t)f (t)dt, ∀f ∈ L∞[, ].

Some important properties of θ (·; t, θ,a,b), r(·; t, θ,a,b), 	(θ,a,b) and X(·; θ,a,b) are
collected in the following theorem.

http://www.boundaryvalueproblems.com/content/2014/1/10
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Theorem . ([]) Let t ∈ [, ] and θ ∈R be fixed.We have the following results.
(i) As mappings from (L[, ],w) to (C[, ],‖ · ‖∞), θ (·; t, θ,a,b) and r(·; t, θ,a,b)

are continuous.More precisely, if an
w→ a and bn

w→ b, then∥∥θ (·; t, θ,an,bn) – θ (·; t, θ,a,b)
∥∥∞ → ,∥∥r(·; t, θ,an,bn) – r(·; t, θ,a,b)
∥∥∞ → ,

as n → ∞.
(ii) The functional (L[, ],w) →R, (a,b) → 	(θ,a,b) is continuous.More precisely,

if an
w→ a and bn

w→ b, then 	(θ,an,bn) → 	(θ,a,b) as n→ ∞.
(iii) The functional (L[, ],‖ · ‖) →R, (a,b) → 	(θ,a,b) is continuously

differentiable in the sense of Fréchet. The differentials of 	(θ,a,b) at a and b,
denoted, respectively, by ∂a	(θ,a,b) and ∂b	(θ,a,b), are the following mappings:

∂a	(θ,a,b) = Xp
+(·; θ,a,b) ∈

(
C[, ],‖ · ‖∞

) ⊂ (
L,‖ · ‖

)∗, (.)

∂b	(θ,a,b) = Xp
–(·; θ,a,b) ∈

(
C[, ],‖ · ‖∞

) ⊂ (
L,‖ · ‖

)∗, (.)

where (L,‖ · ‖)∗ is the dual space of (L,‖ · ‖).Moreover, as mappings from
(L[, ],w) to (C[, ],‖ · ‖∞), both ∂a	(θ,a,b) and ∂b	(θ,a,b) are continuous.

Remark . Let θ ∈ R and ai,bi ∈ L[, ], i = , . If a ≤ a and b ≤ b, then it follows
from formulations (.) and (.) that

θ (; , θ,a,b) ≤ θ (; , θ,a,b).

3 Fučík spectrum for Dirichlet problems:�D
p (a,b)

3.1 Decomposition of�D
p (a,b)

Given a pair of weights a,b ∈ L[, ], the (Dirichlet type) Fučík spectrum �D
p (a,b) is de-

fined as the set of those (λ,μ) ∈ R
 such that system (.)-(.) has non-trivial solutions.

Let

φp
(
x′) = –y. (.)

In the p-polar coordinates (.), equation (.) is equivalent to the following two equations:

θ ′ = λa(t)(cosp θ )p+ +μb(t)(cosp θ )p– + (p – )| sinp θ |p∗
, (.)

(log r)′ =
p

((

λa(t) – 
)
(cosp θ )p–+ +

(
μb(t) – 

)
(cosp θ )p––

)
φp∗ (sinp θ ). (.)

Compared with equations (.) and (.), the pair of weights a and b are now replaced by
λa and μb, respectively. Since the right-hand side of equation (.) is πp-periodic in θ ,
one has

θ (t; t, θ + lπp,λa,μb) = θ (t; t, θ,λa,μb) + lπp, ∀t ∈ [, ] (.)

for any t ∈ [, ], θ ∈ R and l ∈ Z. One can also check that

θ

(
t; ,

πp


,λa,μb

)
= θ

(
t; , –

πp


,μb,λa

)
+ πp. (.)

http://www.boundaryvalueproblems.com/content/2014/1/10
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Suppose x(t) is an eigenfunction of system (.)-(.) associated with (λ,μ) ∈ �D
p (a,b).

By equation (.), the corresponding solution of equation (.), θ (t) := θ (t; , –πp
 ,λa,μb),

satisfies

θ () = –
πp


+ lπp and θ () = –

πp


+ (l + k)πp (.)

for some l,k ∈ Z. Due to equation (.), we may restrict θ () ∈ [–πp
 ,

πp
 ). In other words,

wemay assume that l ∈ {, } and hence θ () = –πp
 or θ () = πp

 . Moreover, it follows from
the quasi-monotonicity result in Lemma . that k > .We distinguish two cases: x′() > 
or x′() < . If x′() > , then it follows from equation (.) that y() = –φp(x′()) < . By
equation (.), we have sinp θ () < , and hence l =  and θ () = –πp

 . Let

WD
k (a,b) :=

{
(λ,μ) ∈R

 : θ
(
; ,–

πp


,λa,μb

)
= kπp –

πp



}
, ∀k ≥ . (.)

Now equation (.) tells us that (λ,μ) ∈ WD
k (a,b). In fact, the subscript k is related to the

number of zeroes of x(t) on [, ]. By Lemma ., the equation

θ (t) = –
πp


+mπp, m ∈ Z

has a solution tm ∈ [, ] if and only if  ≤m ≤ k, and

 = t < t < · · · < tk– < tk = .

By equation (.), we see that x(t) has exactly k +  zeroes in [, ]. Similarly, if x′() < 
and x(t) has exactly k +  zeroes in [, ], then l = , θ () = πp

 and (λ,μ) ∈ W̃D
k (a,b), where

W̃D
k (a,b) :=

{
(λ,μ) ∈R

 : θ
(
; ,

πp


,λa,μb

)
= kπp +

πp



}
, ∀k ≥ . (.)

Till now, we have proved that

�D
p (a,b)⊂

⋃
k∈Z,k≥

(
WD

k (a,b)∪ W̃D
k (a,b)

)
.

Conversely, let us show that

�D
p (a,b)⊃

⋃
k∈Z,k≥

(
WD

k (a,b)∪ W̃D
k (a,b)

)
.

Suppose (λ,μ) ∈WD
k (a,b) for some k ≥ . Then θ (t) = θ (t; , –πp

 ,λa,μb) satisfies

θ () = –
πp


and θ () = –

πp


+ kπp.

For this specific θ (t), take a non-trivial solution r(t) of equation (.). Then we can con-
struct a function x(t) = r(t)/p cosp θ (t), which is a solution of equation (.) with ex-
actly k +  zeroes on [, ]. Particularly, x() = x() = . Thus (λ,μ) ∈ �D

p (a,b), and hence

http://www.boundaryvalueproblems.com/content/2014/1/10
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WD
k (a,b)⊂ �D

p (a,b). Furthermore, we have

y() = r/p
∗
() sinp θ () = r/p

∗
() sinp

(
–

πp



)
< ,

and hence

x′() = –φp∗
(
y()

)
> .

Similarly, if (λ,μ) ∈ W̃D
k (a,b) for some k ≥ , then (λ,μ) ∈ �D

p (a,b) and any associating
eigenfunction x(t) satisfies x′() <  and has exactly k +  zeroes in [, ].
Combining the previous arguments, we can conclude that.

Theorem . Let a,b ∈ L[, ]. The Fučík spectrum �D
p (a,b) can be decomposed as

�D
p (a,b) =

⋃
k∈Z,k≥

(
WD

k (a,b)∪ W̃D
k (a,b)

)
.

Moreover, the following characterization on WD
k (a,b) and W̃D

k (a,b) holds.
(i) (λ,μ) ∈WD

k (a,b), k ≥  ⇐⇒ any eigenfunction x(t) associated with (λ,μ) satisfies
x′() > , x() = x() =  and x(t) has precisely k –  zeroes in (, ).

(ii) (λ,μ) ∈ W̃D
k (a,b), k ≥  ⇐⇒ any eigenfunction x(t) associated with (λ,μ) satisfies

x′() < , x() = x() =  and x(t) and has precisely k –  zeroes in (, ).

By equation (.), the set W̃D
k (a,b) defined as in equation (.) can be rewritten as

W̃D
k (a,b) =

{
(λ,μ) ∈R

 : θ
(
; ,–

πp


,μb,λa

)
= –

πp


+ kπp

}
, ∀k ≥ .

Thus

(λ,μ) ∈ W̃D
k (a,b) ⇐⇒ (μ,λ) ∈WD

k (b,a). (.)

In other words, W̃D
k (a,b) is symmetric to WD

k (b,a) about the line λ = μ. For this reason,
essentially we need only to characterize those setsWD

k (a,b).
In Section ., we will see that WD

 (a,b) is made up of straight lines which are in con-
nection with λD

 (a) and λD
–(a), the Dirichlet eigenvalues of p-Laplacian with the weight a.

See Theorem ..
For those setsWD

k (a,b), k ≥ , it is easy to check that

(λ,μ) ∈ WD
k (a,b) ⇐⇒ (–λ,μ) ∈WD

k (–a,b), (.)

(λ,μ) ∈ WD
k (a,b) ⇐⇒ (–λ, –μ) ∈ WD

k (–a, –b), (.)

(λ,μ) ∈ WD
k (a,b) ⇐⇒ (λ, –μ) ∈WD

k (a, –b). (.)

Therefore we need only to focus our study on the subset

�D
k (a,b) :=WD

k (a,b)∩ (R+ ×R+), k ≥ , (.)

http://www.boundaryvalueproblems.com/content/2014/1/10
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where R+ = [,+∞). In Section ., for each k ≥  we will show that �D
k (a,b) is either

an empty set or a continuous, strictly decreasing, hyperbolic like curve with a horizontal
asymptotic line and a vertical asymptotic line.
With the help of half-eigenvalues of the p-Laplacian with a pair of weights, we can de-

termined whether �D
k (a,b) is an empty set or not. Using eigenvalues of the p-Laplacian

with a weight, we can roughly locate the hyperbolic like curve �D
k (a,b). For these reasons,

we will give in the successive two subsections some useful characterization on eigenvalues
and half-eigenvalues of the p-Laplacian with weights.

3.2 Eigenvalues of p-Laplacian with an indefinite weight
Given a ∈ L[, ], denote by ϑ(t) = ϑ(t; t,ϑ,a) the solution of

θ ′ = a(t)| cosp θ |p + (p – )| sinp θ |p∗
, a.e. t ∈ [, ], (.)

satisfying the initial value condition ϑ(t) = ϑ. Particularly, if a(t) ≡ , it follows from
Lemma .(vi) that equation (.) turns to be θ ′ ≡ , and hence

ϑ(t; t,ϑ, ) = ϑ + t – t, ∀t, t ∈ [, ],ϑ ∈R. (.)

Because the right-hand side of equation (.) is πp-periodic in θ , we have

ϑ(t; t,ϑ + kπp,a) = ϑ(t; t,ϑ,a) + kπp (.)

for any t ∈ [, ], ϑ ∈R and k ∈ Z. Since equation (.) can also be rewritten as

θ ′ = a(t)(cosp θ )p+ + a(t)(cosp θ )p– + (p – )| sinp θ |p∗
, a.e. t ∈ [, ],

using the notations in Section , we have

ϑ(t; t,ϑ,a) = θ (t; t,ϑ,a,a).

By Lemma ., we see that ϑ(t; t,ϑ,a) is also quasi-monotonic in t.
Given a ∈ L[, ], denote by �D

p (a), �N
p (a), �DN

p (a) and �ND
p (a) the sets of λ ∈ R such

that

(
φp

(
x′))′ + λa(t)φp(x) = , a.e. t ∈ [, ] (.)

has a non-trivial solution satisfying the Dirichlet boundary condition x() = x() = , the
Neumann boundary condition x′() = x′() = , the Dirichlet-Neumann boundary con-
dition x() = x′() =  and the Neumann-Dirichlet boundary condition x′() = x() = ,
respectively. Similar arguments as in Section . show that

�D
p =

⋃
k∈Z,k≥

{
λ ∈R : ϑ

(
; ,–

πp


,λa

)
= –

πp


+ kπp

}
, (.)

�N
p =

⋃
k∈Z,k≥

{
λ ∈ R : ϑ(; , ,λa) = kπp

}
,

http://www.boundaryvalueproblems.com/content/2014/1/10
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�DN
p =

⋃
k∈Z,k≥

{
λ ∈R : ϑ

(
; ,–

πp


,λa

)
= kπp

}
,

�ND
p =

⋃
k∈Z,k≥

{
λ ∈R : ϑ(; , ,λa) = –

πp


+ kπp

}
.

These spectra have been studied in []. Consider the function of λ ∈R:

ϑ

(
; ,–

πp


,λa

)
= θ

(
; ,–

πp


,λa,λa

)
=	

(
–

πp


,λa,λa

)
.

It follows from formulations (.) and (.) in Theorem . that

d
dλ

ϑ

(
; ,–

πp


,λa

)
=

∫ 


Xp
+(t)a(t)dt +

∫ 


Xp
–(t)a(t)dt, (.)

where X(t) = X(t; –πp
 ,λa,λa) �≡  satisfies

(
φp

(
X ′))′ + λa(t)φp(X+) – λa(t)φp(X–) = , a.e. t ∈ [, ]. (.)

See equation (.) for the definition of X(t). Then X(t) is also a non-trivial solution of
equation (.). Multiplying equation (.) by X(t) and integrating over [, ], we have

λ

∫ 


a(t)Xp

+(t)dt + λ

∫ 


a(t)Xp

–(t)dt

= –
∫ 



(
φp

(
X ′(t)

))′X(t)dt

= –X(t)φp
(
X ′(t)

)|t= + ∫ 



∣∣X ′(t)
∣∣p dt.

Substituting this into equation (.), for any λ �=  we have

d
dλ

ϑ

(
; ,–

πp


,λa

)
= –


λ

φp
(
X ′(t)

)
X(t)

∣∣∣∣
t=

+

λ

∫ 



∣∣X ′(t)
∣∣p dt. (.)

If λ ∈ �D
p (a), then X(t) becomes the associated eigenfunction of equation (.) satisfying

X() = X() = . In this case, the first item on the right-hand side of equation (.) equals
, and hence

± d
dλ

ϑ

(
; ,–

πp


,λa

)∣∣∣∣
λ∈�D

p (a)∩R±
> , (.)

where R+ = (,+∞) and R
– = (–∞, ). Similarly, we can obtain

± d
dλ

ϑ(; , ,λa)
∣∣∣∣
λ∈�N

p (a)∩R±
> , (.)

± d
dλ

ϑ

(
; ,–

πp


,λa

)∣∣∣∣
λ∈�DN

p (a)∩R±
> , (.)

± d
dλ

ϑ(; , ,λa)
∣∣∣∣
λ∈�ND

p (a)∩R±
> . (.)
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For any k ≥ , it follows from equations (.) and (.) that

ϑ

(
; ,–

πp


,λa

)
= kπp –

πp



has at most one positive solution and one negative solution, denoted by λD
k (a) and λD

–k(a),
respectively, if they exist. In other words, we have

λ = λD
k (a), k ≥  ⇐⇒ λ >  and ϑ

(
; ,–

πp


,λa

)
= kπp –

πp


; (.)

λ = λD
–k(a), k ≥  ⇐⇒ λ <  and ϑ

(
; ,–

πp


,λa

)
= kπp –

πp


. (.)

It has been proved in [] that ϑ(; , ,λa) =  has at most one nonzero solution, called
the principal Neumann eigenvalue and denoted by λN

 (a), if it exists. By equation (.)
and the fact ϑ(; , ;  · a) = , we can deduce that ϑ(; , ,λa) = kπp, k ≥ , has at most
one positive solution and one negative solution, denoted by λN

k (a) and λN
–k(a) respectively,

if they exist. In other words, we have

λ = λN
 (a) ⇐⇒ λ �=  and ϑ(; , ,λa) = ; (.)

λ = λN
k (a), k ≥  ⇐⇒ λ >  and ϑ(; , ,λa) = kπp; (.)

λ = λN
–k(a), k ≥  ⇐⇒ λ <  and ϑ(; , ,λa) = kπp. (.)

For any a ∈ L[, ], use the notation a �  if a(t) ≥  for almost every t ∈ [, ] and
a(t) >  on a subset of [, ] of positive measure. Write a ≺  if –a� .

Lemma . ([]) Let a ∈ L[, ]. Then it is necessary that  /∈ �D
p (a).

(i) If a� , then �D
p (a) contains no negative eigenvalues, and it consists of a sequence of

positive eigenvalues

( <) λD
 (a) < λD

 (a) < · · · < λD
k (a) < · · · (→ +∞).

(ii) If a ≺ , then �D
p (a) contains no positive eigenvalues, and it consists of a sequence of

negative eigenvalues

( >) λD
–(a) > λD

–(a) > · · · > λD
–k(a) > · · · (→ –∞).

(iii) If a+ �  and a– � , then �D
p (a) contains both positive and negative eigenvalues,

and it consists of a double sequence of eigenvalues

(–∞ ←) · · · < λD
–k(a) < · · · < λD

–(a) (<  <) λD
 (a) < · · · < λD

k (a) < · · · (→ +∞).

Lemma . ([]) Let a ∈ L[, ]. Then it is necessary that  ∈ �N
p (a).

(i) If a � , then �N
p (a) contains no negative eigenvalues, and it consists of a sequence of

non-negative eigenvalues

 < λN
 (a) < λN

 (a) < · · · < λN
k (a) < · · · (→ +∞).

The principal eigenvalue λN
 (a) does not exist in this case.

http://www.boundaryvalueproblems.com/content/2014/1/10
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(ii) If a ≺ , then �N
p (a) contains no positive eigenvalues, and it consists of a sequence of

non-positive eigenvalues

 > λN
–(a) > λN

–(a) > · · · > λN
–k(a) > · · · (→ –∞).

The principal eigenvalue λN
 (a) does not exist in this case.

(iii) If a± �  and
∫ 
 a(t)dt < , then �N

p (a) contains both positive and negative
eigenvalues, and it consists of a double sequence of eigenvalues

(–∞ ←) · · · < λN
–k(a) < · · · < λN

–(a) <  < λN
 (a)

< λN
 (a) < · · · < λN

k (a) < · · · (→ +∞).

The principal eigenvalue λN
 (a) is positive in this case.

(iv) If a± �  and
∫ 
 a(t)dt > , then �N

p (a) consists of a double sequence of eigenvalues

(–∞ ←) · · · < λN
–k(a) < · · · < λN

–(a) < λN
 (a) < 

< λN
 (a) < · · · < λN

k (a) < · · · (→ +∞).

The principal eigenvalue λN
 (a) is negative in this case.

(v) If a± �  and
∫ 
 a(t)dt = , then �N

p (a) consists of a double sequence of eigenvalues

(–∞ ←) · · · < λN
–k(a) < · · · < λN

–(a) < 

< λN
 (a) < · · · < λN

k (a) < · · · (→ +∞).

The principal eigenvalue λN
 (a) does not exist in this case.

The following lemma reveals, to some extent, the essential reason of the existence of
positive eigenvalues.

Lemma . Assume that a ∈ L[, ],  ≤ t < t ≤ , ϑ ≤ kπp, θ ≤ kπp –
πp
 , and k ∈ Z.

Denote the indicator function of the subset [t, t] of the set [, ] by [t,t]. Then

a+ · [t,t] �  ⇐⇒ ∃λ∗ > , s.t. ϑ(t; t,ϑ,λ∗a) = kπp +
πp


; (.)

a+ · [t,t] �  ⇐⇒ ∃λ∗ > , s.t. ϑ
(
t; t, θ,λ∗a

)
= kπp. (.)

Proof We only prove equation (.), and equation (.) can be proved similarly.
Write f (λ) = ϑ(t; t, θ,λa) for simplicity.
If a+ ·[t,t] � , by similar arguments as in [, Lemma .] (see also Lemma .) we have

lim
λ→+∞ f (λ) = +∞.

Let λ =  in equation (.) and we get the equation

θ ′ = (p – )| sinp θ |p∗
,

http://www.boundaryvalueproblems.com/content/2014/1/10
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which has equilibria θ = kπp, k ∈ Z. Because θ ≤ kπp –
πp
 < kπp, we get

f () = ϑ(t; t, θ,  · a) < kπp.

Therefore there must exist λ∗ >  such that f (λ∗) = kπp.
On the other hand, suppose that a+ · [t,t] = , namely, a(t) ≤  for almost every

t ∈ [t, t]. If λ > , then λa(t) <  for almost every t ∈ [t, t]. Now it follows from the
comparison theorem, equation (.), and Remark . that

f (λ) < ϑ(t; t, θ, ) = θ + t – t < kπp,

completing the proof of equation (.). �

In the rest of this subsection, we aim to reveal some quasi-monotonicity property of
ϑ(t; t,ϑ,λa) in λ, which will play an important role in analyzing the structure of the
Fučík spectra �D/N

p (a,b).
Using equation (.), the characterization on �D

p (a), we can rewritten equation (.)
more precisely as

ϑ(; ,–πp
 ,λ

∗a) = –πp
 +mπp,

±λ∗ > ,m ∈ Z,m ≥ 

}
�⇒ ± d

dλ
ϑ

(
; ,–

πp


,λa

)∣∣∣∣
λ=λ∗

> .

Furthermore, we have

ϑ(; ,–πp
 + kπp,λ∗a) = –πp

 +mπp,
±λ∗ > ,k ∈ Z,m ∈ Z,m > k

}

�⇒ ± d
dλ

ϑ

(
; ,–

πp


+ kπp,λa

)∣∣∣∣
λ=λ∗

> , (.)

because it follows from equation (.) that

ϑ

(
; ,–

πp


+ kπp,λa

)
= ϑ

(
; ,–

πp


,λa

)
+ kπp, ∀k ∈ Z.

Though we have always been considering equations on the interval t ∈ [, ], similar re-
sults as in Theorem . still holdwhen the interval is replaced by any general interval. Thus
equation (.) can also be generalized. In fact, for any α,β ∈ R, α < β and a ∈ L[α,β],
we have

ϑ(β ;α, –πp
 + kπp,λ∗a) = –πp

 +mπp,
±λ∗ > ,k ∈ Z,m ∈ Z,m > k

}

�⇒ ± d
dλ

ϑ

(
β ;α, –

πp


+ kπp,λa

)∣∣∣∣
λ=λ∗

> . (.)

Similar arguments can be applied to (.)-(.) to obtain results analogous to equation
(.). We skip the proof and collect these results in the following lemma, which can be
understood as the quasi-monotonicity of ϑ(t; t,ϑ,λa) in λ.

http://www.boundaryvalueproblems.com/content/2014/1/10
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Lemma . Given k ∈ Z, α,β ∈R, α < β , and a ∈ L[α,β], let

ϕ(λ) = ϑ

(
β ;α,kπp –

πp


,λa

)
and ψ(λ) = ϑ(β ;α,kπp,λa).

(i) If there exist λ∗ >  and an integer m > k such that ϕ(λ∗) =mπp –
πp
 , then

ϕ′(λ∗) > . Consequently, ϕ(λ) >mπp –
πp
 for any λ ∈ (λ∗, +∞) and

ϕ(λ) <mπp –
πp
 for any λ ∈ (,λ∗).

(ii) If there exist λ∗ >  and an integer m ≥ k such that ϕ(λ∗) =mπp, then ϕ′(λ∗) > .
Consequently, ϕ(λ) >mπp for any λ ∈ (λ∗, +∞) and ϕ(λ) <mπp for any λ ∈ (,λ∗).

(iii) If there exist λ∗ >  and an integer m ≥ k such that ψ(λ∗) =mπp, then ψ ′(λ∗) > .
Consequently, ψ(λ) >mπp for any λ ∈ (λ∗, +∞) and ψ(λ) <mπp for any λ ∈ (,λ∗).

(iv) If there exist λ∗ >  and an integer m > k such that ψ(λ∗) =mπp –
πp
 , then

ψ ′(λ∗) > . Consequently, ψ(λ) >mπp –
πp
 for any λ ∈ (λ∗, +∞) and

ψ(λ) <mπp –
πp
 for any λ ∈ (,λ∗).

3.3 Half-eigenvalues of p-Laplacian with a pair of indefinite weights
For any a,b ∈ L[, ], denote by HD

p (a,b) and HN
p (a,b) the sets of half-eigenvalues of the

scalar p-Laplacian, namely, the sets of those λ ∈R such that

(
φp

(
x′))′ + λa(t)φp(x+) – λb(t)φp(x–) = , a.e. t ∈ [, ]

has a non-trivial solution satisfying the boundary conditions (.) and (.), respectively.
Based on the p-polar transformation (.) and the quasi-monotonicity results in Lem-

ma ., by similar arguments as in Section . we can show that

HD
p (a,b) =

⋃
k∈Z,k≥

{
λ ∈R : θ

(
; ,–

πp


,λa,λb

)
= kπp –

πp



}
,

HN
p (a,b) =

⋃
k∈Z,k≥

{
λ ∈R : θ (; , ,λa,λb) = kπp

}
.

Applying the differentiability results (.) and (.) in Theorem ., together with the
Dirichlet boundary condition (.), by similar arguments as in Section . we can show
that θ (; ,–πp

 ,λa,λb) is also quasi-monotonic in λ. More precisely, we have

θ (; ,–πp
 ,λ

∗a,λ∗b) = –πp
 + kπp,

±λ∗ > ,k ∈ Z,k ≥ 

}

�⇒ ± d
dλ

ϑ

(
; ,–

πp


,λa,λb

)∣∣∣∣
λ=λ∗

> . (.)

We also know that θ (; ,–πp
 ,  · a,  · b) < , because the equation

θ ′ = (p – )
∣∣sinp(θ )∣∣p∗

has equilibria θ = kπp, k ∈ Z. Combining the quasi-monotonicity results in Lemma .,
we have

–
πp


< θ

(
; ,–

πp


,  · a,  · b

)
< , (.)

http://www.boundaryvalueproblems.com/content/2014/1/10
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and hence  /∈HD
p (a,b). It follows from equations (.) and (.) that for any k ≥ , the

equation

θ

(
; ,–

πp


,λa,λb

)
= kπp –

πp



has at most one positive solution and one negative solution, denoted, respectively, by
�D

k (a,b) and �D
–k(a,b), if they exist. More precisely, we have

λ =�D
k (a,b), k ≥ 

⇐⇒ λ >  and θ

(
; ,–

πp


,λa,λb

)
= kπp –

πp


; (.)

λ =�D
–k(a,b), k ≥ 

⇐⇒ λ <  and θ

(
; ,–

πp


,λa,λb

)
= kπp –

πp


. (.)

By equations (.), (.), and Lemma ., we have �D±(a,b) = λD±(a). Some immediate
results are

the existence of �D
k+(a,b), k ≥  �⇒ the existence of �D

k (a,b), (.)

the existence of �D
–(k+)(a,b), k ≥  �⇒ the existence of �D

–k(a,b).

Similarly, we have θ (; , ,  · a,  · b) =  and

θ (; , ,λ∗a,λ∗b) = kπp,
±λ∗ > ,k ∈ Z,k ≥ 

}
�⇒ ± d

dλ
ϑ(; , ,λa,λb)

∣∣∣∣
λ=λ∗

> .

Thus the Neumann type half-eigenvalues �N
±k(a,b), k ≥ , are defined as

λ =�N
k (a,b), k ≥  ⇐⇒ λ >  and θ (; , ,λa,λb) = kπp;

λ =�N
–k(a,b), k ≥  ⇐⇒ λ <  and θ (; , ,λa,λb) = kπp.

And the existence of �N
±(k+)(a,b), k ≥ , implies the existence of �N

±k(a,b). By Lemma .,
the solution of θ (; , ,λa,λb) =  is also that of θ (; , ,λa) = . Thus there may exist at
most one principal Neumann half-eigenvalue �N

 (a,b), which is defined as

λ =�N
 (a,b) ⇐⇒ λ �=  and θ (; , ,λa,λb) = ,

and�N
 (a,b) = �N

 (a) by equation (.). Note that�N
 (a,b) may not exist even if�N±(a,b)

exist.
It is easy to check that

�D
–k(a,b) = –�D

k (–a, –b) and �N
–k(a,b) = –�N

k (–a, –b).

Essentially we need only to concern �N
 (a,b) and those positive half-eigenvalues �D/N

k (a,
b), k ≥ . Now a natural question arises: for what kind of weights a and b do there exist
no, finitely many, or infinitely many positive Dirichlet or Neumann type half-eigenvalues?

http://www.boundaryvalueproblems.com/content/2014/1/10
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Lemma . Assume that a,b ∈ L[, ] and  ≤ t < t ≤ . If a+b+ · [t,t] � , then

lim
λ→+∞

(
θ (t; t,ϑ,λa,λb) – ϑ

)
= +∞ (.)

uniformly in ϑ ∈R.

Proof This lemma can be proved by similar argument as in the proof of Lemma . in [],
thus we skip the details. �

Lemma . Suppose that a,b ∈ L[, ],  ≤ t < t < · · · < tk ≤ , and there exist λi > ,
i = , , . . . , � k–

 �, and μi > , i = , , . . . , � k
� – , such that

ϑ

(
ti+; ti, iπp –

πp


,λia

)
= (i + )πp –

πp


, i = , , . . . ,

⌊
k – 


⌋
, (.)

ϑ

(
ti+; ti+, iπp +

πp


,μib

)
= (i + )πp +

πp


, i = , , . . . ,

⌊
k


⌋
– . (.)

Let λ∗ ≥max{λi : i = , , . . . , � k–
 �} and μ∗ ≥max{μi : i = , , . . . , � k

� – }. Then

θ

(
tk ; t, –

πp


,λ∗a,μ∗b

)
≥ kπp –

πp


, (.)

and inequality (.) becomes an equality if and only if

λ∗ = λi, ∀i = , , . . . ,
⌊
k – 


⌋
and μ∗ = μi, ∀i = , , . . . ,

⌊
k


⌋
– .

Proof Let us write θ (t) = θ (t; t, –
πp
 ,λ

∗a,μ∗b) for simplicity.
Claim I: there exists t∗ ∈ (t, t] such that θ (t∗ ) =

πp
 . If this is false, then it follows from

Lemma . that

θ (t) ∈
(
–

πp


,
πp



)
, ∀t ∈ (t, t], (.)

and hence cosp θ (t) >  for any t ∈ (t, t). Recall that θ (t) satisfies the ODE

θ ′(t) = λ∗a(t)(cosp θ )p+ +μ∗b(t)(cosp θ )p– + (p – )| sinp θ |p∗
, a.e. t ∈ [, ].

Then we can conclude that θ (t) also satisfies

θ ′(t) = λ∗a(t)| cosp θ |p + (p – )| sinp θ |p∗
(.)

on the interval t ∈ [t, t]. Thus we have

θ (t) = ϑ

(
t; t, –

πp


,λ∗a

)
, ∀t ∈ [t, t]. (.)

Particularly, we get from equations (.) and (.)

ϑ

(
t; t, –

πp


,λ∗a

)
= θ (t) <

πp


. (.)
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On the other hand, let i =  in equation (.), we get

ϑ

(
t; t, –

πp


,λa

)
=

πp


. (.)

Since λ∗ ≥ λ > , it follows from Lemma .(i) that

ϑ

(
t; t, –

πp


,λ∗a

)
≥ πp


,

a contradiction to equation (.). Thus there exists t∗ ∈ (t, t] such that θ (t∗ ) =
πp
 , prov-

ing Claim I.
If λ∗ > λ, we aim to show that t∗ < t. If this is not true, then t∗ = t, and one can check

that equation (.) is still true. It follows from equations (.), (.), Lemma .(i), and
the fact λ∗ > λ that

θ
(
t∗

)
= θ (t) = ϑ

(
t; t, –

πp


,λ∗a

)
>

πp


,

a contradiction to θ (t∗ ) =
πp
 .

Claim II: there exists t∗ ∈ (t∗ , t] such that θ (t∗) =
πp
 . If this is not true, then the quasi-

monotonicity of θ (t) in t shows that

θ (t) ∈
(

πp


,
πp



)
, ∀t ∈ (t∗ , t].

Thus θ (t) satisfies

θ ′(t) = μ∗b(t)| cosp θ |p + (p – )| sinp θ |p∗ (.)

on the interval t ∈ [t∗ , t], and the initial value condition θ (t∗ ) =
πp
 . Therefore

θ (t) = ϑ

(
t; t∗ ,

πp


,μ∗b

)
, ∀t ∈ [

t∗ , t
]
. (.)

If t∗ = t, similar arguments as in the proof of Claim I show the existence of t∗ ∈ (t∗ , t]
such that θ (t∗) =

πp
 , and Claim II is proved. Moreover, if μ∗ > μ, then t∗ < t.

If t∗ < t, then θ (t) >
πp
 by Lemma .. We can improve the result in Claim II as the

existence of t∗ ∈ (t∗ , t) such that θ (t∗) =
πp
 . If this result is not true, then

θ (t) ∈
(

πp


,
πp



)
, ∀t ∈ (

t∗ , t
)
,

and we still have equations (.)-(.). Now both θ (t) and ϑ(t) := ϑ(t; t,
πp
 ,μ

∗b) satisfy
the same ODE (.) on the interval t ∈ [t, t], while the initial values satisfy the condi-
tion

θ (t) >
πp


= ϑ(t).
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By case i =  in equation (.) we have ϑ(t) =
πp
 . Now the existence and uniqueness

theorem for the first-order ODEs shows that

θ (t) > ϑ(t) =
πp


.

Since θ (t∗ ) =
πp
 , there exists t

∗
 ∈ (t∗ , t) such that θ (t∗) =

πp
 .

Now we can conclude that Claim II is true. Moreover, if λ∗ > λ or μ∗ > λ, then t∗ < t.
Inductively, we can show that there exists t∗k ∈ (t∗k–, tk] such that θ (t∗k ) = kπp – πp

 .
Moreover, we have t∗k < tk , if λ∗ > λi for some i ∈ {, , . . . , � k–

 �}, or μ∗ > μj for some
j ∈ {, , . . . , � k

� – }. And if t∗k < tk , it follows from Lemma . that θ (tk) > kπp –
πp
 .

Finally, if λ∗ = λi, i = , , . . . , � k–
 �, and μ∗ = μi, i = , , . . . , � k

� – , then it follows from
equations (.) and (.) that θ (tk ; t, –

πp
 ,λ

∗a,μ∗b) = kπp –
πp
 , completing the proof of

the lemma. �

Property . Given a,b ∈ L[, ], we have the following results:
(i) if a≺ , then any positive half-eigenvalues �D

k (a,b), k ≥ , does not exist;
(ii) if a+b+ � , then all positive half-eigenvalues �D

k (a,b), k ≥ , exist;
(iii) �D

k+(a,b) exists, k ≥  �⇒ both �D
k (a,b) and �D

k (b,a) exist;
(iv) both �D

k (a,b) and �D
k (b,a) exist, k ≥  �⇒ �D

k+(a,b) exists or �D
k+(b,a) exists.

Proof (i) Assume that a≺ . If there exists a positive half-eigenvalue λ∗ =�D
k (a,b), k ≥ ,

then

θ

(
; ,–

πp


,λ∗a,λ∗b

)
= kπp –

πp


,

and hence there must exist t ∈ (, ] such that

θ

(
t; , –

πp


,λ∗a,λ∗b

)
=

πp


.

It follows from Lemma . that

θ (t) = θ

(
t; , –

πp


,λ∗a,λ∗b

)
∈

(
–

πp


,
πp



)
, ∀t ∈ (, t),

and hence

θ

(
t; , –

πp


,λ∗a,λ∗b

)
= ϑ

(
t; , –

πp


,λ∗a

)
, ∀t ∈ [, t].

Particularly, we get

ϑ

(
t; , –

πp


,λ∗a

)
= θ

(
t; , –

πp


,λ∗a,λ∗b

)
=

πp


.

By Lemma ., we have a+ · [,t] � , a contradiction to the assumption a ≺ . Conse-
quently, there is not any positive half-eigenvalue �D

k (a,b), k ≥ , if a ≺ .
(ii) This result follows immediately from equations (.), (.), and Lemma ..
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(iii) Assume that λ∗ = �D
k+(a,b) exists and k ≥ . The existence of �D

k (a,b) has been
given in equation (.). We need only to prove the existence of �D

k (b,a). Take the follow-
ing notations for simplicity:

θ (t) := θ

(
t; , –

πp


,λ∗a,λ∗b

)
, θ̃ (t) := θ

(
t; , –

πp


,λ∗b,λ∗a

)
.

By the definition of �D
k+(a,b), we have θ () = (k + )πp –

πp
 . By Lemma ., there exist

 = t < t < · · · < tk < tk+ = , such that

θ (ti) = iπp –
πp


,  ≤ i≤ k + 

and

iπp –
πp


< θ (t) < iπp +

πp


, ∀t ∈ (ti, ti+), ≤ i ≤ k.

Therefore cosp θ (t) > (<)  if t ∈ (ti, ti+) and i is even (odd). Thus

θ (t) = ϑ

(
t; ti, iπp –

πp


,λ∗a

)
, ∀t ∈ (ti, ti+),  ≤ i ≤ k, i is even,

θ (t) = ϑ

(
t; ti, iπp –

πp


,λ∗b

)
, ∀t ∈ (ti, ti+),  ≤ i≤ k, i is odd. (.)

We claim that

θ̃ (ti) > iπp –
πp


, i = , , . . . ,k + . (.)

In fact, we have θ̃ (t) > –πp
 by Lemma ., proving equation (.) for the case i = . To

prove the case i = , we assume on the contrary that θ̃ (t) ≤ πp
 , then

–
πp


< θ̃ (t) <

πp


, ∀t ∈ (t, t),

and hence

θ̃ (t) = ϑ
(
t; t, θ̃ (t),λ∗b

)
, ∀t ∈ (t, t).

Letting i =  in equation (.), we see that θ (t) and θ̃ (t) satisfy the same ODE,

θ ′(t) = λ∗b(t)| cosp θ |p + (p – )| sinp θ |p∗
, t ∈ [t, t]. (.)

Moreover, ϕ(t) := θ (t) – πp is also a solution of equation (.). Since

ϕ(t) = θ (t) – πp = –
πp


< θ̃ (t)

we obtain

θ̃ (t) > ϕ(t) = θ (t) – πp =
πp


,
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thus the assumption θ̃ (t) ≤ πp
 is false, proving equation (.) for the case i = . Induc-

tively, we can prove equation (.).
Let i = k +  in equation (.); we get

θ

(
; ,–

πp


,λ∗b,λ∗a

)
= θ̃ () > kπp –

πp


.

Combining with equation (.), we conclude that there must exist λ̃ = �D
k (b,a) ∈ (,λ∗)

such that

θ

(
; ,–

πp


, λ̃b, λ̃a

)
= kπp –

πp


.

(iv) Suppose that both λ∗ = �D
k (a,b) and λ∗ = �D

k (b,a) exist and k ≥ . We assume that
k = m + ,m≥ . The case k = m can be proved similarly.
Let us take the notations

θ (t) := θ

(
t; , –

πp


,λ∗a,λ∗b

)
and θ̃ (t) := θ

(
t; , –

πp


,λ∗b,λ∗a

)
.

By the definition of half-eigenvalues in equation (.) and Lemma ., there exist  = t <
t < · · · < tm < tm+ =  and  = s < s < · · · < sm < sm+ = , such that

θ (ti) = iπp –
πp


, i = , , . . . , m + ;

θ̃ (si) = iπp –
πp


, i = , , . . . , m + 

and

θ (t) = ϑ

(
t; ti, iπp –

πp


,λ∗a

)
, ∀t ∈ [ti, ti+], ≤ i ≤m;

θ (t) = ϑ

(
t; ti+, iπp +

πp


,λ∗b

)
, ∀t ∈ [ti+, ti+],  ≤ i≤m – ;

θ̃ (t) = ϑ

(
t; si, iπp –

πp


,λ∗b

)
, ∀t ∈ [si, si+],  ≤ i≤m;

θ̃ (t) = ϑ

(
t; si+, iπp +

πp


,λ∗a

)
, ∀t ∈ [si+, si+],  ≤ i≤m – .

Particularly, we get

ϑ

(
ti+; ti, iπp –

πp


,λ∗a

)
= iπp +

πp


,  ≤ i≤m; (.)

ϑ

(
ti+; ti+, iπp +

πp


,λ∗b

)
= iπp +

πp


,  ≤ i ≤m – ; (.)

ϑ

(
si+; si, iπp –

πp


,λ∗b

)
= iπp +

πp


,  ≤ i≤m; (.)

ϑ

(
si+; si+, iπp +

πp


,λ∗a

)
= iπp +

πp


,  ≤ i≤m – . (.)
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Let i =m in equations (.) and (.). We get from Lemma .

a+ · [tm ,] �  and b+ · [sm ,] � . (.)

Without loss of generality, we may assume that tm ≤ sm. We need only to distinguish
three cases in the following.
Case . a+ · [tm ,sm] �  and b+ · [sm ,] � . In this case, it follows from Lemma . that

there exist λ >  and λ >  such that

ϑ

(
sm; tm, mπp –

πp


,λa

)
= (m + )πp –

πp


,

ϑ

(
; sm; mπp +

πp


,λb

)
= (m + )πp –

πp


.

Let λ =max{λ∗,λ,λ}. Combining equations (.), (.), and the above two conditions,
we get from Lemma .

θ

(
; ,–

πp


,λa,λb

)
≥ (m + )πp –

πp


= (k + )πp –

πp


,

and hence �D
k+(a,b) exists.

Case . a+ · [tm ,sm] =  and a+b+ · [sm ,] � . In this case, we have a+b+ � . And it
follows from the result (ii) in this property that both �D

k+(a,b) and �D
k+(b,a) exist.

Case . a+ · [tm ,sm] =  and a+b+ · [sm ,] = . In this case, since a+ · [tm ,sm] = , the
condition (.) can be written as

a+ · [sm ,] �  and b+ · [sm ,] � .

Because a+b+ · [sm ,] = , there must exist τ ∈ (sm, ), such that

a+ · [sm ,τ ] �  and b+ · [τ ,] �  (.)

or

b+ · [sm ,τ ] �  and a+ · [τ ,] � . (.)

Then we can apply similar arguments as in Case  to get the existence of �D
k+(a,b) if

equation (.) holds, and the existence of �D
k+(b,a) if equation (.) holds. �

Corollary . Let a,b ∈ L[, ] and denote R+ = (,+∞). One of the following three cases
must occur.

(i) HD
p (a,b)∩R

+ = ∅ andHD
p (b,a)∩R

+ = ∅.
(ii) HD

p (a,b)∩R
+ =

⋃
k≥ �

D
k (a,b) andHD

p (b,a)∩R
+ =

⋃
k≥ �

D
k (b,a).

(iii) There exists k ≥  such that either

HD
p (a,b)∩R

+ =
⋃

≤k≤k

�D
k (a,b), HD

p (b,a)∩R
+ =

⋃
≤k≤k–

�D
k (b,a)
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or

HD
p (a,b)∩R

+ =
⋃

≤k≤k–

�D
k (a,b), HD

p (b,a)∩R
+ =

⋃
≤k≤k

�D
k (b,a).

Applying Lemmas . and ., one can verify the following three examples.

Example . Suppose a,b ∈ L[, ],  = t < t < · · · < tn < tn+ = , n≥ , and

a+ · [tk ,tk+] � , b+ · [tk ,tk+] = , k = , , , . . . , n,

a+ · [tk ,tk+] = , b+ · [tk ,tk+] � , k = , , , . . . , n – .

ThenHD
p (a,b)∩R

+ =
⋃

≤k≤n+ �
D
k (a,b) andHD

p (b,a)∩R
+ =

⋃
≤k≤n �D

k (b,a).

Example . Suppose a,b ∈ L[, ],  = t < t < · · · < tn– < tn = , n≥ , and

a+ · [tk ,tk+] � , b+ · [tk ,tk+] = , k = , , , . . . , n – ,

a+ · [tk ,tk+] = , b+ · [tk ,tk+] � , k = , , , . . . , n – .

ThenHD
p (a,b)∩R

+ =
⋃

≤k≤n �D
k (a,b) andHD

p (b,a)∩R
+ =

⋃
≤k≤n– �

D
k (b,a).

Example . Suppose a,b ∈ L[, ],  = t < t < · · · < tk < tk+ < , ∀k ≥ , and

a+ · [tk ,tk+] � , b+ · [tk ,tk+] = , ∀k = n,n≥ ,

a+ · [tk ,tk+] = , b+ · [tk ,tk+] � , ∀k = n – ,n≥ .

ThenHD
p (a,b)∩R

+ =
⋃

≤k≤+∞ �D
k (a,b) andHD

p (b,a)∩R
+ =

⋃
≤k≤+∞ �D

k (b,a).

The following property can be proved by similar arguments as used for Property ..

Property . Given a,b ∈ L[, ], we have the following results:
(i) if a≺ , then any positive half-eigenvalues �N

k (a,b), k ≥ , does not exist, namely

HN
p (a,b)∩R

+ = ∅;

(ii) if a+b+ � , then those positive half-eigenvalues �N
k (a,b), k ≥ , exist, but the

existence of a positive principal half-eigenvalue �N
 (a,b) = λN

 (a) is indefinite;
(iii) �N

k+(a,b) exists, k ≥  �⇒ both �N
k (a,b) and �N

k (b,a) exist;
(iv) both �N

k (a,b) and �N
k (b,a) exist, k ≥  �⇒ �N

k+(a,b) exists or �N
k+(b,a) exists.

3.4 Structure of the Fučík spectrum �D
p (a,b)

In this subsection, we always use the notation

	(λ,μ) = 	

(
–

πp


,λa,μb

)
for simplicity if there is no confusion. By Theorem ., we see that 	(λ,μ) is continuous
in (λ,μ) ∈R

.
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The following lemma tells us that 	(λ,μ) is quasi-monotonic in λ and in μ. This prop-
erty is crucial for us to characterize the structure of the Fučík spectra �D

p (a,b).

Lemma . Let a,b ∈ L[, ]. The following results hold:
(i) if λ∗ > , μ∗ >  and (λ∗,μ∗) ∈WD

k (a,b), k ≥ , then

	
(
λ,μ∗){

> kπp –
πp
 , if λ ∈ (λ∗, +∞),

< kπp –
πp
 , if λ ∈ (,λ∗);

(ii) if λ∗ > , μ∗ >  and (λ∗,μ∗) ∈WD
k (a,b), k ≥ , then

	
(
λ∗,μ

){
> kπp –

πp
 , if μ ∈ (μ∗, +∞),

< kπp –
πp
 , if μ ∈ (,μ∗).

Proof We only prove (i), and (ii) can be proved by similar arguments.
Suppose λ∗ > , μ∗ >  and (λ∗,μ∗) ∈ WD

k (a,b), k ≥ . It follows from the definition of
WD

k (a,b) in equation (.) that

	
(
λ∗,μ∗) =	

(
–

πp


,λ∗a,μ∗b

)
= –

πp


+ kπp.

In the following, we write

θ (t) = θ

(
t; , –

πp


,λ∗a,μ∗b

)

for simplicity. By Lemma ., there exist ( =) t < t < t < · · · < tk (= ), such that

θ (ti) = iπp –
πp


, i = , , , . . . ,k.

Furthermore, we can deduce that

θ (t) = ϑ

(
t; ti, iπp –

πp


,λ∗a

)
, ∀t ∈ [ti, ti+], i = , , . . . ,

⌊
k – 


⌋
,

θ (t) = ϑ

(
t; ti+, iπp +

πp


,μ∗b

)
, ∀t ∈ [ti+, ti+], i = , , . . . ,

⌊
k


⌋
– .

Particularly, we get

ϑ

(
ti+; ti, iπp –

πp


,λ∗a

)
= (i + )πp –

πp


, i = , , . . . ,

⌊
k – 


⌋
,

ϑ

(
ti+; ti+, iπp +

πp


,μ∗b

)
= (i + )πp +

πp


, i = , , . . . ,

⌊
k


⌋
– .

Then it follows from Lemma . that, for any λ > λ∗ (> ), we have

	
(
λ,μ∗) = θ

(
; ,–

πp


,λa,μ∗b

)
> kπp –

πp


.
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To complete the proof of (i), we need only to prove

	
(
λ,μ∗) < kπp –

πp


, ∀λ ∈ (

,λ∗).
If this is not true, then there exists λ̃ ∈ (,λ∗) such that 	(̃λ,μ∗)≥ kπp –

πp
 . Write

θ̃ (t) = θ̃

(
t; , –

πp


, λ̃a,μ∗b

)
for simplicity. Then there exist ( =) s < s < s < · · · < sk (≤ ) such that

θ̃ (si) = iπp –
πp


, i = , , , . . . ,k.

Since λ∗ > λ̃ > , we can use similar arguments as in the previous paragraph to get

θ

(
sk ; , –

πp


,λ∗a,μ∗b

)
> kπp –

πp


.

Finally, it follows from the condition sk ≤  and Lemma . that

	
(
λ∗,μ∗) = θ

(
; ,–

πp


,λ∗a,μ∗b

)
> kπp –

πp


,

a contradiction to the fact (λ∗,μ∗) ∈WD
k (a,b). �

By the definition ofWD
 (a,b) in equation (.), one has

(λ,μ) ∈ WD
 (a,b) ⇐⇒ θ

(
; ,–

πp


,λa,μb

)
=

πp


.

By the quasi-monotonicity results in Lemma ., one has

θ

(
; ,–

πp


,λa,μb

)
=

πp


⇐⇒ θ

(
; ,–

πp


,λa

)
=

πp


.

Then

(λ,μ) ∈ WD
 (a,b) ⇐⇒ θ

(
; ,–

πp


,λa

)
=

πp


.

It follows from Lemma . that the solutions to

θ

(
; ,–

πp


,λa

)
=

πp



are λ = λD±(a) if a± � , λ = λD
 (a) if a � , and λ = λD

–(a) if a ≺ . Thus WD
 (a,b) can be

characterized as in the following theorem.

Theorem . Let a,b ∈ L[, ] and assume that a �≡ .
(i) If a+ �  and a– � , thenWD

 (a,b) = (λD
 (a)×R)∪ (λD

–(a)×R).
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(ii) If a � , thenWD
 (a,b) = λD

 (a)×R.
(iii) If a ≺ , thenWD

 (a,b) = λD
–(a)×R.

Remark . It follows from equation (.) and the above theorem that W̃D
 (a,b) is made

up of two horizontal linesR×λD
 (b) andR×λD

–(b). If the eigenvalues λD
 (b) and λD

–(b) do
not exist, thenR×λD

 (b) andR×λD
–(b) should be understood as empty sets, respectively.

If k ≥ , the setWD
k (a,b) is more complicated thanWD

 (a,b). As analyzed in Section .,
essentially we need only to discuss the subset �D

k (a,b) as defined in equation (.). Finally
we will show that �D

k (a,b) is either an empty set, or a hyperbolic like curve. The following
property helps us to locate �D

k (a,b) roughly.

Property . (i) (λ∗,μ∗) ∈ �D
k(a,b), k ≥  �⇒ λ∗ > λk(a), μ∗ > λk(b).

(ii) (λ∗,μ∗) ∈ �D
k+(a,b), k ≥  �⇒ λ∗ > λk+(a), μ∗ > λk(b).

Proof We will only prove (i), and (ii) can be proved similarly.
If (λ∗,μ∗) ∈ �D

k(a,b), then λ∗ ≥ ,μ∗ ≥ , and there exist  = t < t < · · · < tk– < tk = ,
such that

θ (t) := θ

(
t; , –

πp


,λ∗a,μ∗b

)
satisfies

θ (ti) = iπp –
πp


, i = , , , . . . , k. (.)

Therefore θ (t) satisfies equation (.) on each interval Ii = [ti–, ti–], i = , , . . . ,k, and
it satisfies equation (.) on each interval Ji = [ti–, ti], i = , , . . . ,k. In other words, we
have

θ (t) = ϑ

(
t; ti–, (i – )πp –

πp


,λ∗a

)
, t ∈ Ii, i = , , . . . ,k; (.)

θ (t) = ϑ

(
t; ti–, (i – )πp –

πp


,μ∗b

)
, t ∈ Ji, i = , , . . . ,k. (.)

Take the following notations for simplicity:

ϑ(t) = ϑ

(
t; , –

πp


,λ∗a

)
, ∀t ∈ [, ],

ϑ̃(t) = ϑ

(
t; , –

πp


,μ∗b

)
, ∀t ∈ [, ].

Let i =  and take t = t in equation (.). Then it follows from equation (.) that

ϑ(t) = θ (t) =
πp


.

By the quasi-monotonicity results in Lemma ., we have

ϑ(t) = ϑ
(
t; t,ϑ(t),λ∗a

)
= ϑ

(
t; t,

πp


,λ∗a

)
>

πp


, (.)
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and hence

ϑ(t) = ϑ
(
t; t,ϑ(t),λ∗a

)
> ϑ

(
t; t,

πp


,λ∗a

)
(by equation (.))

= ϑ

(
t; t,

πp


,λ∗a

)
– πp (by equation (.))

= θ (t) – πp (by equation (.))

=
πp


(by equation (.)).

Inductively, we can show that

ϑ(ti–) > iπp –
πp


, ϑ(ti) > iπp –

πp


, i = , , . . . ,k. (.)

Similarly, applying equations (.), (.), (.), and Lemma ., we can obtain

ϑ̃(ti–) > iπp –
πp


, ϑ̃(ti) > iπp –

πp


, i = , , . . . ,k. (.)

The case i = k (≥ ) in equation (.) implies that

ϑ

(
; ,–

πp


,λ∗a

)
> kπp –

πp


.

By equation (.), we see that λ∗ �= , and hence λ∗ > . By the definition of λD
k (a) as in

equation (.), one has

ϑ

(
; ,–

πp


,λD

k (a)a
)
= kπp –

πp


.

Then it follows from Lemma .(i) that λ∗ > λD
k (a) (> ).

Similarly, it can be deduced from equations (.), (.) and Lemma . that μ∗ >
λD
k (b). �

Theorem . If �D
k (a,b) �= ∅, k ≥ , then �D

k (a,b) is a continuous, strictly decreasing, hy-
perbolic like curve

fk : (αk , +∞) −→ (βk , +∞),

λ −→ μ = fk(λ),

with the horizontal asymptotic line μ = βk and the vertical asymptotic line λ = αk , where
αk ≥ λD

� k+ �(a), βk ≥ λD
� k �(b), and �·� is the floor function.

Proof Assume that �D
k (a,b) �= ∅, k ≥ . We prove the theorem by seven steps.

Step . We aim to prove that �D
k (a,b) is not a single-point set. Suppose that (λ∗,μ∗) ∈

�D
k (a,b), then

	
(
λ∗,μ∗) =	

(
–

πp


,λ∗a,μ∗b

)
= kπp –

πp


.
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By Property ., λ∗ > λD
� k+ �(a) >  and μ∗ > λD

� k �(b) > . Then it follows from Lemma .
that

	

(
λ∗


,μ∗

)
< kπp –

πp


< 	

(
λ∗, μ∗).

Since 	(λ,μ) is continuous in (λ,μ) ∈ R
, there must exist a point (̃λ, μ̃) in the open line

segment with endpoints ( λ∗
 ,μ

∗) and (λ∗, μ∗), and hence λ∗
 < λ̃ < λ∗ and μ∗ < μ̃ < μ∗,

such that

	(̃λ, μ̃) = kπp –
πp


.

Thus (̃λ, μ̃) �= (λ∗,μ∗) and (̃λ, μ̃) ∈ �D
k (a,b), proving the claim. Furthermore, let

Ak :=
{
λ ∈R : ∃μ ∈R, s.t. (λ,μ) ∈ �D

k (a,b)
} ⊂ (

λD
� k+ �(b), +∞)

,

then Ak �= ∅ is not a single-point set, because λ̃ ∈ Ak , λ∗ ∈ Ak and λ̃ �= λ∗.
Step . It follows from Lemma . that every horizontal line intersects �D

k (a,b) at one
time at most, so does every vertical line. Therefore �D

k (a,b) is the image of some function

μ = fk(λ), t ∈ Ak .

Suppose λ,λ ∈ Ak and λ < λ. Let μi = fk(λi), i = , . If μ ≤ μ, then it follows from
Lemma . that

kπp –
πp


=	(λ,μ)≥ 	(λ,μ) >	(λ,μ) = kπp –

πp


,

which is a contradiction. Thusμ > μ. Therefore fk is a strictly decreasing function onAk .
Let

Bk :=
{
μ = fk(λ) : λ ∈ Ak

}
and

αk = inf{λ : λ ∈ Ak}, βk = inf{μ : μ ∈ Bk}.

By Property ., αk ≥ λD
� k+ �(a) >  and βk ≥ λD

� k �(b) > .
Step .We claim that if λ,λ ∈ Ak and λ < λ, then λ∗ ∈ Ak for any λ∗ ∈ (λ,λ). Letμi =

fk(λi), i = , . By the monotonicity result proved in Step , we have μ > μ. By Lemma .
again, for any λ∗ ∈ (λ,λ), one has

	
(
λ∗,μ

)
> 	(λ,μ) = kπp –

πp


= 	(λ,μ) > 	

(
λ∗,μ

)
.

Then the continuity of 	(λ,μ) in (λ,μ) ∈ R
 implies the existence of μ∗ ∈ (μ,μ) such

that

	
(
λ∗,μ∗) = kπp –

πp


,

and hence (λ∗,μ∗) ∈ �D
k (a,b), completing the proof of the claim.
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Step . We aim to prove that Ak = (αk , +∞). If αk ∈ Ak , then (αk , fk(αk)) ∈ �D
k (a,b). Thus

	
(
αk , fk(αk)

)
= kπp –

πp


,

αk >  and fk(αk) > . Similar arguments as in Step  show that there exists some point
(λ∗,μ∗) in the open line segment with endpoints ( αk , fk(αk)) and (αk , fk(αk)), such that
(λ∗,μ∗) ∈ �D

k (a,b), and hence λ∗ < αk = inf{λ : λ ∈ Ak} and λ∗ ∈ Ak , a contradiction. There-
fore ak /∈ Ak . Similarly, we can prove that sup{λ : λ ∈ Ak} = +∞. Combining the results in
Step , we see that Ak = (αk , +∞).
Step . We aim to prove that Bk = (βk , +∞). Since Ak = (αk , +∞) and the function fk :

Ak → Bk is strictly decreasing, we see that Bk �= ∅ is not a single-point set. Then similar
arguments as in Step  and Step  show that Bk = (βk , +∞).
Step . We aim to show that fk is a continuous function on Ak = (αk , +∞). In fact, we

have

	
(
λ, fk(λ)

)
= kπp –

πp


, ∀λ ∈ (αk , +∞). (.)

Fix any λ∗ ∈ (αk , +∞). By the monotonicity results proved in Step , we see that both

μ := fk
(
λ∗–

)
= lim

λ<λ∗ ,λ→λ∗ fk(λ) and μ := fk
(
λ∗+

)
= lim

λ>λ∗ ,λ→λ∗ fk(λ)

exist, and μ ≥ fk(λ∗) ≥ μ. Furthermore, we can show that μ ≥ fk(λ∗ + ) > . Thus μ ≥
μ > . Let λ < λ∗ and λ → λ∗ in equation (.), then the continuity of 	(λ,μ) in (λ,μ) ∈
R

 guarantees that

	
(
λ∗,μ

)
= kπp –

πp


.

Similarly, let λ > λ∗ and λ → λ∗ in equation (.), then

	
(
λ∗,μ

)
= kπp –

πp


.

Now Lemma . implies that μ = μ = fk(λ∗). Thus fk is continuous at the point λ∗. Since
λ∗ ∈ (αk , +∞) can be chosen arbitrarily, fk is continuous in λ ∈ (αk , +∞).
Step . In the above six steps, we have shown that the continuous and strictly decreasing

function μ = fk(λ) maps (αk , +∞) onto (βk , +∞). Then it is necessary that

lim
λ>αk ,λ→αk

fk(λ) = +∞ and lim
λ→+∞ fk(λ) = βk .

Therefore μ = fk(λ) is a hyperbolic like curve with the horizontal asymptotic line μ = βk

and the vertical asymptotic line λ = αk . �

When the weight a or b is positive, we can improve the results about the asymptotic
lines in Theorem ..

Theorem . Let a,b ∈ L[, ]. The following results hold.
(i) If a+ �  and b > , then �D

k (a,b) �= ∅ for any k ≥ , and the vertical asymptotic line
of �D

k (a,b) is λ = λD
� k+ �(a).
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(ii) If a �  and b+ > , then �D
k (a,b) �= ∅ for any k ≥ , and the horizontal asymptotic

line of �D
k (a,b) is μ = λD

� k �(b).

Proof We only prove (i) for the case k = n, n≥ . Other cases can be proved similarly.
Since a+ > , it follows fromLemma . that the eigenvalue λD

n (a) exists. By the definition
of λD

n (a) as in equation (.), we have ϑ(; ,–πp
 ,λ

D
n (a)a) = nπp–

πp
 . By Lemma ., there

exist  = t < t · · · < tn– < tn =  such that

ϑ

(
ti; , –

πp


,λD

n (a)a
)
= iπp –

πp


, i = , , , . . . ,n,

and hence

ϑ

(
ti+; ti, iπp –

πp


,λD

n (a)a
)
= iπp +

πp


, i = , , , . . . ,n – .

By equation (.), we also have

ϑ

(
ti+; ti, iπp –

πp


,λD

n (a)a
)
= iπp +

πp


, i = , , , . . . ,n – .

Given any λ∗ > λD
n (a), it follows from Lemma .(i) that

ϑ

(
ti+; ti, iπp –

πp


,λ∗a

)
> iπp +

πp


,

and hence there exist si ∈ (ti, ti+), such that

ϑ

(
si; ti, iπp –

πp


,λ∗a

)
= iπp +

πp


, i = , , , . . . ,n – . (.)

We have b · [si ,ti+] �  because b > . By Lemma ., there exist μi > , such that

ϑ

(
ti+; si, iπp +

πp


,μib

)
= (i + )πp +

πp


, i = , , , . . . ,n – . (.)

Define a weight q on the interval [, ] as

q(t) = μib(t), ∀t ∈ [ti, ti+], i = , , , . . . ,n – .

Then it follows from equations (.) and (.) that

θ

(
; ,–

πp


,λ∗a,q

)
= nπp –

πp


.

Let μ := max≤i≤n–{μi} and μ := min≤i≤n–{μi}. One has μb ≥ q ≥ μb on [, ]. Now
Remark . implies that

	
(
λ∗,μ

)
= θ

(
; ,–

πp


,λ∗a,μb

)
≥ θ

(
; ,–

πp


,λ∗a,q

)
= nπp –

πp


;

	
(
λ∗,μ

)
= θ

(
; ,–

πp


,λ∗a,μb

)
≤ θ

(
; ,–

πp


,λ∗a,q

)
= nπp –

πp


.
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By the continuity of 	(λ,μ) in (λ,μ), there exists μ∗ ∈ [μ,μ], and hence μ∗ > , such that
	(λ∗,μ∗) = nπp –

πp
 . Thus (λ

∗,μ∗) ∈ �D
n(a,b) and �D

n(a,b) �= ∅.
Now it follows from Theorem . that �D

n(a,b) is a hyperbolic like curve and its vertical
asymptotic line λ = αn satisfies αn ≥ λD

n (a). On the other hand, since (λ∗,μ∗) ∈ �D
n(a,b),

we get αn < λ∗. Furthermore, αn ≤ λD
n (a) because λ∗ > λD

n (a) can be chosen arbitrarily.
Therefore the vertical asymptotic line of �D

n(a,b) is λ = λD
n (a). �

If λ∗ =�D
k (a,b) exists and k ≥ , then it follows from equation (.) that

	
(
λ∗,λ∗) = kπp –

πp


,

and hence (λ∗,λ∗) ∈ �D
k (a,b). Thus �D

k (a,b) is a hyperbolic like curve by Theorem ..
On the other hand, suppose that �D

k (a,b), k ≥ , is a hyperbolic like curve. Theorem .
tells us it has a horizontal asymptotic line and a vertical one. Then it must intersect the
diagonal μ = λ at a unique point (λ∗,λ∗). Furthermore, we can deduce that λ∗ = �D

k (a,b).
In conclusion, we have the following property.

Property . Let a,b ∈ L[, ] and k ≥ . The following results hold.
(i) �D

k (a,b) = ∅ if and only if �D
k (a,b) does not exist.

(ii) �D
k (a,b) is a hyperbolic like curve if and only if �D

k (a,b) exists.
(iii) �D

k (a,b) is either an empty set or a hyperbolic like curve in the quadrant R+ ×R
+

emanating from the point (�D
k (a,b),�

D
k (a,b)).

Remark . If �D
k+(a,b) �= ∅, k ≥ , then it follows from Properties . and . that

�D
k (a,b) �= ∅. Furthermore, we can deduce by Lemma . that the higher-order hyperbolic

like curve �D
k+(a,b) always lies above the lower-order curve �D

k (a,b).

For any k ≥ , denote R+ = [,+∞) and define

�̃D
k (a,b) := W̃D

k (a,b)∩ (R+ ×R+).

By equations (.) and (.), we know that �̃D
k (a,b) is asymmetric to �D

k (b,a) about the
diagonal μ = λ. Namely,

(λ,μ) ∈ �̃D
k (a,b) ⇐⇒ (μ,λ) ∈ �D

k (b,a).

Then we get can the following results immediately from Property ..

Property . Let a,b ∈ L[, ] and k ≥ . Then �̃D
k (a,b) is either an empty set or a hy-

perbolic like curve in the quadrant R+ × R
+ emanating from (�D

k (b,a),�
D
k (b,a)), and

�̃D
k (a,b) �= ∅ if and only if �D

k (b,a) exists.

By Properties . and ., we see that the existence of those hyperbolic like curves
�D
k (a,b) and �̃D

k (a,b), k ≥ , is determined by the existence of those half-eigenvalues
�D

k (a,b) and �D
k (b,a), respectively. By Corollary ., we can conclude that besides those

trivial lines, the Fučík spectrum �D
p (a,b) confined to the quadrant R+ × R

+ is an empty
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set, or made up of an odd number of hyperbolic like curves, or made up of a double se-
quence of hyperbolic like curves. Taking the relations (.)-(.) into consideration, we
obtain the following theorem.

Theorem . Let a,b ∈ L[, ]. Then

�D
p (a,b)⊃WD

 (a,b) =
(
λD
 (a)×R

) ∪ (
λD
–(a)×R

)
,

�D
p (a,b)⊃ W̃D

 (a,b) =
(
R× λD

 (b)
) ∪ (

R× λD
–(b)

)
.

If one of the half-eigenvalues λD±(a) or λD±(b) does not exist, the corresponding straight line
λD±(a)×R or R× λD±(b) should be understood as an empty set. Let

�̌D
p (a,b) := �D

p (a,b) \
(
WD

 (a,b)∪ W̃D
 (a,b)

)
,

then �̌D
p (a,b) ∩ (R+ × R

+) consists of zero, an odd number of, or a double sequence of hy-
perbolic like curves:

�̌D
p (a,b)∩

(
R

+ ×R
+) = ⋃

k∈Z,k≥

(
�D
k (a,b)∪ �̃D

k (a,b)
)
.

If�D
k (a,b) or�D

k (b,a) does not exist, �
D
k (a,b) or �̃D

k (a,b) should be understood as an empty
set, respectively. If�D

k (a,b) and�D
k (b,a) exist,�

D
k (a,b) and �̃D

k (a,b) are continuous, strictly
decreasing, hyperbolic like curves.Moreover,

(i) �̌D
p (a,b)∩ (R– ×R

+) is asymmetric to �̌D
p (–a,b)∩ (R+ ×R

+) about the vertical line
λ = ;

(ii) �̌D
p (a,b)∩ (R– ×R

–) is asymmetric to �̌D
p (–a, –b)∩ (R+ ×R

+) about the origin
(λ,μ) = (, );

(iii) �̌D
p (a,b)∩ (R+ ×R

–) is asymmetric to �̌D
p (a, –b)∩ (R+ ×R

+) about the horizontal
line μ = .

3.5 Fučík spectrum �D
p (a,b) with positive weights

Assume that a,b ∈ L[, ], a >  and b > . Then it follows from Lemma . that λD
 (a) and

λD
 (b) exist, but λD

–(a) and λD
–(b) do not exist. By Property . and Example ., all half-

eigenvalues�D
k (a,b) and�D

k (b,a), k ≥ , exist; but none of the half-eigenvalues�D
k (–a,b),

�D
k (b, –a), �

D
k (–a, –b), �

D
k (–b, –a), �

D
k (a, –b), �

D
k (–b,a), k ≥ , exist. Then we have the

following theorem.

Theorem . Let a,b ∈ L[, ], a >  and b > . Then �D
p (a,b) is made up of one ver-

tical line, one horizontal line and a double sequence of differentiable, strictly decreasing,
hyperbolic like curves in R

+ ×R
+:

�D
p (a,b) =

(
λD
 (a)×R

) ∪ (
R× λD

 (b)
)⋃
k≥

(
�D
k (a,b)∪ �̃D

k (a,b)
)
.

For each k ≥ , �D
k (a,b) has the vertical asymptotic line λ = λD

� k+ �(a) and the horizontal
asymptotic line μ = λD

� k �(b).
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Proof We need only to prove the differentiability of �D
k (a,b). Recall from Theorem .

that for any k ≥ , the curve �D
k (a,b) : (αk , +∞) → (βk , +∞), μ = fk(λ) is determined by

	(λ,μ) := 	

(
–

πp


;λa,μb

)
= kπp –

πp


, λ > ,μ > . (.)

Given (λ∗,μ∗) ∈ �D
k (a,b), k ≥ , denote the associated eigenfunction by X(t). Then X– � 

because k ≥ . Since b(t) >  for almost every t ∈ [, ], it follows from formulation (.)
that

∂

∂μ
	(λ,μ)

∣∣∣∣
(λ∗ ,μ∗)∈�D

k (a,b)
= μ∗

∫ 


Xp
–(t)b(t)dt > .

Thus the Implicit Function Theorem can be applied to equation (.), and we see that
the hyperbolic like curve �D

k (a,b) is differentiable and

f ′
k (λ) = –

∂
∂λ

	(λ,μ)
∂

∂μ
	(λ,μ)

. �

4 Fučík spectrum for Neumann problems
Given a pair of indefinite weights a,b ∈ L[, ], the (Neumann type) Fučík spectrum
�N

p (a,b) is defined as the set of those (λ,μ) ∈ R
 such that system (.)-(.) has non-

trivial solutions.
Via similar arguments as in the previous sections, �N

p (a,b) can also be characterized.
We list the results in the following but omit the detailed proof.

Theorem . The Neumann Fučík spectrum �N
p (a,b) can be decomposed as

�N
p (a,b) =

⋃
k∈Z,k≥

(
WN

k (a,b)∪ W̃N
k (a,b)

)
,

where WN
k (a,b) and W̃N

k (a,b) are defined as

WN
k (a,b) =

{
(λ,μ) ∈R

 : θ (; , ,λa,μb) = kπp
}
,

W̃N
k (a,b) =WN

k (b,a) =
{
(λ,μ) ∈R

 : θ (; , ,μb,λa) = kπp
}
,

and hence

(λ,μ) ∈ W̃N
k (a,b) ⇐⇒ (μ,λ) ∈WN

k (b,a).

Moreover, for any set WN
k (a,b), k ≥ , one has

(λ,μ) ∈ WN
k (a,b) ⇐⇒ (–λ,μ) ∈WN

k (–a,b), (.)

(λ,μ) ∈ WN
k (a,b) ⇐⇒ (–λ, –μ) ∈WN

k (–a, –b), (.)

(λ,μ) ∈ WN
k (a,b) ⇐⇒ (λ, –μ) ∈WN

k (a, –b). (.)
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By the relations (.)-(.), we need only to considerWN
 (a,b), W̃N

 (a,b) and

�N
k (a,b) :=WD

k (a,b)∩ (R+ ×R+), k ≥ ,

�̃N
k (a,b) := W̃D

k (a,b)∩ (R+ ×R+), k ≥ .

Theorem . The set WN
 (a,b) is made up of two vertical lines ×R and λN

 (a)×R. And
W̃N

 (a,b) is made up of two horizontal lines R ×  and R × λN
 (b). If λN

 (a) or λN
 (b) does

not exist, the corresponding straight line λN
 (a)×R or R× λN

 (b) should be understood as
an empty set.

Theorem . If �N
k (a,b) �= ∅, k ≥ , then �N

k (a,b) is a continuous, strictly decreasing, hy-
perbolic like curve

gk : (αk , +∞) −→ (βk , +∞),

λ −→ μ = gk(λ),

with the horizontal asymptotic line μ = βk and the vertical asymptotic line λ = αk . More-
over, the lower bound of αk and βk can be estimated as follows:

k = n, n≥  �⇒ αk ≥ λN
n (a), βk ≥ λD

n (b);

k = n – , n≥  �⇒ αk ≥ λND
n (a), βk ≥ λDN

n–(b).

Theorem . Let k ≥ . Then:
(i) �N

k (a,b) �= ∅ if and only if �N
k (a,b) exists. And �N

k (a,b) is either an empty set or a
hyperbolic like curve emanating from (�N

k (a,b),�
N
k (a,b)).

(ii) �̃N
k (a,b) �= ∅ if and only if �N

k (b,a) exists. And �̃N
k (a,b) is either an empty set or a

hyperbolic like curve emanating from (�N
k (b,a),�

N
k (b,a)).

From the relation between�N
k (a,b) and�N

k (b,a) as stated in Property ., we obtain the
following spectral structure of �N

p (a,b).

Theorem . One of the following three cases must occur.
(i) �N

k (a,b) = ∅ and �̃N
k (a,b) = ∅ for any k ≥ .

(ii) �N
k (a,b) �= ∅ and �̃N

k (a,b) �= ∅ for any k ≥ .
(iii) There exist k ≥  such that either

�N
k (a,b)

{
�= ∅, ≤ k ≤ k,
= ∅, k > k,

�̃N
k (a,b)

{
�= ∅, ≤ k ≤ k – ,
= ∅, k ≥ k

or

�N
k (a,b)

{
�= ∅, ≤ k ≤ k – ,
= ∅, k ≥ k,

�̃N
k (a,b)

{
�= ∅, ≤ k ≤ k,
= ∅, k > k.

From the relations (.)-(.) and the above theorems, the structure of the Neumann
Fučík spectrum �N

p (a,b) becomes clear.
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Theorem . Let a,b ∈ L[, ]. Then �N
p (a,b) is composed of (at most) four trivial lines

×R, �N
 (a)×R, R× , R× �N

 (b) (if one of the involved principal eigenvalues does not
exist, the corresponding straight line is understood as an empty set), and in each quadrant
of R zero, a finite odd number of, or a double sequence of hyperbolic like curves.

Finally, if the weights a and b are positive, then neither λN
 (a) nor λN

 (b) exists, and we
have the following results.

Theorem . Let a,b ∈ L[, ], a >  and b > . Then �N
p (a,b) is made up of one ver-

tical line, one horizontal line and a double sequence of differentiable, strictly decreasing,
hyperbolic like curves in the quadrant R+ ×R

+:

�D
p (a,b) = (×R)∪ (R× )

⋃
k≥

(
�N
k (a,b)∪ �̃N

k (a,b)
)
.

If k = n, n≥ , the hyperbolic like curve �N
k (a,b) has the asymptotic lines

λ = λN
n (a), μ = λD

n (b).

If k = n – , n≥ , the hyperbolic like curve �N
k (a,b) has the asymptotic lines

λ = λND
n (a), μ = λDN

n–(b).
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5. Alif, M: Sur le spectre de Fučik du p-Laplacien avec des poids indéfinis. C. R. Math. Acad. Sci. Paris 334, 1061-1066

(2002)
6. Lindqvist, P: Some remarkable sine and cosine functions. Ric. Mat. XLIV, 269-290 (1995)
7. Zhang, M: The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic

potentials. J. Lond. Math. Soc. (2) 64, 125-143 (2001)
8. Li, W, Yan, P: Continuity and continuous differentiability of half-eigenvalues in potentials. Commun. Contemp. Math.

12, 977-996 (2010)

http://www.boundaryvalueproblems.com/content/2014/1/10


Chen et al. Boundary Value Problems 2014, 2014:10 Page 34 of 34
http://www.boundaryvalueproblems.com/content/2014/1/10

9. Meng, G, Yan, P, Zhang, M: Spectrum of one-dimensional p-Laplacian with an indefinite integrable weight. Mediterr.
J. Math. 7, 225-248 (2010)

10. Li, W, Yan, P: Various half-eigenvalues of scalar p-Laplacian with indefinite integrable weights. Abstr. Appl. Anal.
(2009). doi:10.1155/2009/109757

10.1186/1687-2770-2014-10
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